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Abstract

Long video understanding with Large Language
Models (LLMs) enables the description of ob-
jects that are not explicitly present in the training
data. However, continuous changes in known ob-
jects and the emergence of new ones require up-
to-date knowledge of objects and their dynamics
for effective understanding of the open world. To
alleviate this, we propose an efficient Retrieval-
Enhanced Video Understanding method, dubbed
REVU, which leverages external knowledge to en-
hance the performance of open-world learning.
First, REVU introduces an extensible external text-
object memory with minimal text-visual mapping,
involving static and dynamic multimodal informa-
tion to help LLMs-based models align text and vi-
sion features. Second, REVU retrieves object in-
formation from external databases and dynamically
integrates frame-specific data from videos, en-
abling effective knowledge aggregation to compre-
hend the open world. We conducted experiments
on multiple benchmark datasets, and our model
demonstrates strong adaptability to out-of-domain
data without requiring additional fine-tuning or re-
training. Experiments on benchmark video under-
standing datasets reveal that our model achieves
state-of-the-art performance and robust generaliza-
tion.

1 Introduction

Large Language Models (LLMs) excel in knowledge, con-
text, multitasking, and high-quality text generation. Exist-
ing video content understanding tasks using LLMs [Chiang
et al., 2023; Touvron et al., 2023] primarily rely on large
pre-trained models trained on progressively larger datasets.
These models are typically trained on vast datasets to ac-
quire extensive knowledge and abilities, enabling them to
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handle various complex video understanding tasks, such as
image or video classification [Li et al., 2024; Ma et al., 2024;
Meng et al., 2024; Wang et al., 2024; Meng et al., 2025],
video object segmentation [Dang et al., 2024a; Dang and
Yang, 2021] and scene parsing [Dai et al., 2024]. Despite
strong performance in various tasks and benchmarks, their
training data’s timeliness limits their ability to process the lat-
est knowledge, especially for new objects and dynamic long
video content, resulting in poor performance in recognition
and content generation.

One of the most significant challenges is that model perfor-
mance often suffers when dealing with rare and ambiguous
objects, as well as knowledge appearing frequently in very
long videos. Such rare or uncommon objects or concepts
are not adequately represented in traditional datasets, and
thus may not be accurately recognized or understood by large
models during training. In addition, long videos often contain
complex scenes and dynamic backgrounds, which can cause
existing models to fail to capture certain details or objects
[Dang er al., 2023al. These issues typically require supple-
mentation from external knowledge bases to help bridge the
knowledge gap, significantly enhancing the model’s under-
standing of video content.

Moreover, as new concepts continue to emerge, the task
of understanding video content is also constantly evolving.
The introduction of new elements and the dynamic nature of
video content often lead to exponential increases in the com-
putational costs of existing training models, posing more sig-
nificant challenges for the training and application of large-
scale language models [Liu et al., 2024]. As the data volume
grows, traditional training methods require substantial com-
puting resources and face the challenge of delayed knowl-
edge updates, making it difficult to keep pace with real-
world changes on time. Therefore, continuously updating the
model’s object information and dynamic knowledge at a rea-
sonable computational cost is crucial for achieving efficient
video content understanding.

In this paper, instead of relying on larger datasets or more
complex network architectures, we build a scalable external
text-based object memory and propose an efficient retrieval-
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Figure 1: Top: Overview of REVU: An external text-object mem-
ory with static and dynamic multimodal information enhances text-
vision alignment for open-world video understanding. REVU dy-
namically retrieves external memory and integrates it into videos
for open-world video understanding. Bottom: Accuracy compari-
son across various video understanding benchmarks, demonstrating
REVU’s superior performance against MA-LMM.

augmented method to update this memory, addressing chal-
lenges in long-term video understanding. This external mem-
ory incorporates a minimal yet highly effective text-to-visual
mapping mechanism that seamlessly integrates static and dy-
namic multimodal information, enabling LLM-based models
to align textual and visual content more accurately and effi-
ciently. Our method can access static object attributes, such
as color, shape, and location, as well as dynamic video fea-
tures including object motion trajectories, scene changes, and
temporal coherence from the external memory. By leveraging
these capabilities, the model effectively handles the complex-
ity and dynamics of long videos, enhancing both efficiency
and accuracy in long-term video understanding.

The key contribution of REVU is the construction of two
key-value memories, similar to [Vo et al., 2022; Dang et al.,
2023b]. The first key-value pair represents the features and
names (semantic labels) of static objects, while the second
captures the characteristics and names (semantic labels) of
dynamic actions. Unlike the previous approaches [Vo et al.,
2022; Dang et al., 2024b], which define dependent objects
as keys, our method uses the visual characteristics of objects
and actions as keys, taking advantage of the rich availability
of object images and video data on the Internet.

In summary, our key contributions are as follows:

* We provide an extensible external object-action mem-

ory with minimal but useful text-visual mapping, which
enables LLMs-based models to align textual and visual
information to comprehend the open world.

We propose a highly effective retrieval-augmented
method for long-term video understanding, which can
adaptively retrieve world knowledge, i.e., static object
information from the external object-text memory and
dynamic information from action-text memory.

Our approach achieves state-of-the-art performance on
various downstream video tasks, including long-term
video understanding and video question answering. Fur-
thermore, our method demonstrates strong generaliza-
tion capabilities.

2 Related Work
2.1 Multimodal Large Language Models

Recent advancements in Multimodal Large Language Mod-
els (MLLMs) have significantly enhanced the integration
of diverse modalities, including natural language processing
and computer vision. By combining text, image and audio
data, MLLMs can perform more complex tasks, including
text and image generation, visual question answering, cross-
modal retrieval and multimodal sentiment analysis. These
models not only enhance unimodal performance but also ad-
vance cross-modal understanding and generation. For exam-
ple, Contrastive Language-Image Pretraining (CLIP) [Rad-
ford et al., 2021] improves zero-shot image classification
and cross-modal tasks through contrastive learning on large-
scale image-text pairs. The DALL-E series [Ramesh et al.,
2021] demonstrates the capability to generate high-quality
images from textual descriptions, thereby expanding the ap-
plication scope of generative models. Flamingo [Alayrac et
al., 2022] enhances multi-round dialogues and complex scene
understanding, enabling more natural human-computer inter-
actions. Recent models such as GPT-4 [Achiam et al., 2023]
and PaLM-E [Driess et al., 2023] extend multimodal capa-
bilities by incorporating additional modalities and optimizing
architectures, further improving generalization and adaptabil-
ity. These advancements not only push the boundaries of mul-
timodal understanding and generation but also support prac-
tical deployments of intelligent systems.

2.2 Long-Term Video Understanding

Long-term video understanding aims to capture intricate spa-
tiotemporal dynamics and semantic information over ex-
tended durations by analyzing prolonged video sequences.
Recent advances in deep learning architectures and computa-
tional resources have significantly propelled progress in this
field. For example, VideoMAE [Tong et al., 2022] employs
the Mask Autoencoder (MAE) framework to perform oc-
clusion reconstruction on videos, thus significantly enhanc-
ing video representations and improving the performance of
downstream tasks. The Action Graph Transformer (AGT)
[Nawhal and Mori, 2021] effectively captures complex ac-
tion relationships by introducing a graph-structured atten-
tion mechanism, thereby enabling accurate recognition and
prediction of multi-level behavior sequences. VTimeLLM
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Figure 2: Overview of the proposed REVU framework. REVU mainly integrates an extensible object-visual memory and action multimodal
memory. Visual encoders extract frame-level features from input videos. Object memory stores embeddings and names, while action memory
stores embeddings and actions from the external world. Customized Q-Formers refine object and action features using trainable query tokens
and threshold filtering. These refined features are dynamically combined with visual features and fed into an LLM for text decoding.

[Huang et al., 2023] improves video understanding by im-
proving temporal modeling, effectively capturing events, ac-
tions, and contextual changes over time.

2.3 Memory Models in Vision Tasks

Memory models in vision tasks aim to improve the stor-
age, retrieval, and processing of complex visual information
by leveraging memory mechanisms. Computer vision tasks
such as image classification, object detection, and video un-
derstanding require efficient processing of large-scale visual
data. To handle long videos, some works [Dang and Yang,
2022; Dang et al., 2024c] employ 3D Convolutional Neural
Networks (CNNs) to capture motion information of objects
and persons, enabling the construction of long-term feature
banks. However, traditional CNNs struggle to model long-
term dependencies in visual data. To address this, researchers
have developed memory models that enhance the ability to
represent complex spatiotemporal information through exter-
nal or internal memory mechanisms. DynMemNet [Kumar et
al., 2015] efficiently comprehends dynamic scenes in videos
by introducing a dynamically updated memory mechanism.
It excels in action recognition and event prediction tasks, en-
abling real-time updates to memory content and adaptation
to complex visual environments. SelfMem [Cheng er al.,
2023] employs a self-supervised learning method to enhance
the representational capacity of its memory module through
pre-training on large-scale unlabeled video data. It excels
in video classification and video question answering tasks,
demonstrating the potential of self-supervised memory mod-

els to improve visual task performance.

3 Method
3.1 Opverview of REVU

We propose an innovative video content understanding model
based on retrieval-augmented LLM. As shown in Fig. 2, this
model incorporates an extensible external text-object storage
that seamlessly integrates static and dynamic multimodal in-
formation through an efficient text-visual mapping mecha-
nism. This mechanism enhances the model’s alignment capa-
bility, making the matching between visual information and
textual descriptions more accurate, particularly in complex
multimodal scenarios. To further enhance the model’s perfor-
mance in multimodal information fusion, we design two scal-
able external memory modules: one for static information and
another for dynamic information. These memory modules
enable the model to retrieve relevant information from exter-
nal resources, thereby leveraging this data for reasoning and
generating descriptions more accurately, particularly when
handling complex scenes. Unlike traditional visual-name pair
memory models, our external memory does not rely on a sin-
gle visual-name pair for each object. Instead, it constructs a
diverse memory by collecting visual features from multiple
objects and actions. This approach significantly enhances the
diversity and flexibility of the memory, allowing the model to
maintain efficient comparative tension even when processing
richer and more complex video scenes.

To achieve this, our method leverages a frozen, pre-trained
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visual model and adds several trainable layers of LLMs
on top, ensuring low computational costs during training.
Specifically, we first align visual features extracted from
video content with dynamic and static feature embeddings
stored in external memory and then retrieve the correspond-
ing object and action names. These retrieved features provide
critical context to guide the LLM in generating more accu-
rate descriptions. Additionally, we introduce an attention fu-
sion module that effectively filters out irrelevant retrievals,
automatically focusing on the most relevant object and ac-
tion features to optimize the generation process. After fusion,
the integrated visual and object name features form the final
prompt, which is input to the LLM for description generation.
This design allows the model to efficiently handle long video
understanding tasks while significantly lowering training and
inference costs without compromising performance.

3.2 External Multimodel Object-Action Memory

External Memory Source. To construct the Extensible Ex-
ternal Text-Visual Memory, we first collect object-name and
action-name pairs from multiple open standard datasets (e.g.,
LVIS, kinetics700) and gather visual information from the in-
ternet. Each collected object-name pair and action-name pair
represents the diversity of an object or action in the visual
space. Each video clip is processed by a trained visual en-
coder (e.g., ViT) to generate high-dimensional visual embed-
dings. These visual embeddings are stored as keys in exter-
nal memory, with the corresponding object or action names
stored as values. This design allows the memory to store not
only the visual features of objects or actions but also their
associated semantic labels (i.e., names). During inference,
visual embeddings are matched with object or action features
in external memory to retrieve the corresponding labels.
Key-Value Mapping. For each video, we first use a frozen
Visual Encoder to process the video frames sequentially, ex-
tracting both spatial and temporal features. After encoding
each frame, the generated feature vector captures the spa-
tial information of that frame while also embedding temporal
changes, which aids in understanding the dynamic processes
in the video. These encoded features are stored as keys in ex-
ternal memory, with the corresponding object/action names
for each frame stored as values. Specifically, we constructed
a Visual Name Memory that stores both the visual features
of each object or action in the video and their corresponding
semantic labels (object names or action names). This design
allows the memory system to accurately retrieve relevant ob-
ject or action information, providing robust support for sub-
sequent model inference. To enhance retrieval efficiency, we
utilize FAISS [Douze et al., 2024] to build an index and per-
form fast vector searches by measuring the similarity between
visual features.
Dynamic Retrieval. We employ fast and slow query methods
to independently retrieve Object Multimodal Memory and
Action Multimodal Memory, respectively. Given the signif-
icant differences in semantic and dynamic features between
objects and actions, their retrieval requirements and optimiza-
tion strategies are also distinctly different.

In the object multimodal memory, we focus on understand-
ing static objects and scenes. Since objects have stable spa-

tial distributions in video frames, their features primarily in-
volve visual information such as shape, color, and texture.
To efficiently retrieve relevant object information, we adopt
a combination of fast and slow queries. The multimodal in-
formation of objects includes static features and potential de-
tail changes. The fast query method quickly retrieves and
calculates similarity, while the slow query refines the results
by matching object names to textual information and format-
ting it according to the model’s requirements. This approach
enables rapid retrieval of object names and their multimodal
features from external memory.

In contrast, the Action Multimodal Memory focuses on dy-
namic changes and action sequences in videos. Actions are
typically composed of consecutive frames, whose features in-
clude not only visual information but also temporal dynam-
ics. Therefore, action retrieval is more complex than object
retrieval, as it requires considering temporal feature changes.
Moreover, not all videos contain obvious actions. To re-
duce unnecessary computation and avoid introducing erro-
neous information, we use the fast query method for prelim-
inary action retrieval and similarity calculation. We set a de-
fault threshold: if the similarity value exceeds the threshold,
the video is considered to contain action features, prompting
the slow queries to extract relevant action information from
Action Multimodal Memory. If the similarity is below the
threshold, the video is assumed to lack action features, and
the Action Multimodal Memory is skipped.

Fast and slow queries complement each other to enhance
both retrieval efficiency and accuracy. Fast queries quickly
locate relevant objects or actions, while slow queries provide
precise details and semantic alignment. This decoupled de-
sign allows better handling of static and dynamic information
in videos, ensuring effective utilization of multimodal object
and action features for video understanding. Additionally, the
query strategy can be dynamically adjusted based on specific
requirements, further improving overall performance.

3.3 Retrieval-Augmented Visual Encoding

Visual Encoder. Previous video content understanding meth-
ods typically extracted multimodal features through frozen
visual encoders, converting them into a unified representa-
tion. A Memory Bank stored historical information to sup-
port dynamic queries, while Q-former generated task-specific
representations by querying relevant data from the Memory
Bank, enabling efficient fusion of multimodal information.
However, although the memory bank is highly effective in
storing and querying historical data, its capacity is limited
and cannot extend beyond the knowledge of the current in-
put. As a result, the model’s performance may suffer when
dealing with rare, ambiguous, or neglected objects in widely
used datasets. Therefore, without an external memory base,
the performance of existing models remains constrained.

Retrieval-Augmented Q-Former. The visual encoder gener-
ates contextual features from the video, which may lack back-
ground knowledge or additional commonsense information
about objects and their relationships. For instance, while the
visual encoder may identify a person in a scene, it might fail
to grasp the nuances of their actions or the broader context,
such as their role in a social interaction or activity. This lim-
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itation can lead to hallucinations or incorrect interpretations,
particularly when encountering rare objects or actions not
included in the training data. Leveraging external memory,
without needing to increase the size of the core model, could
flexibly inject diverse and representative knowledge. By do-
ing this, the model could mitigate the hallucination caused by
videos with rarely presented objects or actions, increasing the
realibilty of the final output.

To address these limitations, we propose integrating exter-
nal memory into the model without increasing its core size.
By utilizing external memory, we inject diverse, represen-
tative information about objects and actions, allowing the
model to incorporate knowledge not explicitly present in the
video content but essential for understanding the broader con-
text. By utilizing external memory, the model can mitigate
hallucinations that arise when videos contain rare or unseen
objects and actions. For instance, if an uncommon object ap-
pears in the video that the core visual encoder has not encoun-
tered, the external memory supplements the encoder’s inter-
pretation, providing the necessary context. This enhances the
model’s ability to understand rare or ambiguous scenes, im-
proving the reliability and robustness of the final output, and
ensuring correct interpretation of unfamiliar elements.

Specifically, we use two additional Q-formers that inde-
pendently process retrieved results Ruction and Ropject. We
employ two additional Q-formers that independently process
the retrieved results for objects and actions, denoted as Ropject
and Racion- These Q-formers are essential for integrating ex-
ternal knowledge with the video’s visual features. Given the
encoded visual feature V,;q extracted from the video frames
by the Visual Encoder, we retrieve the corresponding action
and object information from external memory, denoted as:

Ropject = Retrieve(objects, Viiq), €))

R,ciion = Retrieve(actions, Viiq). 2)

Each Q-former independently processes the retrieved results
using stacked cross-attention and self-attention mechanisms
to generate two distinct contextual representations object con-
textual representation Copjece and action contextual represen-
tation Clyegon as follows:

CVaction = Q‘formeraction(Ractiom V:/id)7 (3)

Cobject - Q'formerobject(Robject; V;/id)~ (4)

Each Q-former comprises L stacked layers of cross-
attention and self-attention mechanisms, allowing the model
to refine and integrate retrieved knowledge with visual fea-
tures. The cross-attention mechanism aligns external knowl-
edge (object and action names) with the video’s visual con-
tent, while self-attention captures long-range dependencies
within the retrieved knowledge, ensuring coherent represen-
tations.

After processing by the Q-formers, the two contextual rep-
resentations Copject and Ciciion are fused into a unified rep-
resentation. This final representation captures both dynamic
actions and static objects, providing a comprehensive under-
standing of the video content.

Chinal = FUSion(Oobjecu Caclion) . (5)

The final representation Cj,; is passed to the LLM for cap-
tion generation or other downstream tasks. This ensures that
the output is informed by both the visual features and the ex-
ternally retrieved knowledge, enabling the model to gener-
ate more reliable and accurate interpretations, particularly for
rare or complex scenes. By incorporating external knowledge
in this structured manner, we overcome the limitations of the
Visual Encoder, ensuring that the model remains robust and
accurate even with rare or unseen objects and actions.
Dynamic Skipping. The introduction of two additional Q-
forms increases computational complexity. To balance com-
putational load with performance, we designed a dynamic re-
trieval module that selects query strategies based on video
content characteristics, reducing unnecessary computation.

3.4 Text Decoding

During training, we process video frames autoregressively,
with the Q-Former outputting a representation containing all
historical information at the final time step, which is then
fed into the LLM. This approach reduces the number of in-
put text tags, addressing the context length limitation of the
LLM and lowering GPU memory requirements. By com-
pressing the dynamic information of the video, the Q-Former
provides a concise representation that helps the LLM better
understand video semantics. The model is supervised with a
cross-entropy loss function, aiming to generate text descrip-
tions for the video. Only the parameters of the Q-Former are
updated, while the visual encoder and language model remain
frozen. The LLM leverages the self-attention mechanism to
process video features and generate accurate text, effectively
addressing the context length limitation and enhancing model
performance.

4 Experiments

4.1 Tasks and Datasets

We conducted experiments on long video understanding tasks
using three widely used datasets: LVU [Wu and Krahenbuhl,
2021], MSRVTT [Xu et al., 2017], and MSVD [Chen and
Dolan, 2011], with top-1 classification accuracy as the pri-
mary metric. LVU is a large-scale, multimodal video dataset
covering diverse domains with complex scenes, objects, and
activities, making it suitable for various video analysis tasks.
MSVD contains 120,000 sentences describing over 2,000
video clips, collected via Mechanical Turk. MSRVTT in-
cludes 10,000 clips from 20 categories, each annotated with
20 captions.

4.2 TImplementation Details

Our framework is built upon InstructBLIP [Dai et al., 2024]
using methods outlined in [He ef al., 2024]. A 3x3 convolu-
tional layer acts as a projector, and the pre-trained ViT-G/14
[Dosovitskiy, 2020] image encoder from EVA-CLIP [Fang
et al., 2023] is employed to create spatiotemporal memory.
For fair comparison, we use the same backbone architecture
as baseline [He er al., 2024]. The Q-Former weights from
InstructBLIP are used for query mechanism, while Vicuna-
7B [Chiang er al., 2023] serves as the large-scale language
model. Training was performed on four NVIDIA 4090 GPUs
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Method \ Relation Director Year Scene Avg
Performer [Choromanski et al., 2020] 50.0 58.9 413 605 527
Orthoformer [Patrick et al., 2021] 50.0 55.1 43.4 66.3 53.7
VideoBERT [Sun ef al., 2019] 52.8 47.3 36.1 54.9 47.8
Obj_T4mer [Wu and Krahenbuhl, 2021] 54.8 47.7 37.8 529 483
VIS4mer [Islam and Bertasius, 2022] 57.1 62.6 448 674  58.0
LST [Islam and Bertasius, 2022] 52.5 56.1 392 628 527
MA-LMM [He et al., 2024] 58.2 74.6 51.9 80.3 66.3
Ours 60.4 79.1 52.6 80.5 68.1

Table 1: Comparative results with state of the art methods on the LVU dataset.

Model | MSRVTT MSVD
SINGULARITY [Lei er al., 2022] 43.5 -
GiT [Lei et al., 2022] 43.2 56.8
mPLUG-2 [Xu et al., 2023] 48.0 58.1
UMT-L [Li et al., 2023] 47.1 55.2
Valley [Luo et al., 2023] 51.1 60.5
MA-LMM [He et al., 2024] 48.5 60.6
Ours 52.1 65.2

Table 2: Comparison with state-of-the-art methods on video ques-
tion answering. Bold and underline denote top-1 and top-2 results.

Dataset Ablation | Baseline Ours
Splitting training set (70% train-30% val)| 56.0  58.9
Splitting training set (50% train-50% val)| 46.2  48.0

Table 3: Dataset ablation results on LVU training set for relationship
task. Our method demonstrates stronger generalization ability.

using cosine learning rate decay. We sample 100 frames per
video clip from the LVU dataset at 1 FPS.

4.3 Main Results

Long-Term Video Recognition on the LVU Dataset. As
shown in Table 1, we compare our method with state-of-
the-art approaches on the LVU [Wu and Krahenbuhl, 2021]
dataset across five categories: Relationship, Director, Year,
Scene, and Overall Average (Avg). Our method achieves
the highest average score of 68.1, outperforming others in
the *Scene’ (80.5) and ’Director’ (79.1) categories. It also
surpasses most competitors in the ’Relationship’ category
(60.4) and remains competitive in the *Year’ category (52.6).
Our method also outperforms Performer [Choromanski ef al.,
2020] (52.7) and Orthofomer [Patrick er al., 2021] (53.7).
While "MA-LMM’ [He et al., 2024] scores slightly higher
in *Year’ (74.6), it falls short in ’Scene’ and ’Director’, re-
sulting in lower overall performance. These results high-
light the effectiveness of our method in leveraging spatial and
temporal cues for video understanding, delivering balanced
performance across all categories. Its strong performance in
the *Scene’ and ’Director’ categories underscores its ability
to handle complex video content, making it well-suited for
large-scale multimodal video analysis.

Video Question Answering on the MSVD Dataset. Ta-
ble 2 highlights the performance of our proposed method
on the Video Question Answering task, specifically on the
MSVD [Chen and Dolan, 2011] dataset. The results demon-
strate the significant advantages of our method over existing
state-of-the-art approaches. Our method achieves an accu-
racy of 65.2%, significantly outperforming another method
and showcasing a substantial performance improvement. In
comparison, the second-best method, the baseline MA-LMM,
achieves an accuracy of 60.6%, indicating a notable improve-
ment of 4.6% by our approach. Furthermore, compared to
VideoCoCa, our method achieves an 8.3% improvement, re-
flecting its superior cross-modal understanding and robust
question answering capabilities. The figure also includes re-
sults from several prominent approaches introduced in re-
cent years, ranging from JustAsk (2021) to the latest Val-
ley (2023). Our method not only leads to accuracy but also
demonstrates stronger robustness and generalization in long-
term video question answering tasks.

Video Question Answering on the MSRVTT Dataset. Ta-
ble 2 illustrates the performance of our proposed method on
the video question answering task, specifically evaluated on
the MSRVTT dataset, and compares it with various state-
of-the-art methods. The results clearly demonstrate the sig-
nificant accuracy advantage of our approach over existing
methods. Our method achieves a top accuracy of 52.1% on
the MSRVTT dataset, outperforming all current methods and
showcasing strong performance improvements. The second-
best method, Valley, achieves an accuracy of 51.1%, which
is 1.0% lower than our approach. Compared to MA-LMM,
which achieves 48.5%, our method improves by a notable
3.6%, further highlighting its superior capability in video un-
derstanding tasks. These results establish our approach as a
new benchmark for video question answering, reflecting its
robust and effective design.

Generalization. Table 3 evaluates the generalization capa-
bility of our method on the LVU dataset’s Relationship task
with varying train-validation splits. With a 50%-50% split,
our method outperforms the baseline, demonstrating strong
generalization. For the 70%-30% split, it achieves Top-1 ac-
curacy of 58.87%, showcasing its ability to effectively utilize
training data while maintaining robust performance. The re-
sults confirm the adaptability of our method to different data
distributions and highlight its generalization effectiveness.
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4.4 Visualization
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Figure 3: Visualization results of our method on long-term video
recognition task on LVU dataset.

Figure 3 shows the experimental results of our method on
six long-term video recognition tasks on the LUV dataset,
each representing varying levels of video comprehension.
The tasks span recognizing relationships between people and
identifying actions, with each experiment using real movie
scenes. These scenes were carefully chosen to maintain high
semantic relevance and exhibit diversity in visual style, light-
ing and frame rate. The figure shows input videos for differ-
ent tasks and the corresponding model outputs. In the first
task, the model successfully identifies the relationship be-
tween two people (husband and wife), while in the second
task, it accurately recognizes actions (e.g., ’chopping meat’
and ’cooking’). The results demonstrate that our method ex-
cels across various video recognition tasks, showcasing its
ability to handle diverse and complex visual inputs.
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Figure 4: Ablation of the external multimodal memory on the LVU
dataset for relationship and director task. Here, OM, AM, and DR
denote object memory, action memory, and dynamic retrieval.

In Figure 4, we conduct an ablation study on the LVU
dataset to verify the impact of external multimodal mem-
ory components including Object Memory (OM), Action
Memory (AM), and Dynamic Retrieval (DR) on the baseline
model’s performance in the Relationship and Director tasks.
Adding OM improves task accuracy, but combining OM and
AM leads to performance loss without Dynamic Retrieval.
Integrating all three components achieves the best perfor-
mance, with accuracies of 61.8% (Relationship) and 79.1%

(Director), highlighting the role of DR in complementing OM
and AM for better long-term video understanding.
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Figure 5: Ablation of external multimodal memory and dynamic
retrieval. NF denotes the number of frames in action-text memory
bank.

Figure 5 presents an ablation study evaluating the effect
of threshold values and the number of frames (NF) in the
action-text memory bank on Top-1 accuracy. Results indicate
that lower thresholds consistently improve Top-1 accuracy
over higher thresholds at a fixed large NF. For instance, with
NF=400, reducing the threshold from 0.9 to 0.7 increases
Top-1 accuracy from 61.6% to 61.8%. Increasing NF from
200 to 400 improves performance across all thresholds, high-
lighting the importance of a larger memory bank for better
action-text alignment. These findings underscore the criti-
cal role of dynamic retrieval strategies and memory size in
optimizing model performance for long video understanding
tasks.

5 Conclusion

In this work, we introduce an efficient retrieval-enhanced
method for long-term video understanding, addressing chal-
lenges of dynamic object evolution and the emergence of new
objects in open-world scenarios. By leveraging a lightweight
and easily trainable model, our approach integrates static ob-
ject information from external memory with dynamic contex-
tual cues from videos, enhancing LLMs with world knowl-
edge. Through seamless alignment of retrieved textual data
with static and dynamic features, our method achieves robust
generalization across domains without requiring additional
fine-tuning or retraining.
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