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Abstract

Action recognition models using deep learning
are vulnerable to adversarial examples, which are
transferable across other models trained on the
same data modality. Existing transferable attack
methods face two major challenges: 1) they heav-
ily rely on the assumption that the decision bound-
aries of the surrogate (a.k.a., source) model and the
target model are similar, which limits the adver-
sarial transferability; and 2) their decision bound-
ary difference makes the attack direction uncertain,
which may result in the gradient oscillation, weak-
ening the adversarial attack. This motivates us to
propose a Background Mixup-induced Temporal
Consistency (BMTC) attack method for action
recognition. From the input transformation per-
spective, we design a model-agnostic background
adversarial mixup module to reduce the surrogate-
target model dependency. In particular, we ran-
domly sample one video from each category and
make its background frame, while selecting the
background frame with the top attack ability for
mixup with the clean frame by reinforcement learn-
ing. Moreover, to ensure an explicit attack direc-
tion, we leverage the background category as guid-
ance for updating the gradient of adversarial ex-
ample, and design a temporal gradient consistency
loss, which strengthens the stability of the attack
direction on subsequent frames. Empirical studies
on two video datasets, i.e., UCF101 and Kinetics-
400, and one image dataset, i.e., ImageNet, demon-
strate that our method significantly boosts the trans-
ferability of adversarial examples across several ac-
tion/image recognition models.

1 Introduction

Action recognition has established itself as a fundamental
task in computer vision, and has widespread applications
in many areas, such as video surveillance, robot, and vir-
tual reality. In recent years, Deep Neural Networks (DNNs)
have gained large popularity in developing action recogni-
tion models, such as SlowFast [Feichtenhofer et al., 2019]
and Video Vision Transformer (ViViT) [Arnab et al., 20211,
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Figure 2: Illustration of diverse and consistent temporal attack.

which focuses on capturing the spatiotemporal features of
video. However, these model are vulnerable to adversarial ex-
amples [Goodfellow et al., 2015], i.e., adding human imper-
ceptible perturbations to clean samples, which fool the classi-
fication model to make incorrect predictions. This raises the
important security concerns from both academia and industry.

In real-world scenarios, due to some privacy issue, the prior
knowledge such as the parameters and the architecture of tar-
get model (i.e., attacked model) are often unavailable to the
attacker. Hence, we investigate the transferability of adversar-
ial examples by adopting one white-box model as surrogate or
source model to realize black-box attacks for action recogni-
tion models. To this end, there are only a few studies devoted
to the transfer-based attack on video recognition models. For
example, [Wei et al., 2022] presents a Temporal Translation
(TT) attack method that optimizes the adversarial perturba-
tions on the temporal translated video clips to make the attack
less sensitive to varying temporal patterns. From the cross-
modal transfer perspective of image-to-video, [Wang er al.,
2023] improves the transferability of adversarial examples in
black-box scenario by introducing global inter-frame inter-
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action into attack process and disrupting the inherently local
correlations of frames within a video; [Wei et al., 2024] gen-
erates adversarial examples from white-box image models to
attack video models, and optimize perturbations via reduc-
ing the similarity of intermedia features between clean frame
and adversarial frame. However, the above methods have two
major drawbacks including: 1) they update gradients to gen-
erate adversarial examples which makes them heavily rely on
the assumption that the decision boundaries of the surrogate
(a.k.a., source) model and the target model are similar, i.e.,
the transfer-based attack will fail (e.g., adversarial example is
correctly recognized by target model) when the two bound-
aries are isolated away (see Fig. 1), and 2) the existence of
the boundary difference incurs the uncertainty problem of at-
tack direction, and they make the attempt in many possible
directions, resulting in possible large gradient oscillation as
shown in Fig. 2 and thus weakening the adversarial attack.
For the first problem, from the input transformation per-
spective, we adopt the adversarial mixup strategy to gener-
ate adversarial examples, which makes the transferable attack
less dependable on the assumption of the decision boundary
similarity between the surrogate model and the target model.
The so-called mixup acts as data augmentation that linearly
interpolates two images and corresponding labels. Here we
do not change the label as in [Wang er al., 2021al. By con-
trast, we consider the semantic perturbation on clean sample
by making a set of background frames, each of which corre-
sponds to one category. In particular, we add the background
frame with the highest attack reward to the clean frame. All
clean frames within a video may be mixed up with different
background frames. To identify the background frame with
the strongest attack ability, we leverage reinforcement learn-
ing by designing a reward function for the adversarial Mixer,
which includes attack success award, transfer award, and tem-
poral background consistency award. The background frame
with the top score is selected for mixing up with the clean
frame. Here the temporal background consistency award
makes the selected background frames be similar or the same
for nearby frames. These skills are wrapped in the model-
agnostic Background Adversarial Mixup (BAM) module.
For the second problem, from the temporal attack perspec-
tive, some work [Wei er al., 2022] presents a gradient-based
temporal translation attack that optimizes the adversarial per-
turbations on temporally translated video clips, while some
others [Wei et al., 2024][Chen et al., 2023] focus on feature-
based attacks that minimize the cosine similarities between
the intermediate features of the (warped) clean frame and the
adversarial counterparts. However, they fail to consider the
local relation of nearby frames. Meanwhile, [Wang et al.,
2023] disrupts the temporal local correlations by reducing the
similarity of the adversarial examples of nearby frames, but
it introduces the large diversity of adversarial frames by min-
imizing their feature cosine similarity. This makes the attack
directions vary greatly, leading to possible inverse gradient
directions as shown in Fig. 2. Thus, it adds the difficulty in
pushing the adversarial example away from the current de-
cision boundary. Hence, we design the Background-induced
Temporal Gradient enhancement (BTG) module that lever-
ages the background attack loss and the temporal gradient

consistency loss to make nearby frames have similar gradi-
ents. This makes the attack directions be consistent across
the frames along the temporal dimension, enhancing the at-
tack ability of adversarial example gradually.

We briefly summarize the main contributions as follows:

* We study the transfer-based black-box attack on action
recognition models, and propose a Background Mixup-
induced Temporal Consistency (BMTC) attack method
to boost the transferability of adversarial examples.

We perform a model-agnostic input transformation by
considering background semantics, i.e., adversarially
mixup background frame from other categories with
clean frame, while that background frame is determined
by the reward function using reinforcement learning
with good transferability and temporal consistency.

We strengthen the attack direction across sequential
frames in a progressive way, by imposing the temporal
gradient consistency constraint on the loss and guiding
the attack in the direction of the background category.

2 Related Works
2.1 Transfer-based Image Attacks

Previous methods often adopt white-box attacks, such as Fast
Gradient Sign Method (FGSM) [Goodfellow et al., 2015] that
updates the gradient on the clean sample to maximize the
loss function, Projected Gradient Descent (PGD) [Madry er
al., 2018] that is an iterative FGSM. To improve the trans-
ferability of adversarial examples on black-box models, there
are three strategies: 1) data augmentation (i.e.,input trans-
formation), e.g., diversity input attack [Xie et al, 2019],
Scale-Invariant Method (SIM) [Lin et al., 2020], Translation-
Invariant (TI) attack [Dong et al., 20191, Adversarial Mixup
(AdMix) [Wang er al., 2021a] that mixes two images using
Mixup [Zhang er al., 2018], and Path-Augmented Method
(PAM) [Zhang et al., 2023] that constructs a candidate aug-
mentation path pool for path selection with greedy search;
2) gradient modification, e.g., Momentum Iterative (IM) at-
tack [Dong et al., 2018], Skip Gradient Method (SGM) [Wu
et al., 2020], Variance Momentum Iterative tuning (VMI)
[Wang and He, 20211, and Gradient-Related Adversarial At-
tack (GRA) [Zhu et al., 2023]; 3) feature disruption, e.g.,
Intermediate Level Attack (ILA) [Huang et al., 2019], Fea-
ture Importance-Aware attack (FIA) [Wang et al., 2021b], and
ILA with Data Augmentation (ILA-DA) [Yan et al., 2023].

2.2 Transfer-based Video Attacks

Transferable attacks on video models are less explored com-
pared to that on image models. Existing methods attempt to
break the temporal relations, e.g., from the gradient update
perspective, Temporal Translation (TT) [Wei et al., 2022]
does multiple translations on frames along the temporal di-
mension to generate the clips under different translation pat-
terns and optimizes the perturbations on these clips; from the
feature disruption perspective, some methods minimize the
cosine similarities between the intermediate features of the
clean frames [Wei er al., 2024] or the warped clean frames
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[Chen er al., 2023] and the adversarial counterparts. Never-
theless, they treat video as a collection of unordered images,
ignoring the inherent temporal continuity. In contrast, [Wang
et al., 2023] disrupts the temporal local correlations of nearby
frames by reducing the similarity of the adversarial counter-
parts, and minimizes the cosine similarities among the inter-
mediate features of the benign points lying on a convex hull,
which leads to diverse adversarial frames. This may incur
gradient oscillation, e.g., some sample gradients update in re-
verse direction, because the uncertain attack directions vary
greatly.

2.3 Action Recognition Models

Much progress has been made in deep neural network based
action recognition models. Existing methods have two
groups: 1) Convolutional Neural Networks (CNNs) methods,
e.g., Inflated 3D ConvNet (I3D) [Carreira and Zisserman,
2017], Non-Local neural networks (NL) [Wang er al.,
2018], SlowFast [Feichtenhofer er al., 2019] that captures
spatial semantics at low frame rate and the motion dynamics
at fine temporal resolution, Temporal Pyramid Networks
(TPN) [Yang er al., 2020] that uses the source features and
the fusion features to form a feature hierarchy to capture
action instances at various tempos; 2) Vision Transformer
(ViT) methods, e.g., VideoTransformer Network (VTN)
[Neimark et al., 2021] that is built on top of any given 2D
spatial network and attends to the entire video, Time-Space
Transformer (TimeSformer) [Bertasius et al., 2021] that
leverages 3D self-attention over the space-time volume to
capture long-range temporal dependency among frames,
Motionformer [Patrick et al., 2021] aggregates implicitly
motion path information to model the temporal dynamic
scenes, and VideoSwin [Liu er al., 2022] that encourages
an inductive bias of locality by adapting the Swin Trans-
former [Liu et al., 2021] for a better speed-accuracy trade-off.

3 Methodology

This section introduces the proposed Background Mixup-
induced Temporal Consistency (BMTC) attack method in the
transfer-based black-box setting for action recognition mod-
els. The overall framework is illustrated in Fig. 3, which con-
sists of two primary components, i.e., Background Adversar-
ial Mixup (BAM) module and Background-induced Temporal
Gradient enhancement (BTG) module.

3.1 Problem Definition

Given a video sample = represented by a tensor X &
RTXHXWXC with the ground-truth label y € Y =
{1,2,---, K} represented by a one-hot vector y € RX,
where {N, H,W,C} denote the number, height, width,
and channel of the video, each frame is indexed by t €
{1,2,---,T}, and there are K action categories, transfer-
based adversarial attack aims to generate an adversarial ex-
ample X% = X + § by the surrogate model g(-) to fool the
target model f(-) : X — ) to make incorrect predictions,
ie., f(X9v) # y without knowing the gradients and archi-
tecture of the model, where the perturbation ¢ is restricted by

the ¢,-norm ||d]|, < e. Here, ¢ > 0 is a constant that gov-
erns the perturbation magnitude, and we adopt ¢;,¢s-norm and
untargeted adversarial attacks as in [Wei er al., 2024][Wei et
al., 2022]. The objective of untargeted adversarial attack is
formulated as:

argmax J(f(z +6),y), s 1. [|6]lime <€, (1)

where the function J(-) often adopts cross-entropy loss.
Since this work focuses on the black-box transfer-based at-
tack, the attacker (a.k.a., adversary) has no access to details
of the target model f(-). We aim to improve the black-box
transferability of video adversarial examples on other action
recognition models.

3.2 Background Adversarial Mixup

To ensure the good transferability of attacks, the decision
boundary of the target model is expected to approach that
of the surrogate model. When their decision boundaries are
far away, it results in poor transferability of adversarial ex-
amples, e.g., they make different predictions on the same
sample. Gradient modification methods heavily depends
the above decision boundary assumption, since the gradients
back-propagated during training have essential compacts on
reshaping the decision boundary of the action recognition
model. To circurvement this problem, we present a model-
agnostic input transformation method, which adopts the ad-
versarial mixup with background in video using a Mixer that
consists of a feature extractor (e.g., ResNet50) and a classi-
fication head (e.g., fully-connected layer). The rationale be-
hind this is that there exist strong correlations between action
category and action background, e.g., surfing in the blue sea
and riding on a road, which makes it possible that mixing the
background from other categories with a given video might
mislead the model to yield wrong predictions. This raises a
key problem that how to select the background frame. The
working mechanism is shown below.

We construct a set of candidate background frames, which
are obtained by randomly selecting one background frame of
a randomly chosen video from each category. The selected
background frame is made by applying one zero-shot video
object segmentation method, i.e., Isomerous transformer !
[Yuan er al., 2023], to abandon foreground part, such as
person and action-related objects. Note that the label of
each background frame is kept the same as that in the origi-
nal video, and there is a one-to-one correspondence of label
mapping between original video and background frame, i.e.,
ybek = 4 4+ K, whose one-hot vector is y** ¢ R¥ and
its index is & = {1,2,--- , K'}. The background frame is re-
peated to form the background video Xk ¢ RTXHXxWxC
for a video X. These background videos are added to the set
of original videos and they are fed into the surrogate model
for fine-tuning, whose loss L. is defined as

K K
Lyo== yrlog(Fr) = A D yi¥*logyp™), @
k=1 k=1
where the first term is action loss and the second term is
background loss, {y, ¥57*} are the probability logits from

'https://github.com/DLUT-yyc/Isomer



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Background Frame
Selection

Top-1 Reward Class

ol |

1

I ~

1 Surrogate
Model

—_—

Weixup

Gradient

N
’

Surrogate

Model

X |Admixed Frame

........................................... I I
|:| cos(F"*, §7) @ Model 2
+ g 2 back +
A o ~Y,+1
True label Other label
logits logits Temporal Background w
Attack Reward  Consistency Reward Transfer Reward

Temporal Gradient

VR S Consistency Loss

Perturbation
update

i

Admixed Frames

Perturbation

Adversarial Example;

Background Adversarial Mixup
— Attack Route — Training Route

@ Attack

I Background-induced Temporal Gradient Enhancement
cos(.,.) Cosine similarity

Figure 3: Overall framework of our Background Mixup-induced Temporal Consistency (BMTC) attack method for action recognition.

the model, the hyper-parameter A (empirically set to 0.2) is
used to balance the contribution of the two terms to the ob-
jective. Note that fine-tuning the surrogate model is to equip
the surrogate model with some discriminative ability of dif-
ferent background categories, so the action loss should play a
dominant role and the background loss serves as an auxiliary.

To select the background frame with the most powerful at-
tack ability, we adopt the reinforcement learning to compute
three reward functions, i.e., attack reward R,;tqck, transfer
reward Rirqnsfer, and temporal background consistency re-
ward Ry,.. These reward functions are used to encourage
the Mixer to generate the admixed sample to successfully at-
tack the surrogate model. Here the Mixer is used to mixup
the selected background video with the original video, i.e.,
X = (1—7)-X +v- X" where the constant -y is empir-
ically set to 0.2. For the frame-level mixup, the i-th admixed
frame is X; = (1 —7) - X; + v - Xbe*_ Actually, admixed
sample serves as the vanilla adversarial example.

Attack Reward. For a video x with its label y and the pre-
dicted probability vector y = [§1, 92, - , k], this reward
Raitack takes the difference of the label prediction probabili-
ties before and after the adversarial mixup, i.e.,

3

where {#\;} is a set excluding the k-th entry, which indi-
cates the true label k. When the probability of the true label
9. increases, the reward score decreases; when the maximum
probability of other categories max{¢\} increases, the re-
ward score rises, i.e., when the video is incorrectly predicted,
we should give the model positive reward.

Transfer Reward. To improve the transferability of adver-
sarial example across different models, we provide the trans-
fer reward Ryyqnsyfer to attack M black-box target models,

Rattack = max{?\k} V :l)k, st k= Y,

and averages their attack rewards, i.e.,

1M
Rtransfer = ? Z Rﬁmck, (4)
m=1
where R}, . . is the attack award of the m-th target model.
Temporal Background Consistency Reward. Since sim-
ilar samples have similar backgrounds, nearby frames are ex-
pected to have similar backgrounds. For a video x with T’
frames indexed by ¢, the neighbouring frames are expected to
be mixed with similar or the same background frames, i.e.,
temporal consistency among background frames, such that
the attack strength will be boosted. We define the Temporal
Background Consistency (TBC) reward Ry as

T—1 ~back ¢back
1 y: "Y1
Rupe = - ey O)
CT-1 ; 19715 - 9255 12

where || - ||2 denotes the £2-norm, and the vector 2% € R¥
is the predicted probability of the ¢-th background frame.

Therefore, the total reward of selecting the background
frame is

Riotar = Rattack + a1 X Rtransfer + ag X Rype (6)

where the constants oy > 0 (set to 0.3) and as > 0 (set
to 0.1) are used to control the contributions of the transfer
reward and the temporal background consistency reward, re-
spectively. Finally, we select the background frame with the
highest total reward score from K candidates to mixup with
the original video frames sequentially.

3.3 Background-induced Temporal Gradient
Enhancement

To further improve the transferability of vanilla adversarial
example (i.e., admixed sample), we introduces two adversar-
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ial losses including the background attack loss and the tem-
poral gradient consistency loss. The former is used to guide
the surrogate model to generate the adversarial example, by
learning the probability logits along the direction of the origi-
nal action category, which is associated with the mixed back-
ground frame. In particular, we maximize the cross-entropy
loss of other categories and minimize that of the background
category (i.e., fool the model to wrongly predict the sample
as the selected background category), i.e.,
K
['back =" Z
J=1j#k'-K
where the background frame belongs to the (k' — K')-th cat-
egory from the original K actions.

To makes the attack direction be consistent between nearby
adversarial frames, we design the Temporal Gradient Consis-
tency (TGC) loss to encourage the surrogate model to gen-
erate the adversarial counterparts with similar gradients for
nearby frames. By this means, the attack strength is gradu-
ally enhanced across the frames along the temporal dimen-
sion. Mathematically, we adopt the cosine similarity to eval-
uate the temporal consistency between the gradients of two
nearby adversarial frames, i.e.,

yilogy; + yi -k logyr-x, (7)

T-1 T
1 gt . gttl
L c = ) (8)
0= 71 2 gl e T

where gt € R”'W'3 denotes the gradient vector of the ¢-th
adversarial frame X24? € RE>XWXC ‘which is calculated as

9" = Vxpao Loack (X", y;0),8" = vee(g"),  (9)
where 0 denotes the model parameter set, vec(-) vectorizes a
tensor to the corresponding vector, and VXtade is the gradi-
ent of the loss Ly w.r.t.the t-th frame.
Therefore, the total temporal adversarial attack loss is:
£total N ACback + ﬁﬁtgcy (10)
where the hyper-parameter 5 € [0, 1] (set to 0.1) controls the
balance between the two terms during optimization.

3.4 Adversarial Example Generation

This work adopts the Projected Gradient Descent (PGD) al-
gorithm [Madry et al., 2018] to compute the sample gradients
of the model, and the adversarial example at the ¢-th iteration
is updated in the following way:

Xt =TIk [Xi + 7 - sign (vxiﬁtotal(Xi7 Y))] , (1D

where 1 > 0 is the step size, IIx ([-] = min(max(X* X —
€),X + ¢€) is the projection function that controls the per-
turbation magnitude, X is the clean sample, and the initial
X0 is the admixed sample. When the iteration achieves the
maximum number Ny, (e.g., set to 10 for a good tradeoff
between performance and efficiency), we obtain the ultimate
adversarial example to attack the target models.

4 Experiments

All experiments were performed on a server equipped with
two 48G NVIDIA A6000 graphics cards. The codes are com-
piled with PyTorch 1.11, Python 3.8, and CUDA 11.4. Our
code is available at Github.

4.1 Datasets and Evaluation Metric

We conduct experiments on two video benchmarks includ-
ing UCF101 [Soomro et al., 2012] and Kinetics-400 [Carreira
and Zisserman, 2017], and one image benchmark ImageNet
[Deng et al., 2009]. Following [Wei et al., 2022][Wei et al.,
2024], we adopt the Attack Success Rate (ASR) as the metric,
which calculates the rate of adversarial examples misclassi-
fied by the black-box model. The higher the ASR, the better
the transferability is. As a common practice, one video is ran-
domly selected from each category and correctly classified by
all target models.

4.2 Experimental Settings

For the adversarial Mixer, we train a classification model
from scratch with ResNet50 as backbone on Kinetics-400
and ImageNet respectively, and the training epochs are 100.
For the surrogate model fine-tuning, we adopt TPN and
ResNet101 as the surrogate of video (20 epochs) and image
(10 epochs) attack, respectively, and the hyper-parameter of
the fine-tuning loss is A = 0.2. For both of them, the initial
learning rate is 0.1, momentum is 0.9, and the weight decay is
le4. For the adversarial example generation, we set the maxi-
mum perturbation e to 16 for video and 8 for image, the attack
step size 1 to 1.6 for video and 0.8 for image, the maximum
iteration number N;¢, to 10.

For action recognition, we examine three CNN models
with different architectures, i.e., Non-local network (NL)
[Wang et al., 2018], SlowFast (SF) [Feichtenhofer et al.,
2019], and Temporal Pyramid Networks (TPN) [Yang et al.,
2020], which employ ResNet50 and ResNetl01 as back-
bones. We train video models from scratch with Kinetics-400
and fine-tune them on UCF101. Following [Wei et al., 2024],
we skip every other frame from randomly selected clip with
64 consecutive frames to make input for Kinetics-400, and
use 32 consecutive frames as input clips for UCF101. More-
over, we also examine four Transformer models including
VideoTransformer Network (VIN) [Neimark ef al., 20211,
Time-Space Transformer (TimeSformer) [Bertasius et al.,
2021], Motionformer [Patrick et al., 2021], and VideoSwin
[Liu et al., 2022]. Following [Wei et al., 2024], we sample
one clip per video and each clip consists of 16 frames with the
temporal stride 4. For image classification, we examine four
models including ResNetl18 [He et al., 2016], ResNet101,
ResNeXt50 (RNXS50) [Xie et al., 20171, and DenseNet121
(DN121) [Huang et al., 2017]. Note that NL-101, SF-101
and TPN-101 using ResNet101 act as white-box models (sur-
rogate) for generating adversarial examples to attack other
black-box models (target). The input spatial size is 224 x224.
The model number M is 3 for video and 4 for image.

4.3 Quantitative Results

Action Recognition. The attack results of action recognition
models are reported in Table 1 on UCF101, Tables 2 and 3
on Kinetics-400. The best records are highlighted in bold-
face, and the second best ones are underlined. Here, “RN”
denotes ResNet, the records with the gray color are the re-
sults of white-box attack to be overlooked.

From these tables, we observe that our method achieves
more satisfying performance across several action recogni-
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NL SlowFast TPN
RN101 RN50 RNI10I RN50 RNI101 RN50

PGD ICCV’18 92.08 31.68 11.88 15.84 891 10.89
AA  ICML20 94.05 28.71 17.82 20.79 12.87 11.88

Surrogate Attack Venue

NL-I0L pp AAAT22 81,19 6238 4852 5842  37.62 39.60
Ours 88.12 7921 7128 69.31 5347 5445
PGD ICCV'I8 1782 2376  93.07 3663 990 1485
pio; AA ICML20 1980 2178 9307 3564 1683 1881
TT  AAAI22 5446 6238 8010 5248 3663 3861
Ours 7326 7822 8614 7129 5247 66.34
PGD ICCV'I8 1188 1089 990 1485 84.16 33.67
Tp.go] AA ICML20 1386 1782 1089 1881 8911 2475

TT AAAT’22 5941 6237 4356 4455 7822 35.64
Ours 69.31 7624  64.35 6733  82.17 73.27

Table 1: Performance comparison on UCF101.

NL SlowFast TPN
RNI0I RN50 RNI101 RN50 RNI101 RN50

PGD ICCV’'18 94.75 13.75 13.50 16.25 11.25 14.25
AA ICML20 99.00 2525  20.25 21.25 14.25 20.75

Surrogate Attack Venue

NL-10L pp AAA22 9725 7725 7825 7575 5725 62.00
Ours 9850 8525 80.50 83.00 7525 78.50
PGD ICCV'I8 2025 2575 9100 3625 1575 1485
rqo; AA ICML20 2650 3000 9325 4075 1950 2550
TT  AAAP22 5975 6125 9400 7525 5350 6275
Ours 67.00 7025 0450 8350 7425 8375
PGD ICCV'18 1400 1025 1550 1485 9400 33.50
Tpaiop AA ICML20 1975 2150 2475 3150 99.00 2475

TT AAAT22 4975 5750  69.25 66.00  95.50 89.25
Ours 63.25 70.75  81.50 80.25  98.50 84.25

Table 2: Performance comparison on Kinetics-400.

Attack Surrogate  VIN TimeSformer Motionformer VideoSwin
NL 46.75 40.75 36.25 41.50
TT SlowFast  49.50 45.50 41.50 32.25
TPN 51.25 37.75 44.00 41.50
ENS-I2V-MF  Ensemble 53.50 42.00 36.75 56.25
AENS-I2V-MF Ensemble 54.00 43.75 39.50 55.50
NL 67.25 61.25 59.25 69.75
Ours SlowFast  69.00 65.75 57.75 66.50
TPN 72.50 66.50 60.00 68.25

Table 3: Performance comparison on Kinetics-400 (ViT models).

tion models including NL, SlowFast, and TPN, with differ-
ent architectures. For example, when using the adversarial
example from SF-101 to attack NL and TPN with RN50 as
backbone, our method has a gain of 9.0% and 21.0% respec-
tively, in comparison to TT on Kinetics-400; when using the
adversarial example from TPN-101 to attack NL and Slow-
Fast with RN50 as backbone, our method has an improve-
ment of 13.87% and 22.78% respectively, compared to the
most competitive alternative TT on UCF101. This demon-
strates the superiority of the adversarial mixup strategy with
reinforcement learning and the temporal consistency among
nearby frames. Besides CNN models, the performance im-
provements are also found on ViT models in Table 3.
Meanwhile, the cross-modal attack results in terms of ASR
are shown in Table 4 on UCF101 and Table 5 on Kinetics-
400. Here, the surrogate models of the compared methods
are AlexNet [Krizhevsky et al., 2012], ResNet-101 [He et al.,
20161, SqueezeNet [Iandola et al., 2016], and VGG-16 [Si-
monyan and Zisserman, 2015] in image domain, while we

SF/TPN—NL NL/TPN—SF NL/SF—TPN
Attack Venue

RNI10I RN50 RNI101 RN50 RNI101 RNS50
JVAY CVPR’22 5222 5420 37.87 4455 3391 46.02

GCECA AAAr23 56.19 63.87 44.80 5247 3886 52.72
I2V-MF  TPAMI'24 5693 57.67 37.87 4826 37.87 4826
Ours 7129 7723 67.82 6832 5297 60.40

Table 4: Average results on UCF101.

SF/TPN—NL NL/TPN—SF NL/SF—TPN
Attack Venue
RNI10I RN50 RN101 RN50 RNI101 RNS50
JVAY CVPR’22 4425 5413 6413 6394 6538 7219
GCECA AAAI'23 5456 63.88 71.88 70.63 72.19 77.31
I2V-MF  TPAMI'24  46.44  55.31 66.06 6563 69.75  74.63
Ours 65.13 7050 81.00 81.63 7475 81.13

Table 5: Average results on Kinetics-400.

ResNet18 ResNet101 ResNeXt50  DenseNetl21
Ori +Ours A Ori +Ours A Ori +Ours A Ori +Ours A

mirgsm CVPR’18 100 100 0.0 40.3 47.9 7.6 434 50.7 7.3 51.0 56.6 5.6
AdMix ICCV’21 100 100 0.0 62.1 64.1 2.0 65.1 652 0.1 73.5 739 0.4

Surrogate Attack Venue

RNIS  pAM  CVPR'23 100 100 0.0 45.6 53.5 7.9 488 55.6 6.8 577 65.6 7.0
BSR CVPR'24 100 100 00 79.6 844 4.8 817 86.1 4.4 887 91.7 3.0
wirGsv CVPR'I8 44.4 552 10.899.6 100 0.4 447 559 112448 535 87
RNior AdMiX ICCV’21 757 762 05 997 997 0.0 730 736 06 755 761 06
PAM CVPR'23 593 68.6 0.3 993 98.9 (0.4 554 632 7.8 582 67.9 97
BSR CVPR'2487.3 913 4.0 99.9 999 0.0 87.4 917 43 86.1 904 43
Mirasm CVPR'I8 38.8 485 0.7 384 494 110990 100 10 419 513 94
Rnxso AdMix ICCV’21 679 683 04 631 638 0.7 980 99.1 11 697 723 26
PAM CVPR'23 521 58.5 6.4 454 537 83 982 97.6 0.6 561 642 8.1
BSR CVPR'2481.3 87.1 58 76.6 848 82 995 100 0.5 838 902 6.4
Mirsv CVPR'I8 51.2 593 8.1 42.5 507 82 473 564 0.1 999 99.9 0.0
DNigi AdMix ICCV21 784 769 15688 684 (1744 735 09998 100 0.2

59.3 634 4.1 99.6 99.8 0.2
87.2 920 4.8 100 100 0.0

2 n

PAM CVPR’23 65.5 70.0 4.5 52.6 58.1 5.
BSR CVPR’24 88.7 92.6 39 79.2 845 5.

Table 6: Performance comparison on ImageNet.

use the other two video models as the surrogate models, e.g.,
SF and TPN as surrogate and NL as target (group 1). The
results are averaged over those surrogate models, which indi-
cates the advantages of the proposed attack method.

Image Classification. The results of image classification
models are reported in Table 6 on ImageNet. Here, “Ori” de-
notes the vanilla attack method (column 2). Note that the tem-
poral consistency reward and background-induced loss fail in
image domain. Even though only using the adverse award
and the transfer award to select the background, ours still im-
proves the attack performance of the vanilla ones. This once
again validates the power of the adversarial mixup with the
background frame.

4.4 Ablation Study

We report the average ASR over black-box attacks and the
hyper-parameters keep still as in training unless specified.
Individual component. The results are shown in Ta-
ble 7, where the baseline is vanilla PGD, which is very
poor as it neglects temporal cues. When adding the back-
ground attack loss (row 2), the performance is doubled; when
using the Background Adversarial Mixup (BAM) module
(row 3) or Background-induced Temporal Gradient enhance-
ment (BTG) module (row 4), the performance is largely im-
proved and the former is better. When using both of BAM and
BTG (Ours), the performance achieves the best. When aban-
doning the reward Ry,. (row 5), the performance degrades,
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SF/TPN—NL NL/TPN—SF NL/SF—TPN
Attack Method

RNI01 RN50 RNIOlI RN50 RNI101 RN50
Baseline 14.85 17.33 10.89 15.35 941 12.87
+Lpack 24.50 33.42 30.69 32.43 24775 2524
+BAM 53.96 60.40 49.01 52.97 35.15 47.52
+BTG 46.53 54.95 43.56 48.02 30.69 50.00

Ours w/o Ry, 65.84 73.26 62.87 60.40 51.98 53.96
Ours w/o Ligc  59.90 65.35 55.94 57.43 45.05 49.50
Ours 71.29 77.23 67.82 68.32 52.97 60.40

“w/0” is without.

Surrogate  Target

1 5 10° 20 4 8 16" 32

SF-101 30.69 6040 7128 7327 297 33.66 7128 98.02
SF-50 26.73 56.44 6932 6832 396 32.67 69.32 98.02

5 8
01 02" 04 06 00l 005 01" 02 05

SF-101 59.41 7128 4158 37.62 5842 6337 71.28 5941 4851
SE-50 61.39 6932 39.60 30.69 5743 5941 69.32 57.43 51.49
TPN-101 43.56 5347 32.67 32.67 43.56 4653 5347 46.53 32.67
TPN-50  41.58 5445 2970 29.70 43.56 4257 5445 40.59 33.66

NL-101 6436 7327 4554 37.62 5842 6040 7327 5545 43.56
NL-50 70.30 7822 4851 38.61 6139 6535 7822 6238 4851
TPN-101 42,57 5248 34.65 31.68 39.60 47.52 5248 43.56 35.64
TPN-50  50.50 66.34 39.60 34.65 51.49 5842 66.34 5347 41.58

NL-101 5149 69.31 37.62 36.63 5545 6337 6931 5149 4356
NL-50 5743 7624 4752 4059 6436 7030 76.24 66.34 56.44
SF-101 5347 6436 40.59 32.67 5347 6238 6436 50.50 42.57
SF-50 5149 67.33 42.57 38.61 4851 5941 67.33 4455 35.64

Surrogate  Target

NL-101

SF-101

TPN-101

Table 9: Ablation of «y (adversarial mixup) and 3 (temporal gradient
consistency loss) on UCF101.

Params FLOPs FPS ASR?T

NLIOL - 1pN‘101 3069 46.53 5347 5644 000 1782 5347 91.09 Attack Method —
TPN-50  27.72 4851 5445 5446 000 1584 5445 94.06 ML (G t UCFI01 Kinetics-400
NL-101  32.67 5347 7327 7228 495 3564 7327 9505 PGD IMadry era. 20181~ 99.7 217.4 3572 11.88 15.54
sEaor  NE0 300 a0 B e e 2003 T 1000 AA [Croce and Hein, 20201~ 99.7  295.3 2904  15.35 22.96
TPN-50  30.69 49.50 66.34 6733 693 2970 6634 92.08 gT [Wei ctal, 20221 1321 3?341% zzlg;g —zggz —%Zg
NL-101  29.70 6535 6931 7228 693 39.60 69.31 91.09 o - - - : .
Tpntor NLSO 3465 6436 7624 7723 1386 3663 7624 97.03

SF-101 34.65 5149 6436 6535 594 3366 6436 93.07
SF-50 36.63 5545 67.33 6832 495 37.62 6733 94.06

Table 8: Ablation of N, and € on UCF101.

which demonstrates the background consistency along the
temporal dimension affects the total reward that decides the
selected background frame. When abandoning Ly 4. (row 6),
the attack performances deteriorate significantly by about 7%
to 12%, which validates the importance of gradient consis-
tency between two nearby adversarial frames.

Niter and €. The results are shown in Table 8, which shows
that the attack performance is naturally improved with the in-
creasing iteration number N, and the maximum perturba-
tion . However, we observe that when N;;., rises from 10
to 20, the performance becomes stable and even suffers from
the bottleneck (row 2/4 in group 1) at much larger compu-
tational cost. So we choose 10 for N;;.,. Besides, while
the performance is greatly boosted by using larger perturba-
tions, e.g., €=32, the adversarial examples are easily found
by human, which violates the attack rule that requires small
human-imperceptible noise. So we use the trade-off 16 for e.

~ and 5. The results are shown in Table 9, where the at-
tack performance rises up when ~ in the adversarial mixup
increases from 0.1 to 0.2 and then decreases when + is over
0.2. This demonstrates that the background frame should not
dominate the mixup. Similar observations are found for the
hyper-parameter 3 of the temporal gradient consistency loss
Lge, when it starts from 0.01 to 0.1. This suggests that nei-
ther too small nor large values are taken for 3.

4.5 Computational Efficiency

We report the parameter size, the computational cost
(GFLOPs), the inference speed (fps), and the ASR score on
UCF101 and Kinetics-400 in Table 10. From the table, our
BMTC method enjoys a more satisfying tradeoff between
performance and efficiency. For example, compared to Tem-
poral Translation (TT) [Wei et al., 2022], ours have much
higher ASR score (69.31 vs 52.47 on UCF101, 75.69 vs 62.75
on Kinetics-400) with only nearly one-tenth GFLOPs of TT

Table 10: Computational cost comparison.

T g [ |

Baaals
4 St S

Frame 28 1 10 19 28

Figure 4: Examples of UCF101 (left) and Kinetics-400 (right).

at a 16 times faster inference speed.

4.6 Visualization of Adversarial Examples

To visualize the performance of our attack, we randomly
chose one video from UCF101 and Kinetics-400, respec-
tively, and show their adversarial examples in Fig. 4 (zoom in
for better view). Compared to the baseline Temporal Trans-
lation (TT) [Wei er al., 2022], the perturbations on the adver-
sarial examples of ours are almost imperceivable by human
but the model can be fooled to make wrong predictions.

5 Conclusion

This work presents a transferable black-box adversarial at-
tack method for action recognition by considering both the
temporal background consistency and the temporal gradient
consistency. In particular, we adopt the adversarial mixup
strategy to mix the clean sample with the background frame
from other categories. To ensure the attack ability of the back-
ground frame, we design a reward function that considers
the temporal consistency among nearby frames and the trans-
ferability across different models. Moreover, we strengthen
the transferability of adversarial example by adopting the
background-induced temporal consistency on the gradients of
sample across frames. Empirical studies on both video and
image datasets validate the effectiveness of the proposed at-
tack on several models with different architectures.
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