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Abstract
Dynamic spatio-temporal understanding is essen-
tial for video-based multimodal tasks, yet exist-
ing methods often struggle to capture fine-grained
temporal and spatial relationships in long videos.
Current approaches primarily rely on pre-trained
CLIP encoders, which excel in semantic under-
standing but lack spatially-aware visual context.
This leads to hallucinated results when interpret-
ing fine-grained objects or scenes. To address these
limitations, we propose a novel framework that in-
tegrates diffusion models into multimodal video
models. By employing diffusion encoders at in-
termediate layers, we enhance visual representa-
tions through feature alignment and knowledge dis-
tillation losses, significantly improving the model’s
ability to capture spatial patterns over time. Addi-
tionally, we introduce a multi-level alignment strat-
egy to learn robust feature correspondence from
pre-trained diffusion models. Extensive experi-
ments on benchmark datasets demonstrate our ap-
proach’s state-of-the-art performance across multi-
ple video understanding tasks. These results estab-
lish diffusion models as a powerful tool for enhanc-
ing multimodal video models in complex, dynamic
scenarios.

1 Introduction
Recently, multimodal large language models (MLLMs)
[Zhang et al., 2023; Li et al., 2023a] have demonstrated sig-
nificant advancements in visual understanding tasks, includ-
ing image or video recognition [Li et al., 2024b; Ma et al.,
2024; Meng et al., 2024; Wang et al., 2024b; Meng et al.,
2025], visual question-answering [Li et al., 2023a] and ob-
ject segmentation [Dang et al., 2023b; Dang et al., 2024a;
Dang et al., 2024c]. However, the application of MLLMs
in long video understanding remains challenging due to the

Visual 
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Querying
Transformer

Language Loss

Video Frames

(a)  Traditional Method

Visual 
Encoder

Querying
Transformer

Language Loss Alignment Loss

D
iffusion
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odel

(b)  Our Method

Adaptive
Multi-level

Aligner

LLM LLM

Prompt Prompt

Question: What is the relationship 
between two people?

Answer: Boyfriend and Girlfriend

Question: What is the relationship 
between two people?

Answer: Husband and Wife

Video Frames

Time

Figure 1: Traditional method vs. the proposed Diff-LMM. Pre-
vious methods (a) employ the Querying Transformer (Q-Former)
to connect the visual encoder with the LLM decoder, guided by
language generation loss. In contrast, our approach (b) introduces
diffusion-based supervision, enabling the Q-Former to capture fine-
grained cues and enhance spatio-temporal dynamics.

complexity of modeling spatio-temporal dependencies across
consecutive video frames. These models must effectively
reason about complex dynamics, intricate scenes, and sub-
tle visual details over extended periods, akin to human in-
formation extraction from complex visual streams. Con-
sequently, developing efficient and effective solutions for
this task remains a significant challenge, which limits its
application in time-sensitive fields [Dang and Yang, 2021;
Dang and Yang, 2022].
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Existing works in video-based multimodal tasks can be
divided into two categories. The first category includes
CLIP-based methods (e.g., Video-LLaMA [Zhang et al.,
2023], MA-LMM [He et al., 2024], and TimeChat [Ren
et al., 2024]), which extract features using CLIP and con-
vert them to the LLM embedding space via multi-level per-
ception (MLP) or Q-Former. These methods prioritize se-
mantic understanding but overlook spatial context, which
limits their ability to model spatio-temporal relationships.
The second category involves self-supervised backbones(e.g.,
DINO [Oquab et al., 2023]), or combinations of CLIP and
self-supervised encoders [Zong et al., 2024]. These ap-
proaches capture more visual cues, balancing coarse-grained
and fine-grained understanding. However, they have limi-
tations: (a) multiple encoders increase computational costs,
making them impractical for processing long videos, and
(b) the potential of large-scale generative models, such as
diffusion models, to improve MLLM performance remains
unexplored. How to efficiently and effectively capture the
complex spatio-temporal dynamics present in long video se-
quences remains a challenging problem.

To address the aforementioned challenges, we propose a
novel framework, Diff-LMM, which introduces diffusion-
guided supervision into large multimodal models. Our solu-
tion is simple, efficient, and effective, integrating pre-trained
knowledge from diffusion models to enhance fine-grained un-
derstanding. As shown in Figure 1, the core idea is using
diffusion features as intermediate supervision within the vi-
sual encoding layers and employing multi-level distillation
loss to achieve feature alignment. Diff-LMM offers several
advantages: (a) Instead of directly incorporating the diffu-
sion backbone as the visual encoder, the teacher-student dis-
tillation mechanism allows the model to learn rich pre-trained
features without increasing inference costs. (b) Intermediate
intervention in the visual encoding layers complements miss-
ing visual details that are challenging to capture through lan-
guage supervision alone. (c) By employing multi-level align-
ment loss, we alleviate the representation space gap between
the diffusion model and our encoder, achieving adaptive and
effective alignments.

Experiments demonstrate that Diff-LMM achieves state-
of-the-art performance across multiple long video under-
standing benchmarks. Ablation analysis further confirms
that visual representations from pre-trained diffusion models,
such as DiT, offer a positive effect in fine-grained tasks within
long video scenarios. These findings underscore the substan-
tial value of diffusion models in enhancing multimodal video
models, particularly in complex environments.

We summarize our main contributions as follows:

• We present a novel diffusion-based supervision for
MLLMs, utilizing a meticulously crafted feature align-
ment strategy to enhance fine-grained representations of
long videos.

• We introduce an adaptive multi-level alignment mech-
anism that dynamically adjusts alignment granularity
across various levels, effectively bridging the represen-
tation gap between teacher and student models and es-
tablishing robust inter-model correspondences.

• Extensive experiments demonstrate that leveraging pre-
trained diffusion models significantly improves perfor-
mance on fine-grained tasks in long video scenarios, un-
derscoring the potential of diffusion models as a power-
ful tool for advancing multimodal video models in com-
plex, dynamic environments.

2 Related Works
2.1 Long Video Understanding
Recent advancements in MLLMs have significantly improved
their application to video understanding tasks. To process
video inputs, image-language models [Li et al., 2023a] typ-
ically flatten spatio-temporal features into one-dimensional
sequences and utilize a pre-trained large language model
(LLM) for decoding. However, these approaches face chal-
lenges in capturing temporal dynamics due to the context
length limitations of LLMs and the high GPU consumption
required for processing.

To address these challenges, several works [Maaz et al.,
2023; Dang et al., 2023a; Dang et al., 2024b] have attempted
to uniformly sample from video, aiming to preserve as much
information as possible under limited input conditions. For
instance, Video-ChatGPT [Maaz et al., 2023] applies average
pooling modules to reduce input dimensions, which, how-
ever, results in a significant loss of visual details. Other works
aim to preserve the maximum number of frames by design-
ing specialized memory modules. Inspired by the Atkinson-
Shiffrin memory model, MovieChat [Song et al., 2024] in-
troduces memory modules to retain detailed video content ef-
fectively. However, these methods still lack explicit temporal
modeling, resulting in suboptimal performance. In contrast,
Video-LLaMA [Zhang et al., 2023] utilizes an additional
query transformer to directly model temporal relationships,
although this increases computational complexity. MA-LMM
builds on these previous works by introducing memory mod-
ules and memory compression mechanisms, significantly re-
ducing GPU consumption. Despite these advancements, most
of these models are primarily focused on retaining more in-
formation from video. However, there is still relatively little
research directly modeling the complex spatio-temporal dy-
namics of video, and improving a model’s ability to capture
these complex spatio-temporal representations remains a sig-
nificant challenge.

2.2 Diffusion Models for Representation Learning
Diffusion model [Ho et al., 2020] is a type of deep generative
model that uses the final state of a Markov chain starting from
a standard Gaussian distribution to approximate the distribu-
tion of natural images. Although diffusion models are mainly
designed for generation tasks, the denoising process allows
for the learning of both low- and high-level features from the
input data [Fuest et al., 2024].

Recent research has demonstrated the application of diffu-
sion models as representation learners [Xiang et al., 2023;
Chen et al., 2024], with improved models learning better
representations [Xiang et al., 2023]. Although the repre-
sentational power of diffusion models is grounded in well-
established theoretical foundations, leveraging off-the-shelf
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diffusion models for non-generative tasks poses significant
challenges [Yang and Wang, 2023]. In previous research,
to fully leverage the representations extracted by diffusion
models, these methods [Xiang et al., 2023] typically require
architectures similar to time-conditioned U-Net, a special-
ized structure ill-suited for long video understanding tasks.
Due to the task mismatch between the teacher model and the
student model, applying diffusion for knowledge distillation
presents a noteworthy challenge. To address this issue, we
employ a novel adaptive multi-level alignment strategy, of-
fering a method for integrating high-quality representations.
This allows us to leverage diffusion-based supervision to en-
hance the model’s capabilities.

3 Method

To address the challenges of modeling fine-grained tempo-
ral and spatial relationships in the video, as shown in Fig-
ure 2, we propose Diff-LMM. This novel framework inte-
grates diffusion-based supervision into video MLLMs. Un-
like traditional methods that directly use CLIP and Q-Former
for visual feature extraction, our approach employs diffusion
encoders at intermediate layers. This allows diffusion fea-
tures to enhance CLIP representations through feature align-
ment and knowledge distillation loss.

3.1 Visual Encoding

Our method, inspired by cognitive processes [Wu et al.,
2022], sequentially processes video frames to manage long-
term visual information effectively. Given a video with
N frames, we utilize a pre-trained visual encoder to ex-
tract features from each frame, forming a sequence S =
[s1, s2, . . . , sN ], where sn ∈ RP×C represents the feature of
the n-th frame, P is the number of image tokens, and C is the
feature dimension per token. To enhance both temporal and
spatial representation, we incorporate a temporal position en-
coding (PE) mechanism, integrating temporal dynamics with
the frame-level features ft:

ft = sn + PE(t), (1)

where ft ∈ RP×C . The visual features are organized into
a hierarchical memory bank using a dynamic compression
strategy. This strategy reduces redundancy while retaining
essential temporal features, ensuring rich information preser-
vation and computational efficiency—key for long-term dy-
namic analysis.

Querying Transformer with Memory Banks. Previous
studies [Zhang et al., 2023; He et al., 2024] have introduced
the Querying Transformer (Q-Former) to capture temporal
dynamics across frames and multimodal alignment between
visual cues and queries in videos. The Q-Former models long
time series using learnable query vectors z ∈ RN×C , where
N is the number of queries and C is the feature dimension.

Diffusion Transformer

T

...
DiT Block

Response Text

T

LLMLLM

Prompt

Visual EncoderVisual Encoder

Long-Term Memory Bank

 
Q-Former BlockQ-Former Block
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Figure 2: Framework overview. Diff-LMM processes video frames
sequentially, using a visual encoder for feature extraction and the Q-
Former to generate queries, which are stored in a long-term memory
bank. The final output is obtained by decoding the Q-Former out-
put from the last timestep using a pre-trained large model. To im-
prove the model’s ability to capture fine-grained spatio-temporal dy-
namics, we leverage a pre-trained diffusion model to extract frame-
wise representations as supervisory signals. An adaptive multi-level
alignment mechanism dynamically adjusts the loss weights based on
semantic differences among Q-Former layers. During training, com-
ponents with fixed parameters are marked with a snowflake icon,
while tunable parts are indicated by a flame.

To improve the dynamic modeling of long-term temporal
information, we adopt the long-term memory mechanism [He
et al., 2024], which combines both visual and query memory
banks. The visual memory bank stores feature representa-
tions of all historical frames extracted by the frozen visual en-
coder, capturing long-range contextual information. At each
time step t, this bank aggregates features and serves as the
key-value input for the cross-attention mechanism in the Q-
Former. The query memory bank captures temporal dynamics
by dynamically accumulating query vectors learned by the Q-
Former at each time step.

3.2 Learning from Diffusion Teacher
We contend that diffusion models possess a superior ability
to capture spatial attributes compared to CLIP models, ow-
ing to their design and training objectives. While CLIP em-
ploys contrastive learning to align image and text embeddings
by maximizing similarity between paired data, its empha-
sis on high-level semantic alignment may neglect finegrained
spatial details [Monsefi et al., 2024]. In contrast, diffusion
models learn through iterative denoising of corrupted images,
a process that necessitates precise reconstruction of spatial
structures and textures.

In the context of multimodal large language models, while
Q-Former efficiently enhances the original CLIP representa-
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tion, it primarily aggregates global visual features via learn-
able query. This prevents the model from capturing fine-
grained temporal and spatial relationships in videos. To ad-
dress this issue, we introduce diffusion-based supervision for
more detailed dynamic spatio-temporal modeling.
Pre-Trained Diffusion Models. Diffusion models, lever-
aging large-scale image data and visual generative priors, ex-
cel in extracting detailed and structural object cues [Wang et
al., 2023; Wang et al., 2024a]. By incorporating feedback
from these models, the fine-grained feature extraction capa-
bility of CLIP models is significantly enhanced [Wang et al.,
2024a]. These probabilistic models [Rombach et al., 2022;
Brooks et al., 2024] learn the data distribution p(x) and gen-
erate x from a random Gaussian variable, where x represents
an image in the context of image diffusion models. To cap-
ture complex visual concepts, diffusion models reconstruct
signals from noisy data xτ at varying noise levels. The loss
function for this process is defined as:

Ldiffusion = Ex,ϵ∈N (0,1),τ

[
∥ϵ− ϵθ(xτ , t)∥22

]
, (2)

where ϵ represents the actual noise contaminating the clean
data, and ϵθ(xτ , t) indicates the noise predicted by the de-
noising model.

Noisy data xτ is generated by adding noise from a Gaus-
sian distribution N (0, 1) to the clean data x0, following the
noise scheduler αt [Ho et al., 2020], as defined:

xτ =
√
ατx0 +

√
1− ατ ϵ, ϵ ∈ N (0, 1). (3)

Here, τ denotes the timestep in the diffusion process, with
higher τ corresponding to increased noise.
Diffusion Supervision. While Q-Former excels in tasks
such as Visual Question Answering (VQA), it struggles to
represent detailed visual information due to CLIP’s empha-
sis on low-frequency signals and global patterns [Park et al.,
2023]. To address this issue, we introduce supervisory sig-
nals from diffusion models, which have been shown to en-
hance CLIP’s performance on fine-grained tasks [Wang et al.,
2024a]. Specifically, we utilize DiT to extract visual repre-
sentations from each video frame, which serves as the pre-
dictive target for Q-Former hiddens. This alignment aims
to improve Q-Former’s capability to model intricate spatio-
temporal dynamics effectively.

Let f be a pre-trained diffusion model, and consider a
video frame xt. The output of the diffusion model is yt =
f(xt) ∈ RH×D and the Q-Former output ht ∈ RP×C ,
where H and D represent the number of hidden units and
the embedding dimension, respectively. However, due to the
architectural differences between the diffusion model and Q-
Former, the representations extracted by the two models dif-
fer in both scale and dimension, making it challenging to
align the outputs directly. Therefore, to reduce the difficulty
of alignment training, we first apply average pooling to the
output of the diffusion model, aiming to retain as much in-
formation as possible while reducing the dimensionality to
improve alignment efficiency, resulting in the final alignment
target y∗ ∈ Pool(f(xt)).

Furthermore, to address the differences in scale and dimen-
sion between the two models’ outputs, we introduce a train-
able projection head hϕ, which projects the Q-Former output

ht into the same dimensional space as the diffusion model’s
output, the resulting aligned feature is hϕ(ht) ∈ RD. Finally,
we align the projected Q-Former output hϕ(ht) with the aver-
age pooled diffusion output y∗ using a knowledge distillation
loss function, which can be computed as follows:

Lkd = − hϕ(ht) · y∗

∥hϕ(ht)∥∥y∗∥
, (4)

where hϕ is parameterized using an MLP layer.
Using two linear projectors, we align the features from

the Q-Former with those from the diffusion model despite
the differences in their architectures. This effectively inte-
grates valuable representations from the diffusion model as
supervisory signals, which helps tackle the challenges asso-
ciated with understanding long videos. However, while the
above method resolves the alignment issue, ensuring training
efficiency and improving model performance when aligning
across multiple layers remains a challenge we face.
Adaptive Multi-Level Alignment. Due to potential se-
mantic variations across the layers of Q-Former, excessive
disparity between layers can lead to alignment failure. To op-
timize alignment and balance different semantic hierarchies,
we propose an adaptive multi-level alignment module. This
module performs dense alignment for each block and uses a
learnable mechanism to assess alignment difficulty, improv-
ing learning efficiency and accuracy.

In particular, we utilize feature representations from a sub-
set of Q-Former and integrate multi-level alignment losses
through an adaptive weighting mechanism. Given a Q-
Former with L layers, we select M levels for representa-
tion alignment. Let U = {u1, u2, ..., uM} denote the in-
dices of the selected Q-Former layers, where M < L and
ui ∈ {1, 2, ..., L}, and h

(ui)
t ∈ RP×C represents the output

of the ui-th block. For each selected block, the alignment loss
computed using Eq 4 is:

L(ui)
kd = − hϕi(h

(ui)
t ) · y∗

∥hϕi
(h

(ui)
t )∥∥y∗∥

. (5)

In the training process, a common approach involves mul-
tiplying each layer’s alignment loss by a uniform weight and
summing them to obtain the final alignment loss for param-
eter optimization. However, we observe that this method
is suboptimal due to semantic differences in the representa-
tions extracted by different layers of the Q-Former. Assign-
ing the same weight to all layers not only fails to achieve
proper alignment but also impairs the Q-Former’s ability to
extract semantic features. To enable efficient and differen-
tiated alignment across layers, we introduce a weight pre-
diction network, gψ , which dynamically predicts the loss of
weight for each layer. This prediction is based on the pro-
jection of the Q-Former output and the Diffusion alignment
feature. Specifically, the alignment weights for different Q-
Former blocks is computed as follows:

wU = σ(gψ(h
U
t + y∗)), (6)

where σ(·) denotes the sigmoid activation function to normal-
ize the weights. Then, the total representation alignment loss
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can be computed as:

Lkd =
M∑
i=1

wui
L(ui)
kd . (7)

In this way, our alignment mechanism dynamically adjusts
the loss weight for each layer based on the different seman-
tics extracted by each layer, achieving differential alignment.
This provides an effective solution for balancing the preser-
vation of the model’s original performance while leveraging
diffusion-based supervision.

3.3 Language Decoding
Finally, given the output features of the Q-Former and the
text prompt (if possible), a frozen LLM is used to auto-
regressively decode them into discrete text sequences. In
summary, the training objective of our framework includes
two main components: (1) a cross-entropy loss for video-
to-language auto-regressive generation, and (2) a knowledge
distillation loss for feature representation alignment. The
cross-entropy loss is defined as:

Lce = − 1

S

S∑
i=1

logP (oi|o<i, V ), (8)

where oi denotes the i-th token in the ground-truth sequence,
and P (oi|o<i, V ) represents the model’s prediction given the
video context V and preceding tokens o<i.

Similarly, to avoid damaging the model’s performance due
to the introduction of supervisory signals, it is crucial to bal-
ance both components. To achieve this, we introduce a hy-
perparameter λ in the final loss. The final loss is a weighted
combination of both components:

L = Lce + λLkd, (9)
where λ is a hyper-parameter that modulates the contribution
of the representation alignment loss Lkd, balancing their rel-
ative importance during training.

4 Experiments
4.1 Dataset
We evaluate our proposed method by assessing its perfor-
mance in long video understanding, fine-grained video un-
derstanding, and video question-answering tasks.
Long Video Understanding. We conduct experiments on
the LVU dataset [Wu and Krahenbuhl, 2021], which contains
approximately 30K video clips from 3K movies, each with a
duration ranging from 1 to 3 minutes. The dataset covers a
diverse range of real-world scenarios, making it an extensive
benchmark for long video recognition tasks. Our evaluation
focuses on specific subtasks, such as director style prediction,
and movie genre classification, fully leveraging the dataset’s
diversity and complexity to validate the effectiveness of the
proposed method. Through these tasks, we further demon-
strated the significant advantages of the proposed method in
handling long video content, particularly in capturing tempo-
ral dependencies and contextual information. Additionally,
by comparing with existing methods on this dataset, we re-
vealed the limitations of current short-duration models when
dealing with long video tasks.

Fine-Grained Video Understanding. To validate the ca-
pability of our proposed framework in modeling complex
spatio-temporal dynamics, we conduct experiments focusing
on more fine-grained subtasks in the LVU dataset [Wu and
Krahenbuhl, 2021], i.e., relation recognition. As shown in
Figure 5, the relation recognition task labels the relationships
between two individuals as either husband and wife, friend, or
other friendship. Even humans struggle to accurately distin-
guish these relationships based solely on a few video stills, as
this requires inferring fine-grained features [Li et al., 2024a]
such as facial expressions and behaviors. To test whether
our framework enhances the fine-grained video understand-
ing ability of MLLMs, we focus on relationships between
“husband and wife” and “friends”, excluding “boyfriend and
girlfriend” due to limited samples. This setup allows us
to assess whether our model improves fine-grained spatio-
temporal modeling.

Video Question Answering. To further compare with ex-
isting multimodal methods, we also extend the evaluation
to the MSVD-QA [Xu et al., 2017], a standard open-ended
video question-answering dataset, consisting of short videos
lasting 10-15 seconds. This dataset covers a variety of scenes
and includes rich question-answering tasks, widely used to
assess the multimodal understanding ability of video question
answering systems. Through experiments on MSVD-QA, we
not only validated the effectiveness of the proposed method
in short-duration video understanding but also compared the
performance of our Transformer-based architecture with that
of current state-of-the-art methods in this task. The exper-
imental results demonstrate that the proposed method also
performs excellently in short-duration video question answer-
ing tasks, effectively combining visual and linguistic infor-
mation, significantly improving the accuracy and robustness
of video question answering.

4.2 Implementation Details
This study utilizes the Vicuna-7B model as the LLM. It is
trained over 20 epochs with a learning rate of 1 × 10−4 and
a batch size of 64. The AdamW optimizer is applied with
β1 = 0.9 and β2 = 0.999 for the hyperparameters, and a
weight decay of 0.05. Input images are resized to 224 × 224
pixels. As for the diffusion model, we follow the REPA [Yu et
al., 2024] to use the eighth layer output of the diffusion model
(DiT-XL-2-256×256) as the supervisory signal y∗. The input
images of diffusion models is resized to 256 × 256 pixels.
We assign a class label of 1000 (no class), and initialize the
timestep to 0 (no noise) before inputting the images into the
pre-trained, frozen DiT.

On the LVU dataset [Wu and Krahenbuhl, 2021], we set
λ to 1, while on the MSVD-QA dataset [Xu et al., 2017], λ
is set to 0.0005. During the decoding phase, a beam search
width of 5 is employed. The frame length is 100, while the
memory bank length is set to 20. For Language-Video Un-
derstanding (LVU) tasks, the prompt format is “What is the
<task> of the movie?”, where the task represents relation-
ship, speaking style, scene, director, genre, writer, and release
year. For evaluation, we choose the widely used top-1 accu-
racy as the primary metric.
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Model Content Metadata Avg
Relationship Speak Scene Director Genre Writer Year

Obj T4mer [Wu and Krahenbuhl, 2021] 54.8 33.2 52.9 47.7 52.7 36.3 37.8 45.0
Performer [Choromanski et al., 2020] 50.0 38.8 60.5 58.9 49.5 48.2 41.3 49.6
Orthoformer [Patrick et al., 2021] 50.0 38.3 66.3 55.1 55.8 47.0 43.4 50.8
VideoBERT [Sun et al., 2019] 52.8 37.9 54.9 47.3 51.9 38.5 36.1 45.6
VIS4mer [Islam and Bertasius, 2022] 57.1 40.8 67.4 62.6 54.7 48.8 44.8 53.7
MA-LMM [He et al., 2024] 58.2 44.8 80.3 74.6 61.0 70.4 51.9 63.0

Diff-LMM (Ours) 69.2 45.2 80.3 71.6 63.2 75.0 48.96 64.8

Table 1: Comparison with state-of-the-art methods on LVU. Bold and underline represent the best and second-best results.
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Figure 3: Ablation of hyperparameter λ on the relationship task of the
LVU dataset.
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Figure 4: Analysis of the different alignment levels in Q-Former on
the relationship task of the LVU dataset.

Model Husband & Wife Friend
MA-LMM [He et al., 2024] 27.8 76.7

Diff-LMM (Ours) 66.7 90.7

Table 2: Comparison with Baselines on LVU [Wu and Krahenbuhl,
2021] fine-grained relationship subsets. Top-1 accuracy is reported.

4.3 Comparision with State-of-the-arts

Long Video Understanding. As shown in Table 1, com-
pared to previous methods (e.g., VideoBERT [Sun et al.,
2019], ViS4mer [Islam and Bertasius, 2022]) on the LVU
benchmark [Wu and Krahenbuhl, 2021], our method achieves
significant breakthroughs in both content understanding and
metadata prediction tasks. This resulted in significant im-
provements in most tasks, enhancing the average top-1 ac-
curacy by 1.8% compared to state-of-the-arts. While MA-
LMM [He et al., 2024] improves model performance on long
video tasks by introducing advanced memory mechanisms,
the CLIP model’s tendency to prioritize global feature align-
ment [Park et al., 2023] during training limits its performance
on fine-grained tasks. In contrast, by incorporating diffusion
supervision and feature alignment, our method enhances the
model’s ability to capture fine-grained spatio-temporal dy-
namics, enabling Diff-LMM to achieve state-of-the-art per-
formance in fine-grained video understanding tasks.

Model MSVD

GiT [Wang et al., 2022] 56.8
mPLUG-2 [Xu et al., 2023] 58.1
UMT-L [Li et al., 2023b] 55.2
Video-LLaMA [Zhang et al., 2023] 58.3
MA-LMM [He et al., 2024] 60.6

Diff-LMM (Ours) 60.8

Table 3: Comparison with state-of-the-art methods on MSVD.

Fine-Grained Video Understanding. In the LVU dataset
[Wu and Krahenbuhl, 2021], relationship recognition re-
quires identifying connections between characters in nearly
2.5-minute videos. This task is challenging due to its fine-
grained nature, as it involves interpreting long-term spatial
and temporal features [Li et al., 2024a] like body movements
and facial expressions. Distinguishing between spousal and
friendship relationships can be particularly difficult, espe-
cially among heterosexual friends and spouses, leading to po-
tential confusion without a subtle understanding of the video
content. As demonstrated in Table 2, MA-LMM currently
stands as a strong baseline method for long video understand-
ing tasks. While it achieves an accuracy of 76.7% in recogniz-
ing friendships, it only manages to reach 27.8% accuracy in
identifying spousal relationships, emphasizing the difficulty
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of this particular task.
In contrast, leveraging diffusion-based supervision, our

method achieves a Top-1 accuracy of 66.7% in recogniz-
ing spousal relationships, outperforming MA-LMM by about
38.9%. For friendship recognition, accuracy improves to
90.7%. As illustrated in Figure 5, our approach effectively
distinguishes between heterosexual friendships and spousal
relationships, which can be challenging for humans due to
their behavioral similarities. This strong performance in
fine-grained long video understanding supports the notion
that diffusion-based supervision significantly enhances the
model’s ability to capture subtle spatio-temporal dynamics.

Video Question Answering. To validate the advantages
of the proposed architecture, we compared it with exist-
ing multimodal video understanding methods on the widely
used MSVD-QA dataset [Xu et al., 2017], testing the ro-
bustness of spatio-temporal representations extracted through
our method. Although Diff-LMM was not specifically de-
signed for short video question-answering tasks, it is note-
worthy that our model achieved state-of-the-art performance,
as shown in Table 3. While the improvements on the MSVD-
QA dataset are relatively modest, this indirectly highlights
that fine-grained spatio-temporal modeling is more critical
for long video understanding tasks than for short video tasks.
Our approach significantly enhances this capability by incor-
porating diffusion-based supervision.

4.4 Ablation Studies
The Impact of λ. We analyze the impact of various λ val-
ues on the relationship task in the LVU datasets [Wu and Kra-
henbuhl, 2021], as shown in Figure 3. Setting λ to 1 yields the
best performance for the adaptive multi-level alignment, al-
lowing better alignment of representations from the diffusion
model and overcoming the limitations of the original CLIP
model, which mainly focuses on coarse, global alignment.

However, it is crucial to balance the degree of alignment
between global and detailed features, as indicated in Figure 3.
When λ is excessively high, the model becomes overly in-
fluenced by the diffusion representations. This causes the
Q-Former to concentrate too much on detailed alignment in
visual-text alignment, leading CLIP to overlook important
global features and consequently reducing the model’s accu-
racy. A similar issue arises when λ is set too low. Thus,
we chose to set λ = 1 in our experiments to ensure optimal
visual-text alignment for the CLIP model.

Alignment Level. We investigated the impact of applying
alignment strategies to different layers of Q-Former. Our ap-
proach included aligning all layers, aligning a single level
(specifically, the 13th layer), aligning the lower levels (layer
1-7), and aligning the higher levels (layer 8-13). Our find-
ings indicate that aligning the higher layers during training
yields the best results, as illustrated in Figure 4. Specifically,
aligning the higher layers improves top-1 accuracy by nearly
15.3% compared to aligning all layers. The alignment of the
lower layers produces results that are only slightly less ef-
fective than those of the higher layers. The reason for this
is that when aligning all layers with the diffusion-extracted
representations, the model ends up with similar hidden states

Answer: There is a man shooting to 
a blue bucket.

Promp
t

Answer: There is a man rollering 
skating on grass.

Question: Describe the Picture.Question: Describe the picture.
Promp

t

Promp
t

Answer: Husband and Wife

Question: What is the relationship 
of the movie?

Answer: Husband and Wife

Question: What is the relationship 
of the movie?

Question: What is the relationship 
of the movie?

Answer: Friends

Question: What is the relationship 
of the movie?

Answer: Friends

Figure 5: Visualization results of our method on long video recog-
nition task on the LVU dataset.

w Adaptive Average

Top-1 Acc. 69.2 58.2

Table 4: Analysis of the adaptive loss mechanism’s contribution to
the relationship task of the LVU dataset.

across all layers of the Q-Former. This similarity hinders the
model’s ability to capture temporal dynamics present in the
visual information of the video. Therefore, our method fo-
cuses on aligning only higher layers.
Adaptive Loss. To evaluate the effectiveness of the pro-
posed adaptive loss mechanism, we conducted ablation ex-
periments on the relationship task using the LVU dataset [Wu
and Krahenbuhl, 2021]. The goal was to assess the necessity
of the adaptive mechanism in balancing loss weights across
different layers. For comparison, we implemented an alterna-
tive strategy where the weights were averaged, and the weight
wui

for all layers remained constant. We evaluate both meth-
ods on the relationship task. As shown in Table 4, the adap-
tive loss mechanism outperforms the equal-weight strategy by
11%. This improvement is attributed to the variability in hid-
den states across layers, as aligning diffusion representations
alone does not lead to better performance. Our method dy-
namically adjusts the layer weights, enabling more effective
feature alignment.

5 Conclusion
In this paper, we propose a novel approach of introduc-
ing diffusion-based supervision for long video understand-
ing. We investigate whether the representations generated
by diffusion models can be effectively aligned with recent
video MLLMs to address the limitations of models that ne-
glect fine-grained information, which hinders their ability to
capture detailed spatio-temporal dynamics. To mitigate this
issue, we propose an adaptive multi-level alignment mecha-
nism with diffusion supervision for robust and precise feature
alignment. Experimental results show that pre-trained dif-
fusers are powerful representation models, and our proposed
alignment mechanism effectively improves the performance
of MLLMs in complex, dynamic scenarios.
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