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Abstract

Recent research in cooperative Multi-Agent Re-
inforcement Learning (MARL) has shown signif-
icant interest in utilizing Graph Neural Networks
(GNNs) for communication learning due to their
strong ability to process feature and topological in-
formation of agents into message representations
for downstream action selection and coordination.
However, GNNs generally assume network homo-
geneity that nodes of the same class tend to be in-
terconnected. In real-world multi-agent systems,
such assumptions are often unrealistic, as agents
within the same class can be distant from each
other. Furthermore, GNN-based MARL methods
overlook the crucial role of feature similarity of
agents in action coordination, which also restricts
their performance. To overcome these limitations,
we propose a Multi-Agent communication mecha-
nism with Information preserving graph contrastive
Learning (MAIL), which enhances message repre-
sentation by preserving the comprehensive features
of adjacent agents while integrating topological in-
formation. Specifically, MAIL considers three dis-
tinct graph views: original view, agent feature view,
and global topological view. MAIL performs con-
trastive learning across three views to extract com-
prehensive information. MAIL effectively learns
robust and expressive message representations for
downstream tasks. Extensive experiments across
various environments demonstrate that MAIL out-
performs existing GNN-based MARL methods.

1 Introduction

Multi-agent reinforcement learning (MARL) has attracted
considerable interest and achieved impressive results in vari-
ous complex real-world applications, including autonomous
driving [Xu er al., 2024], traffic signal control [Zhang et
al., 2024], and auction market [Qiu ef al., 2021]. Recently,
the centralized training with decentralized execution (CTDE)
framework has gained widespread adoption as an effective so-
lution to address the challenges of non-stationarity and scala-
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bility in MARL. This framework involves developing decen-
tralized policies in a centralized manner, enabling the sharing
of experiences and parameters throughout the training pro-
cess. Building on the CTDE framework, several value de-
composition methods have been proposed [Liu et al., 2023;
Rashid er al., 2020; Du et al., 2024]. These methods ap-
ply various constraints or restrictions to factorize the global
value function to a combination of individual value functions.
While the CTDE framework presents multiple benefits, the
partial observability and stochasticity encountered during the
decentralized execution period can heighten agents’ uncer-
tainty about the states and actions of other agents, potentially
leading to miscoordination in their actions.

Recently, several MARL methods have utilized commu-
nication learning protocols to improve coordination among
agents, enabling them to share information, such as feature
embeddings, during the execution phase. By facilitating inter-
agent communication, these methods significantly enhance
coordination across a variety of tasks [Gilmer er al., 2017].
Graph Neural networks (GNNs) effectively integrate both the
feature and topological information in graph-structured data,
facilitating robust feature representation learning for subse-
quent tasks. Due to the effective representation learning ca-
pability of GNN, communication learning through GNN has
garnered significant research interest in MARL. In this case,
agents can typically be represented as nodes, while commu-
nication channels between them are denoted as edges in a
graph. Various MARL methods utilize this GNN-based com-
munication framework, such as DGN [Jiang et al., 2020],
LSC [Sheng et al., 2022], and MAGIC [Niu et al., 2021].

While GNN-based MARL methods [Liu et al., 2020;
Das et al., 2019; Sukhbaatar and Fergus, 2016]have achieved
success, they overlook a key limitation of GNN it relies
on: homophily assumption. This assumption suggests that
nodes within the same class are more likely to be connected.
However, in real-world multi-agent systems, this assumption
often fails, as agents of the same type can be spatially distant
from one another. Under this situation, GNN-based MARL
methods struggle with poor performance because the propa-
gation mechanism within graph neighborhoods of GCN be-
comes problematic, leading to the mixing of irrelevant in-
formation from agents of different classes. Moreover, GNN-
based MARL methods tend to overlook the critical role that
feature similarity between agents plays in action coordina-
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Figure 1: The overview of MAIL. We initially create three graph views from the built graph: original view, agent feature view, and global
topological view. These three views are then processed by the encoders to produce their respective node representations. Rather than
directly contrasting the graph views, we combine the node representations from the original view and agent feature view to form new node
representations H ; for the subsequent contrastive learning process. By minimizing the feature contrastive loss Ly, cross-module loss L., and
topological contrastive loss L+, MAIL effectively learns expressive message representations.

tion, which limits their overall effectiveness.

In cooperative MARL, expressive message representations
that incorporate comprehensive information are essential for
efficient action coordination. Therefore, it is crucial to extract
and preserve valuable information from neighboring agents to
learn effective message representations. To address these is-
sues, we present a Multi-Agent communication protocol with
Information preserving graph contrastive Learning (MAIL),
which comprehensively preserves agent feature information
while exploiting topological information.

Consider a football game as illustrated in Figure 1, and as-
sume that each agent chooses adjacent agents within its range
to establish the original graph. In MAIL, we utilize the orig-
inal graph as one of the contrastive views and consider the
combination of the feature graph and the original graph as a
second contrastive view. By maximizing the agreement be-
tween the two contrastive views, MAIL effectively preserves
the agents’ feature information. To maintain the topological
information, we introduce an additional contrastive learning
module specifically designed to preserve global topological
details. We directly utilize the higher-order view of the graph
as the global topological view and contrast it with the origi-
nal graph view for preserving global topological information.
MAIL acquires high-quality message representations by ex-
tracting crucial information at both the topological and fea-
ture levels. We select several baselines and conduct experi-
ments across various environments, with the results confirm-
ing that MAIL outperforms the baselines. The key contribu-
tions of our work can be outlined as follows:

* To the best of our knowledge, our research is the first
to utilize graph contrastive learning in the context of

MARL, enabling effective communication learning.

* We present two contrastive learning modules that can in-
dividually extract the feature and topological informa-
tion of the input graph while training them in a coordi-
nated manner.

* The proposed method encourages the agent to learn sig-
nificant information from both feature and topological
aspects, enabling it to generate high-quality message
representations for downstream action coordination.

2 Related Work

2.1 Graph Contrastive Learning

Graph Neural Networks (GNNs) have become a highly ef-
fective method for learning robust node representations. The
term GNN refers to a broad spectrum of methodologies. In
this study, we specifically define it as the Message Passing
Graph Neural Network [Gilmer er al., 2017], recognized as
the most general architecture within the GNN framework.
Prominent examples of this architecture include GCN [Duve-
naud er al., 2015], GAT [Veli¢kovi¢ et al., 2017], and Graph-
SAGE [Hamilton et al., 2017]. While GNNs have shown im-
pressive performance in many scenarios, their effectiveness
may be impaired when the homophily assumption fails [Chen
and Kou., 2023].

Graph contrastive learning (GCL) has emerged as a
promising research direction, typically involving the design
of different views and aiming to maximize the agreement be-
tween the representations of these views. DGI [Velickovic
et al., 2019] concentrates on maximizing the mutual infor-
mation between global graph-level representations and local
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node-level representations. Building upon DGI, GMI [Peng
et al., 2020] utilizes two discriminators to directly compute
mutual information between the input and the embeddings of
both edges and nodes. In contrast, MVGRL [Hassani and
Khasahmadi, 2020] focuses on learning both node-level and
graph-level embeddings by contrasting node representations
and facilitating node diffusion using augmented graph sum-
mary representations.

Most previous GCL methods rely on GNNs as the back-
bone encoder, achieving impressive performance in ho-
mophilic scenarios. However, limited attention has been
given to developing GCL methods for situations where the
homophily assumption fails. Moreover, current contrastive
learning methods primarily generate views by transforming
existing graph data. However, these data transformation
strategies are inadequate for learning comprehensive and ro-
bust node embeddings. In our research, we adopt the graph
contrastive learning scheme introduced in ASP [Chen and
Kou., 2023], which effectively retains both feature and topo-
logical information from the input built graph.

2.2 GNN-based MARL

In our work, we utilize the following GNN-based communi-
cation learning methods as baseline methods: TarMAC [Das
et al., 2019] employs GAT to learn communication through
a fully constructed communication graph. MAGIC [Niu et
al., 2021] also utilizes GAT to facilitate multiple rounds of
communication between agents. CommNet [Sukhbaatar and
Fergus, 2016] introduces a communication channel that al-
lows agents to dynamically enter and exit each other’s com-
munication range, similar to GNN methods that utilize mean
aggregation. IC3Net [Singh et al., 2019] incorporates a gat-
ing mechanism to regulate communication learning. DGN
[Gilmer et al., 2017] establishes communication protocols on
graphs derived from the environment. LSC [Sheng et al.,
2022] presents a hierarchical GNN that enhances communi-
cation learning by enabling message exchanges within groups
and between agents. G2ANet [Liu er al., 2020] integrates
both soft and hard attention mechanisms to dynamically adapt
communication. DICG [Li et al., 2021] features a module for
inferring the topology of the coordination graph, using GNN's
for implicit reasoning on joint actions. Although GNN-based
MARL has achieved success, the network homogeneity as-
sumption of GNN in MARL is often unrealistic, which limits
the performance of GNN-based MARL methods. Further-
more, GNN-based MARL methods often neglect the crucial
role of feature similarity between agents in action coordina-
tion, which hampers their overall effectiveness.

3 Method

3.1 Preliminary

Let G = (V, E) represents a graph, where V = {v;, ..., v, }
denotes the node set and E C V x V denotes the
edge set. The feature matrix is represented as X =
[xl,xQ,...,xn]T e R™/, where x; € R/ denotes the
feature of v;. A € {0,1}™*™ represents the adjacency ma-
trix. In our study, the multi-agent system is represented as a
graph G = (V, E, X), where the set of agents is denoted by

V ={vj,...,v,}, the edge set is represented as E C V x V,
and the agent/node features are indicated by X € R™*/.
Adjacent agents are defined as those agents located within
a specified range of each agent, which is used to construct
the original graph. Given a graph G = (V, F, X), K distinct

transformations F7, ..., Fx can be applied to obtain differ-
ent views vy, ..., v of the graph:
VZ:.FZ(A,X),Z:L,K (l)

Graph transformation techniques encompass various methods
such as node feature masking, edge perturbation, etc. A set
of encoders f1, ..., fx receives the corresponding views as

inputs and produces the representations hy, ..., hxg of the
graph from each view:

A cooperative MARL problem could be formally modeled as
Dec-POMDP [Oliehoek, 2012], which can be represented by
atuple < I,S,0,U, P, R >. I denotes the agents’ set, which
is indexed from 1 to n. S denotes the state set of the envi-
ronment. O represents the observations set, where o; € O
represents observation of agent 7. U denotes the finite space
of joint actions. For agent ¢, at each timestep, agent ¢ takes
its action a; depending on its local observation o;, and forms
a joint action @ = (ay,...,a,) € U. Based on the Marko-
vian transition function P : S x U — S, the state changes
and the agent obtains reward 7! based on the reward function
R : S x U — R. The target of the agent ¢ is to maximize its
total discounted reward R; = 3./, 47!, in which y € [0, 1]
denotes a discount factor. In Dec-POMDPs, the target of all
agents is to learn an optimal joint policy 7 (7, a) to maximize
the global value Q7 ,(7,a) = E, o[> 7' R(s,a)], where
T represents the joint observation history.

The framework of the MAIL is illustrated in Figure 2. For
agent ¢, it receives local observation o; and employs multi-
layer perceptron (MLP) with the gated recurrent unit (GRU)
to produce the agent feature x;. Next, x; is fed into the GCL
module to generate the expressive message embedding h,.

Subsequently, the message representation h; and local his-
tory 7; are concatenated to generate the input for the indi-
vidual action-value function to select an action and compute
individual value Q; (7;, a;, h;). Finally, all individual action-
values are fed to the mixing network to calculate the estima-
tion of global value Q. In this study, the mixing network of
QMIX [Rashid er al., 2020] is adopted, and it could be sub-
stituted with any mixing network from current value function
factorization approaches.

3.2 Graph Contrastive Learning module

View Generation

As depicted in Figure 1, the original built graph data, with-
out any data augmentation techniques, is referred to as the
original view v,, serving as an anchor for the other views.
To capture the diverse feature similarity relationships among
agents, we employ the feature matrix X to create a k-Nearest-
Neighbor (kNN) graph G ¢, which we designate as the feature
view v¢. The kNN graph G'; can be constructed using var-
ious distance metrics, including Euclidean distance, Jaccard
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Figure 2: The framework of MAIL.

distance, or cosine distance. In our framework, we utilize co-
sine distance. Given a node pair (v;, v;), their cosine distance
is defined as follows:

Xi~Xj

deos ('Ui; Uj) =1 3)

| ;]
where |- | represents the magnitude of a vector. The adjacency
matrix is denoted as A r, and the corresponding degree ma-
trix of the kNN graph is denoted as D .

To extract global topological information, we create a
straightforward yet effective graph view. In contrast to edge
perturbation strategies that arbitrarily alter the graph topol-
ogy, edge diffusion methods [Gilmer et al., 2017] effec-
tively preserve the expressive global information contained
in graphs. Current edge diffusion approaches primarily uti-
lize the heat kernel [Kondor and Lafferty., 2002] to create a
global view. However, this solution requires computing ma-
trix exponentials or inverses, which can be computationally
inefficient. While approximations can help reduce compu-
tational complexity, they often necessitate tedious and time-
consuming hyperparameter tuning.

In contrast to existing approaches, we directly employ a
higher-order view of the graph as the global topological view
v;. In this framework, each node gathers information from
neighbors that are [ hops away. As [ increases, more global
topological information is incorporated. Both the kNN graph
Gy and the original graph G can be utilized to generate these
higher-order views. Our findings indicate that simply con-
trasting the higher-order views with the original graph views
can yield comparable performance.

Feature Preserving Contrastive Learning

Current graph contrastive learning methods typically use
GNN as the foundational encoder, effectively extracting the
topological information inherent in graphs. Despite their ef-
fectiveness, these methods often neglect the similarities be-
tween node features derived from the feature matrices. In this

study, we utilize a more robust mechanism that retains feature
knowledge by leveraging both the feature graph view and the
original graph view. While our framework permits the use of
various GNNs, we have selected SGC [Wu et al., 2019] as the
base encoder because of its simplicity and competitive perfor-
mance. SGC streamlines the topology of GCN by eliminating
intermediate nonlinearities, resulting in all learnable parame-
ters being consolidated into a single matrix:

H=S"XwW )

where S represents the normalized adjacency matrix with
added self-loops S = D~Y/2AD~1/2 and W represents a
trainable weight matrix. S” represents the representations
generated by propagating information from agents that are
P-hop away.

Rather than directly comparing the original view with the
feature view, we utilize the feature view to complement the
original view. Specifically, we incorporate the node embed-
dings from the feature view into the original view, treating the
sum of these embeddings as the final contrastive view. For-
mally, we express this as follows:

H’ = SPXW

; 5)
H/ = SPXW; + SpXW;

where Sp = D;l/QAFD;Uz. The weight matrix Wy is
shared between H/ and H°.

After acquiring the message representations H® and H7,
we employ InfoNCE [Gutmann and Hyvirinen, 2020] to es-
timate the lower bound of the MI between them. For node
v;, the learned node embeddings h¢ and hlf serve as positive
samples, while the embeddings of all other nodes are consid-
ered negative samples. With these definitions of negative and
positive samples, the loss function for the feature-preserving
contrastive learning module can be formulated as follows:

Ly (vi) =
oD (n7.h])/0

N o h' N v.hY
SN PR/ 4 DG{ZO:f} e T R
(6)

where 6 represents the temperature parameter, and D(-) de-
notes the discriminator that calculates the agreement score

between two vectors. In this context, we utilize cosine simi-
larity for D(-).

— log

Topological Preserving Contrastive Learning

While feature information has been uncovered through fea-
ture preserving contrastive learning, global topological infor-
mation remains unexplored. Therefore, to enhance the ex-
pressiveness and robustness of the proposed framework, we
introduce a topological preserving contrastive learning mod-
ule. We continue to use SGC as the base encoder in this mod-
ule. To capture global topological information, we directly
compare the original graph view with the global topological

view:
H" = SPXW,

7
H' = (S¢)' XW, @
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where [ is a positive integer significantly larger than p, and
S¢ € {S,SF}. It is important to note that we employ sep-
arate weight matrices for H? and H" to ensure that they do
not interfere with one another.

Given the node embeddings h? and h! of node v;, we com-
pute the contrastive loss for topological preserving learning:

L (vs) =
eD(h;?,hg)/e

PDARTIC L VLD DI DA P L)
” ve{rt} 7=
3

— log

Model Training

With the two main components of MAIL established, we in-
troduce the cross-module loss, which we employ to align the
representations of the original view across various modules.
Following this, we will outline the overall objective loss for
training of MAIL.

The purpose of the cross-module loss is to align the repre-
sentations of H? and H”. We have observed that contrasting
representations from the same view but across different mod-
ules can effectively enhance the quality of learned message
representations.

Lc (Uz) =
D(h?.h})/6

S, P05 SN TP/
ve{o,r}
)]

The overall GCL objective loss of MAIL is defined as the sum
of the feature preserving loss, the topological preserving loss,
and the cross-module loss:

Loer =Ly + ML+ M L. =

— log

al 10
S L) + ML) + AaLev)]
i=1

where A; and A, denote the tuning parameters to weight the
importance of L; and L., respectively.

Through the above description, we can obtain high-quality
message representations in MAIL. Except for the graph con-
trastive learning optimization constraints on learning message
representations in the communication module, all the param-
eters across the remaining modules of the framework are up-
dated by minimizing the TD loss Lz p. In the end, TD loss is
explicitly expressed as follows:

Lrp = [’" +ymax Quor (7',507) = Qror(7, a; 9)} (b

where 6 denotes all the parameters in the remaining modules
and 6~ denotes the parameters of the target network. There-
fore, the overall optimization target of MAIL is expressed as
follows,

L=Lrp+BLccL (12)
where [ represents a hyper-parameter that can be fine-tuned
to balance between the graph contrastive learning optimiza-
tion loss Lg o, and the TD loss Ly p. A detailed description
of our framework is provided in Algorithm 1.

Algorithm 1 MAIL

1: Initialize: the parameters of networks, the maximum size
of the replay buffer, and the frequency of network updat-
ing.

2: for each timestep ¢ € T" do

3: foreachagenti € N do

4 // During the decentralized execution period

5 Generate agent feature x; by GRU and MLP

6: Construct graph G = (V, E, X) based on x;

7.

8

Receive node representations H®, H/, H", and H!
Calculate feature loss L ¢, topological loss L; and,
cross-module loss L. with Eq.6, Eq.8, and Eq.9, re-

spectively
9: Update parameters according to the overall GCL ob-
jective loss Lgeor in Eq.10
10: Obtain final message representation h¢
11: Calculate action-value (); based on h; and 7;
12: al + m(Q;) (e— greed)
13: Store 7; and a} to replay buffer
14: // During centralized training period
15: Fed @; to mixing network and obtain Q¢
16: Minimize loss function according to Eq.12
17: Update weights of all networks
18:  end for
19: end for

4 Experiments

To verify the effectiveness of MAIL, we perform a range of
experiments across 4 benchmarks: Predator-Prey [Sukhbaatar
and Fergus, 2016], Traffic Junction [Sukhbaatar and Fergus,
2016], Battle [Zheng et al., 2018], StarCraft Multi-Agent
Challenge [Vinyals er al., 2019]. Experiments are conducted
with a GPU NVIDIA RTX 4090. The hyperparameters that
we adjust are as follows: (i) k € {3,5,10}, for k nearest
neighbors, (ii) aggregation hops [ € {3,5, 7}, (iii) Ay = 0.2,
A2 = 0.3, and 8 = 0.2 depending on the experimental re-
sults. For each environment, 4 GNN-based MARL baselines
(introduced in Related Work) have been chosen for ease of
comparison without losing generality. The detailed hyper-
parameters and some experiments are given in the Appendix.

4.1 Predator-Prey

As shown in Figure 3(a), the Predator-Prey environment
[Singh et al., 2019] involves multiple predators with limited
vision, aiming to capture prey. Predators can move in four
directions: down, up, left, or right. An episode is considered
successful if all predators find the prey within the given time
limit. We define two difficulty levels: a 10 x 10 grid with
5 predators, and a 20 x 20 grid with 10 predators. A supe-
rior approach is characterized by its ability to minimize the
mean number of steps necessary to accomplish an episode.
As shown in Table 1, MAIL captures the prey faster than the
baselines in both scenarios. Figure 4(a) illustrates the success
rate of approaches in a 20 x 20 grid with 10 predators, MAIL
performs significantly better than baselines. Compared to
GNN-based MARL, MAIL avoids the mixing of irrelevant in-
formation from agents and, therefore learns high-quality mes-
sage representations for action coordination.
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Figure 3: Illustration of the four selected MARL benchmarks.

Method 10 x 10, 5 agents 20 x 20, 10 agents
CommNet 13.12 +0.06 75.24 £ 1.38
IC3Net 13.06 + 0.04 50.26 +2.73
TarMAC 13.26 £ 0.10 36.22 +0.95
MAGIC 12.81 £ 0.05 33.12 £ 0.17
MAIL 10.31 £ 0.03 27.42 £ 0.08

Table 1: The mean number of the steps needed to accomplish an
episode in Predator-Prey environment.

4.2 Traffic Junction

Traffic Junction environment [Sukhbaatar and Fergus,
2016] consists of vehicles (agents with limited visibility) and
intersecting routes. This environment is a valuable evalua-
tion environment for assessing the efficiency of communica-
tion. In this environment, the main goal is to ensure effec-
tive communication between vehicles to prevent collisions.
In this scenario, vehicles approach junctions from diverse en-
try points using a probability represented as p. There is a
maximum limit, denoted as V., imposed on the number of
vehicles permitted in the environment. At each time step, the
vehicles can take one of two actions: “brake” or “gas”. We
evaluate the performance of MAIL and baseline methods in
Traffic Junction with two difficulty levels.

As depicted in Figure 3(b), in the medium difficulty level,
the traffic junction environment comprises 2 two-way roads
sorted within a 14 x 14 grid. In this scenario, the supreme
agents’ number allowed is 10 (N.= 10, p = 0.2). On the
other hand, the scenario with a hard difficulty level entails
4 two-way roads within an 18 x 18 grid. In this scenario, the
supreme agents’ number is 20 (V.= 20, p = 0.05). The objec-
tive in both scenarios with two difficulty levels is to maximize
the mean success rate, which is specified as having no colli-
sions occur in an episode.

Table 2 shows the mean success rate for each method upon
reaching convergence. As shown in Table 2, in both scenar-
ios, MAIL outperforms other baselines. Figure 4(b) illus-
trates the learning curves of methods in the scenario with a
medium difficulty level. As shown in Figure 4(b), the mean
number of steps needed to accomplish an episode of MAIL
is significantly fewer than other baseline methods, which
demonstrates the effectiveness of the graph contrastive learn-
ing module of the proposed MAIL.
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c) Battle d) SMAC
Method Medium Hard
CommNet 53.62 +13.81 51.56+9.37
IC3Net 87.83+£3.06 73.26+8.72
MAGIC 94.73 £2.46 93.51 £2.13
TarMAC 94.04 £1.42 85.32£2.15
MAIL 98.81 £0.52  98.03 £ 0.84

Table 2: The mean win rate of MAIL and baselines in Traffic Junc-
tion environment.

4.3 Battle

We chose the Battle environment [Zheng et al., 2018] to
further evaluate the effectiveness of MAIL. Battle scenario,
which includes ally agents and enemy agents. Ally agent can
select one action of two actions: attack or move. The target
for the ally agents is to kill enemy agents. In Battle, MAIL
and other baselines are trained with the identical configura-
tion. The ally agent can obtain a positive reward of +5 if it
successfully attacks an enemy. Conversely, a negative reward
-2 is applied if an ally agent is killed by the enemy agent.

Figure 4(c) depicts the mean reward of different methods in
the Battle environment. It can be observed that MAIL signif-
icantly outperforms baseline methods. MAIL trained agents
can acquire various tactical skills, such as encircling and en-
veloping. Against a single enemy, MAIL trained agents can
effectively learn to coordinate and surround it to kill it. When
facing a group of enemies, the agents can adeptly learn to
target and attack one flank. Other baselines trained agents
initially adopt suboptimal strategies, such as clustering in
the corner to evade attacks. Table 3 shows the performance
of MAIL compared to baseline methods in the Battle envi-
ronment. MAIL consistently surpasses baseline methods in
terms of mean reward, kills, and kill-death (K/D) ratio.

Method  Kills K/D ratio Mean reward
DGN 2166 232+0.16 092+0.17
LSC 184+7 1.73+£025 0.90+0.17
G2ANet 247+5 260021 1.12+0.03
DICG 190+6 2.01+0.13 1.02+0.07
MAIL 261+5 2.82+0.26 1.21+0.03

Table 3: Performance of MAIL and baseline methods in Battle en-

vironment.
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Figure 4: Learning curves of MAIL and baseline methods in four benchmarks.
4.4 StarCraft Multi-Agent Challenge Ablation  MMM?2 MMM3 lc3s5z
StarCraft Multi-Agent Challenge (SMAC) [Vinyals et al., MAIL 94213Q75 517502 9831£0.73
. ; . Y -w/oFP  74.18+£6.53 57.06+£7.26 84.31+3.17
2019] is an established environment developed within the
prevalent game StarCraft II, as shown in Figure 3(d). In WO TP 79.10£6.83  63.93+£7.30  91.04 £2.76
’ ) -w/oCR  89.64+£4.26 7241+£5.13 95.63+1.21

SMAC environment, MARL methods are employed to train
ally agents, while enemy agents are managed by the built-in
Al The features collected by the agent encompass the follow-
ing attributes of both allied and enemy units within its field
of vision: unit type, location, distance, health, and shield. To
heighten the coordination challenge for ally agents, the de-
fault experimental settings have been fine-tuned, resulting in
a reduction of the visual field for agents from 9 to 2.

Figure 4(d) shows the mean win rates of different methods
in scenario 1010b vs 1r. We can observe that MAIL signif-
icantly outperforms other baselines. Table 4 shows the per-
formance of MAIL and baselines in the different scenarios:
MMM2, 1c¢3s5z, and 27m vs 30m. As shown in Table 4,
MAIL significantly outperforms baselines in these scenarios.

Method MMM?2 1¢3s5z 27m vs 30m
DGN 7871 £6.92 8523 +442 61.45+9.10
LSC 7624 +7.28 89.42+291 73.47 +6.03
G2ANet 80.24 +4.37 91.25+1.73 75.02+5.84
DICG 83.45+542 9346+1.26 71.53+7.72
MAIL 94.21 +3.75 98.91 £ 0.63 90.16 £ 3.02

Table 4: The mean win rate of MAIL and baselines in several sce-
narios in SMAC environment.

4.5 Ablation analysis

We further evaluate the contribution of each component in
MAIL. Specifically, we design three ablations masking dif-
ferent components: (i) w/o FP is MAIL without the feature
preserving contrastive learning component. (ii) w/o TP is
MAIL without the topological preserving contrastive learn-
ing component. (iii) w/o CR is MAIL without cross-module
loss. The results are summarized in Table 5. We can observe
declines in performance when any of the components are re-
moved, highlighting the effectiveness of each one. In partic-
ular, when the feature preserving contrastive learning module
is removed, the performance in all three scenarios drops sig-
nificantly, indicating that this module is essential for boost-
ing performance. Meanwhile, the topological preserving con-
trastive learning module and the cross-module loss contribute
to further improvements.

Table 5: Ablation study on MAIL.

Figure 5 illustrates the average number of epochs needed
for each method to reach convergence. Compared to GNN-
based MARL, MAIL prevents mixing irrelevant information
from agents of different classes, enabling more efficient com-
munication learning. MAIL consistently outperforms base-
lines as the number of agents increases, highlighting its scal-
ability for tackling large-scale communication learning tasks.

1000 CommNet CommNet
2 %00 E—3 IC3Net ., 2500 7 IC3Net
e Y TarMAC S 2000 TarMAC
5 600 MAGIC ; & MAGIC
3 } ngSOO {
2 400/ EEE MAL & B85 MAIL
g L . ' 5 1000
< 200 ; § < 500! 7
B B 7 AN ,
0 : 0 | NG
n=3 n=5 n=10 n=5 n=10 n=20

Number of agents
a) Predator-Prey

Number of agents
b) Traffic Junction

Figure 5: Performance of methods as the number of agents in-
creases.

5 Conclusion

We have introduced the graph contrastive learning optimiza-
tion concept for communication learning methods of MARL.
MAIL efficiently preserves both feature and topological in-
formation and learns expressive message representations,
therefore enhancing action coordination between agents. Ex-
perimental results on various environments validate that the
proposed MAIL outperforms existing GNN-based commu-
nication approaches. The effectiveness of MAIL offers sig-
nificant potential for advancing efficient multi-agent commu-
nication learning. Our research promotes further research
into multi-agent communication methods and broader, robust
forms of communication learning. In future research, we plan
to explore more GCL mechanisms and apply them to real-
world multi-agent communication learning scenarios.
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