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Abstract

Constrained Reinforcement Learning (RL) aims to
maximize the return while adhering to predefined
constraint limits, which represent domain-specific
safety requirements. In continuous control set-
tings, where learning agents govern system actions,
balancing the trade-off between reward maximiza-
tion and constraint satisfaction remains a signifi-
cant challenge. Policy optimization methods of-
ten exhibit instability near constraint boundaries,
resulting in suboptimal training performance. To
address this issue, we introduce a novel approach
that integrates an adaptive incentive mechanism in
addition to the reward structure to stay within the
constraint bound before approaching the constraint
boundary. Building on this insight, we propose In-
crementally Penalized Proximal Policy Optimiza-
tion (IP30), a practical algorithm that enforces a
progressively increasing penalty to stabilize train-
ing dynamics. Through empirical evaluation on
benchmark environments, we demonstrate the effi-
cacy of IP30 compared to the performance of state-
of-the-art Safe RL algorithms. Furthermore, we
provide theoretical guarantees by deriving a bound
on the worst-case error of the optimality achieved
by our algorithm.

1 Introduction

Constraint satisfaction represents a critical challenge in Re-
inforcement Learning (RL), particularly due to its signifi-
cant implications in real-world applications such as robotics
[Levine et al., 2016; Ono et al., 2015], autonomous driving
[Fisac et al., 2018; Kiran et al., 2021; Fernandez-Llorca and
Goémez, 2023], healthcare [Yu et al., 2021], finance [McNa-
mara, 2016], etc. These tasks involve learning a policy to ad-
dress sequential decision-making problems to maximize re-
turn under predefined safety constraints and accounting for
uncertainties in the environment. Such requirements are com-
monly formulated using the Constrained Markov Decision
Process (CMDP) framework [Altman, 2021], which extends

Code and Supplementary Material
https://github.com/somnathhazra/IP30.

available here:

the conventional Markov Decision Process (MDP) to accom-
modate safety-critical considerations. Consequently, the ap-
plicability of traditional RL methods becomes limited in these
settings, necessitating the development of new approaches to
address constraint satisfaction effectively.

Traditional RL algorithms focus solely on maximizing the
return [Schulman ez al., 2017]. To satisfy the cost budget, the
safe RL methods typically incorporate an additional term into
the loss function. However, since the cost component is not
inherently optimized, the imposed penalty significantly dic-
tates the resulting policy’s behavior; it should be rewarding
enough as far as the cost constraint limits are respected. For
instance, Constrained Policy Optimization (CPO) [Achiam
et al., 2017] uses a second-order expansion term to approx-
imate the cost but suffers from high computational over-
head and suboptimal performance due to approximation er-
rors. Primal-dual methods transform the constrained prob-
lem into an unconstrained dual via Lagrangian multipliers
[Tessler er al., 2018; Ding et al., 2020; Yu et al., 2019;
Dai et al., 2023], yet these approaches are prone to con-
straint violations and oscillatory behavior in practical sce-
narios [Stooke et al., 2020]. Projection-based methods ap-
ply a secondary optimization to project unsafe actions into
a feasible region [Zhang er al, 2020; Yang et al., 2020;
Yang et al., 2022]; however, these methods are computation-
ally expensive and can underperform in certain environments
[Dai et al., 2023].

In contrast, penalty function approaches directly encode
the constraints in the primal space itself. By introducing
a penalty term into the loss function based on the con-
straint cost, these methods establish a penalty barrier to reg-
ulate policy behavior [Liu er al., 2020; Zhang et al., 2022;
Zhang et al., 2023]. The choice of barrier function is critical,
as it determines the trade-off between performance and con-
straint satisfaction [Zhang er al., 2023]. Despite their effec-
tiveness, most existing approaches impose penalties only af-
ter a constraint violation occurs, offering no proactive incen-
tive for the policy to remain within predefined safety limits.
This strategy often compromises the stability of training and
constraint satisfaction. To address this limitation, we propose
a novel approach that transforms the cost function into a pos-
itive incentive within the safe region and gradually converts it
into a penalty as the safety boundary is breached. The design
ensures a more dynamic adherence to constraints, leading to
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more stable and efficient optimization.
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Figure 1: Illustration of a risky trajectory and a conservation trajec-
tory under unknown environmental dynamics.

To illustrate our hypothesis, consider a robot tasked with
reaching the rock, i.e. the goal, located on the opposite side
of a pond while avoiding falling into the water (Figure 1).
The shortest path, marked in red, is the most efficient but
also the riskiest due to environmental uncertainties. While
on-policy algorithms in RL can mitigate such risks [Sutton
and Barto, 2018], given the cost function, the reward func-
tion alone may fail to discourage unsafe actions effectively
in a CMDP. Introducing an incentive derived from the cost
function encourages safer behavior. However, excessive in-
centives for avoiding risk can result in overly conservative
policies that fail to achieve the goal, as indicated by the blue
path in the figure. To address this trade-off, we propose In-
crementally Penalized Proximal Policy Optimization (IP30),
which incorporates an adaptive penalty mechanism to balance
safety and performance under general model-free settings.

The primary contributions are summarized as follows:

* We design a novel penalty function to adaptively incen-
tivize safe actions based on the cost function, ensuring
that safety constraints are satisfied without compromis-
ing return optimization.

* We propose the Incrementally Penalized Proximal Pol-
icy Optimization (IP30) algorithm, which integrates the
penalty barrier function to achieve efficient learning of
safe policies. Additionally, we provide theoretical guar-
antees by deriving a worst-case performance bound for
the algorithm.

* We conduct extensive empirical evaluations of P30
against multiple state-of-the-art approaches in safe RL
across benchmark environments, demonstrating its su-
perior performance in balancing safety and return.

These contributions collectively address key challenges in
constrained RL by bridging the gap between safety and per-
formance in real-world scenarios. We next present the rele-
vant background in the Preliminaries section.

2 Preliminaries

RL problems are modeled using a Markov Decision Pro-
cess (MDP), defined by the tuple (S, A, R, P, p,v), where
S denotes the state space, A denotes the action space, R :
S x A — R is the reward function, P : S x A x S — [0, 1]
is transition probability function, p : & — [0, 1] is the ini-
tial state distribution, and v € (0,1) is the discount factor

for calculating the return. In model-free settings, P is un-
known. The objective is to find a policy 7 : S — A(A)
that maximizes the expected discounted return: Jg(w) =
Err[> iV R(st, ar)], where 7 is the trajectory. The util-
ity of a state s is measured using the value function: V7 (s) =
Eron[>pog V' R(st,ai)|s0 = s]; and that after taking ac-
tion a at state s is given by the state-action value function:
QR (s,a) = Eror[> 720 V" R(st,at)|so = s,a0 = a]. The
advantage of taking action a at s is given by the advantage
function: A% (s,a) = Q% (s,a) — VEZ(s).

The Constrained MDP (CMDP) introduces the cost func-
tion, C : § x A — R, and is represented using the tuple
(S, A,R,C,P,p,v). The allowable policy set Il C II is
restricted such that the expected cumulative discounted cost
satisfies Je(m) < d, where d is the constraint threshold.
The value functions, V7, QF, A7 are similarly defined as in
MDPs using C. Thus, constrained RL aims to find a policy
7w € Ile, where:

argmax Jg(m) st Je(m) <d (1)

A more general consideration is where C represents a set of
m constraints. In those cases, the objective is to find a policy
where arg max, Jr(7w) s.t. Je,(7) < d;. In the rest of the
text we assume the multi-constraint formulation to describe
our approach.

3 Related Works

Constrained RL in model-free settings remains a challenging
problem due to the difficulty in converging to near-optimal
solutions under high-dimensional approximations and envi-
ronmental uncertainties. Recent research has introduced var-
ious approaches to address these challenges, focusing on ef-
fective constraint handling during policy optimization.

The constrained RL objective is often built as a dual prob-
lem using Lagrangian relaxation [Chow et al., 2018], convert-
ing episodic constraints into an unconstrained dual objective.
RCPO [Tessler et al., 2018] penalizes policy updates based
on constraint violations with a Lagrangian multiplier. How-
ever, dual optimization adds oscillatory behavior, mitigated
in CPPOPID [Stooke et al., 2020] with a PID controller, or
using an Augmented Lagrangian in APPO [Dai er al., 2023].
While sometimes effective, these methods are very sensitive
to Lagrangian parameters, limiting their applicability.

On-policy RL algorithms, that update the existing policy
within a trust region, have been extensively used in con-
strained RL to safely update the existing policy. Algorithms
such as TRPO [Schulman, 2015] enforce trust-region up-
dates through divergence constraints, while PPO [Schulman
et al., 2017] simplifies this using gradient clipping. Build-
ing on TRPO, CPO [Achiam et al., 2017] integrates second-
order approximation of constraints; but suffers from the com-
putational overhead of Fisher Information Matrix inversion.
Methods such as PCPO [Yang et al., 2020] and CUP [Yang
et al., 2022] adopts two-phase optimization: policies are up-
dated and then projected back into the feasible space. FO-
COPS [Zhang et al., 2020] introduces a non-parametric stage
for feasible policy generation, followed by parametric projec-
tion. However, these projection-based approaches often fail
to guarantee optimality, highlighting a critical limitation.
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Penalty barrier methods impose a penalty based on the con-
straint violation, restricting optimization within predefined
barriers. PO [Liu er al., 2020] uses a logarithmic penalty
function; whereas P30 [Zhang et al., 2022] employs a ReLU-
based penalty. Yet, these methods activate penalties only after
constraints are breached, leading to an non-smooth transition
in learning dynamics. The reward function may not incen-
tivize a safe action. As described in the next section, our work
builds on this line of research by introducing a smooth tran-
sition from incentives to penalties, facilitating stable policy
learning while ensuring efficient adherence to constraints.

4 Methodology

Policy optimization in reinforcement learning improves a pol-
icy iteratively by balancing exploration and exploitation of
the current policy’s knowledge. The performance differ-
ence between two policies is given by the following equation
[Kakade and Langford, 2002]:

1
Ir(7) = Ir(m) = ﬁEsrvd”' [A% (s, a)] 2
where d™(s) = (1 — 7)Y ;o' P(st = s|m) is the dis-
counted state distribution under policy 7. Extending this to
cost functions C, the constrained optimization objective (1)
can be reformulated as follows:
Thy1 = argmax By g~ [ATF (s, a)]

anT

1 3
s.t. jci (7T'k) + 17

]Eswd7r [Agf (S,(l)] S dz

a~T
where 7, is the current policy. Given the continuous state
space, we use a parametric policy as 7 (6y) = 7. To approx-
imate A7 and Agf using samples from the previous policy,

7, the importance sampling ratio is used: () = :((992) . This
modifies the optimization problem as follows.
Tht1 = argmax By g [1(0) A% (s, a)]

a~yT g

@)

St By g [r(0) AT (5,)] + T, (m) < d;

1 - 'Y anyT K

To stabilize the policy update within a trust region, the ra-
tio 7(0) is clipped within (1 — ¢, 1 + €), where ¢ is the clip-
ping threshold. In penalty function approaches, constraint vi-
olations are penalized through barrier functions added to the
reward maximization objective. Existing works [Liu ef al.,
2020; Zhang et al., 2022; Gao et al., 2024] introduce penalties
only after constraints are violated, leading to abrupt learning
transitions and suboptimal policies due to risk-averse updates.

Our approach addresses these limitations by introducing
an Incrementally Penalized Proximal Policy Optimization
(IP30) algorithm. The key features of our approach are:

* Incentivizing safe behavior: When constraints are satis-
fied, an incentive is encoded in the penalty barrier func-
tion to guide the policy toward constraint satisfaction
without abrupt penalties.

* Gradual transition to penalties: For unsafe trajectories,
a smooth transition to penalization is incorporated, mit-
igating sudden changes in the learning dynamics.

This formulation ensures stable policy updates, enabling a
smoother interplay between reward optimization and con-
straint satisfaction. In this section, we describe the IP30 al-
gorithm in detail, including its implementation and theoreti-
cal guarantees.

4.1 Penalty Function Design

Penalty functions, such as Leaky ReLU, allow negative ac-
tivation for values below zero, incentivizing constraint satis-
faction. However, this has a major drawback; their inability
to reduce the slope in the negative region leads to excessive
incentives for remaining deeply within the constraint region,
which may overshadow rewards and result in overly conser-
vative policies that fail to reach the goal (illustrated by the
blue path in Figure 1).

To address this issue, we propose using the Exponential
Linear Unit (ELU) function [Clevert, 2015] as the penalty
function. ELU meets two key requirements: ¢ smoothly tran-
sitions from incentivizing constraint satisfaction to penaliz-
ing violations, ensuring stable policy updates. ¢ mitigates the
risk of overly conservative policies by nullifying excessive in-
centives within the constraint region. It is defined using the
following function.

x ifz >0
a(exp(z) — 1) otherwise

ELU(z, ) = { (5)
Here, o determines the stagnation point (—«); i.e., if « = 1
the function gradually reduces to —1 for negative values of
x and then stabilizes. So higher values promote safety by
favoring constraint satisfaction. Despite its advantages, the
ELU function introduces gradient discontinuity at * = 0
when « # 1 [Barron, 2017]. To overcome this limitation, we
employ the Continuously Differentiable ELU (CELU) func-
tion that proposes a modification for negative values of x as:
CELU(z,a) = a(exp(z/a) — 1),ifz < 0. CELU main-
tains the properties of ELU while ensuring gradient continu-
ity, making it more suitable for policy optimization. A com-
parison among the activation functions and their gradients are
shown in Figure 2.
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Figure 2: Comaprison of activation functions and their gradients.

4.2 Practical Implementation

We integrate the proposed CELU-based penalty function
into the cost critic, combining it with the reward critic
to guide policy updates. These critics provide gradient
signals for optimizing the policy network, as shown in
Figure 3. The loss function for the reward is derived
from Equation 4 as: Lg (1) = Egogm [—1'(0) AR (s, a)],

anTy
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Figure 3: The overall algorithm describing the loss function for
training the policy network, with the sources of loss.

where 7/(0) = min(r(0),clip(r(0),1 — €,1 + ¢€)). Sim-
ilarly the loss due to the cost constraint is derived as:
Le,(m) = 15 Eenams [r"(0)AZ (s,0)] + (Te,(mx) — di),

T—y

X
where /() = max(r(0), clip(r(0),1 —€,14¢€)). The com-
bined loss function is stated as follows.

m
L(my) = Lr(mk) +n1 Y  CELU(Le, (71)) (©6)
i=1
where 7 > 0 is the penalty factor. This formulation en-
sures a smooth transition from incentivizing constraint satis-
faction to penalizing unsafe behaviors. Since the CELU func-
tion uses an exponential term, the gradient of the loss arising
from CELU never reaches 0. To ensure no policy updates ow-
ing to residual gradients we can use a small positive number
h < a, such that max(CELU(Lc, (%)), —a(1 — h)) instead
of directly using the CELU function in Equation 6. However
in practical applications, we did not require this. To ensure
equivalence between the solutions of the proposed loss func-
tion (6) and the constrained optimization objective (4), we es-
tablish the following theorem. This result guarantees that the
proposed approach preserves the optimality of the original
problem while promoting stable and robust policy updates.
Hyper-parameter settings, including 77 and « are detailed in
the Supplementary Material.

Theorem 1. Given a sequence of policies {m.} obtained
by minimizing L(my) and considering Slater’s condition for
strong duality, let \* be the Lagrange multiplier for the opti-
mal solution of (4). If n) satisfies n > ||\*||co, the limit 7* of
{71} is also a solution to (4).

Proof. Provided in the Supplementary Material. O

The value evaluation approximation using the current pol-
icy 7y, instead of the currently evaluating policy, 7, as done in
the original problem; introduces a bias [Jiang and Li, 2016].
Moreover the approximation of the loss due to the cost func-
tion used may induce a penalty on the optimal reward result-
ing from the optimization of the original problem in Equation
4. Using the following theorem we establish the worst-case
error bound for these approximations.

Theorem 2. [f the loss function L(ry) is optimized instead
of the original problem (4), the upper bound on the error is
given by the following.

V/267eT U \/%’ys”_
#MZ oo Flalesl] @)
=1

where E;rg = maXsg |Ea~‘n' [Ag (37 a)] |’ Egi =
max; [Eqr[AcF (5, a)]|, and § = Eswami [Drcr (|| m1) []]-

Proof. Provided in the Supplementary Material. O

In Algorithm 1 below we outline the pseudocode for policy
updation using our penalty function.

Algorithm 1 Policy optimization using [P30

Input: Initial policy o, initial value function V3°, initial
cost value function/s V"
I: fork=0,...,. K —1do
2:  Sample training batch Dy, = {71, ..., 7n } consisting of
N trajectories using 7y,

3:  Compute Vz*, V™" for trajectories in Dy,
4:  # Advantage calculation
5:  Compute A%} (s,a) = QF (s,a) — Vg (s)
6:  Compute Ac*(s,a) = Q¢*(s,a) — Vi " (s)
7: Update: V3*(s), VCZ’“ (5) = Vg (s), VCT““(S)
8:  # Policy update
9: fort=0,..,7T—1do
10: Compute L (7)) = Egogmr [—17(0) AR (s, a)]
anvTg
11: Compute Le, (mr) =
T Eonark [T (0)AZE (5, 0)] + (Je,(mi) — di)
a~ T
12: Compute L(7y) using Equation 6
13: T =7 +w- VL(Tg)
14: # Trust region criterion (Gradient clipping)
15: if Egwgmi [Dgcp (m||mx)[s]] € [0, 07] then
16: break
17: end if
18:  end for
19:  Update mj, — mp41
20: end for

Return: Trained policy 7x

The output of the algorithm is the final policy. Here w is
the learning rate. For simplicity we have shown trust region
updates using the KL divergence criterion, but in practice we
use the PPO updates through gradient clipping [Schulman ef
al., 2017]. In the next section we present the empirical details
to demonstrate the efficacy of our approach on some bench-
mark environments in safe RL.

S Experiments

In this section, we present the evaluation results of our pro-
posed algorithm on benchmark safe RL environments and
compare its performance with state-of-the-art approaches.
For benchmarking, we consider the following methods.

* First order methods such as CUP [Yang et al., 2022] and
FOCOPS [Zhang er al., 2020].

 Lagrangian methods such as CPPOPID [Stooke et al.,
2020], and PPO [Schulman et al., 2017] with a La-
grangian multiplier.

e Second order methods such as CPO [Achiam et al.,
20171, and PCPO [Yang et al., 2020].
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Figure 4: Comparison with the baselines using the MuJoCo safety velocity scenarios. Our method is marked as IP30 (blue). The dashed line

indicates the cost constraint limit.

* Penalty function methods such as IPO [Liu et al., 20201,
and P30 [Zhang er al., 2022].

All the above algorithms use an on-policy buffer for learning.
Additionally, we include a comparison with the vanilla PPO
algorithm [Schulman er al., 2017] as a baseline. All base-
line implementations are adapted from the OmniSafe reposi-
tory [Ji ef al., 2024]. The evaluations were conducted across
three widely-used environments: MuJoCo Safety Velocity
[Ji et al., 2023], Safety Gymnasium [Ray et al., 2019], and
Bullet Safety Gymnasium [Gronauer, 2022]. These environ-
ments provide diverse challenges that test the agent’s abil-
ity to maximize cumulative rewards while adhering to pre-
defined safety constraints, as formulated in Equation 1. We
also evaluate our approach on multi-agent environments, us-
ing the MetaDrive simulator [Li ez al., 2022], which are de-
tailed later. Our approach allows tuning of the safety level
via the hyper-parameter «, which is analyzed further in the
Ablation Studies section.

5.1 MuJoCo Safety Velocity

The Safety Velocity environments simulate autonomous
robots using MuJoCo physics simulator. The objective is to
control the agent to run as fast as possible while ensuring
compliance with the velocity constraints of the robot. We
evaluate our approach on the Ant, Half-Cheetah, Humanoid,
and Swimmer robots. Each environment has varying episode
lengths. For these experiments, we set the constraint limit to
25 and use a = 0.5. Detailed environment descriptions are
provided in the Supplementary Material.

As shown in Figure 4, IP30 obtains better returns while
maintaining strict compliance with the velocity constraints
compared to state-of-the-art algorithms. Algorithms such as
FOCOPS and PCPO shows better returns compared to IP30
for the Ant and HalfCheetah environments, but struggle to
find a feasible policy. Other penalty based algorithms, such as
IPO and P30 demonstrate sub-optimal returns owing to sharp
gradient change near the constraint boundary. This demon-
strates that our approach balances safety and performance ef-
fectively in dynamic control tasks.

5.2 Safety Gymnasium

Safety Gymnasium environments present the challenge of
navigating the agent towards goal state using RL policy in
continuous state-space environments. The agent needs to
avoid unsafe states such as pre-defined hazardous regions,
or avoiding interactions with certain unsafe moving objects;
while navigating. Generally the hazards and goals are de-
tected using lidar signals returned by the environments at each
step, that are part of the observation space for the agents. The
rewards can be maximized by going towards the goal states,
while going away from them incurs negative rewards. We
evaluate our method in the Goal and Button tasks, where each
episode runs for 1,000 time-steps. For these experiments, the
constraint limit is 25, and we set o« = 0.1.

Figure 5 shows that our algorithm consistently outperforms
baseline methods in adhering to safety constraints within the
policy space I while achieving competitive or higher cumu-
lative rewards. This highlights the robustness of our approach
in navigation tasks with complex safety requirements. Algo-
rithms such as PCPO and IPO obtains better returns but fail
to find a safety compliant policy. Owing to lower value for o,
the learnt policy frequently shows constraint violations, but
obtains much better rewards, especially in the Goal tasks.

5.3 Bullet Safety Gymnasium

The Bullet Safety Gymnasium environments consist of situa-
tions similar to Safety Gymnasium, and feature tasks such as
circular movement near boundaries or gathering objects, us-
ing robots like Ball and Car, while staying within constraint
barriers. Observation spaces include sensor data for nearby
obstacles and task-specific information, such as distances to
goals. These environments test safety-critical behaviors in
constrained settings. For our evaluations, we set o = 1.0 and
a constraint limit of 25 across all scenarios. Detailed descrip-
tions of the tasks are available in the Supplementary Material.

From the results in Figure 6, it is evident that IP30
achieves the best compliance with safety constraints among
other methods; except in the CarReach environment, the pol-
icy demonstrates negligible constraint violation. However,
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this slightly reduces reward maximization, demonstrating that
our algorithm prioritizes constraint satisfaction when neces-
sary. Most of the algorithms struggle to find a consistently
safe policy owing to oscillations in the loss function near the
constraint boundary.

The constraint violations for all the above scenarios are
summarized in Figure 7. From the figure it can be seen that
IP30 has the lowest cost violations overall, compared to the
baselines for the MuJoCo velocity and Bullet Safety Gym en-
vironments; and marginally above the best performance in
Safety Gym, since o = 0.1.

Em MujoCo Velocity mm Safety Gym Bl Bullet Safety

n A .

Ll
CEETTELNELE

CPO PID CUP FOCOPS IPO |

g
=)

Cost violation
o
w

°
o

P30 PCPO Lag PPO IP30

Figure 7: Summary of constraint violations across all environments.
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Figure 8: Evaluation results on the MetaDrive simulator

5.4 Multi-Agent Scenarios

The safety objective solved here is very relevant in the multi-
agent automotive domain that consist of innate safety aspects.
Our proposed approach is extendable to multi-agent scenar-
ios. To demonstrate this, we evaluate it on cooperative driv-
ing tasks within the MetaDrive simulator [Li et al., 2022],
a lightweight and realistic platform designed for multi-agent
decentralized reward settings. To train the policy using a co-
operative feedback, the value error was estimated using the
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summation of the decentralized rewards. MetaDrive provides
challenging environments for controlling multiple vehicles in
predefined driving scenarios, where agents must cooperate
to maximize rewards by avoiding safety violations such as
crashes or going off-road. Additional environment details are
provided in the Supplementary Material.

Training spanned 2000 episodes, using an on-policy re-
play buffer. We benchmarked our approach against multi-
agent versions of PPO, namely MAPPO [Yu et al., 2022] and
MAP30 [Zhang et al., 2022]. Each trained policy was evalu-
ated over 10 episodes per evaluation step. As shown in Figure
8, our algorithm, marked as MAIP30 (Multi-Agent IP30),
achieves comparable performance to baseline algorithms in
terms of collective reward across all agents (vehicles). We
focus on reward maximization as the primary objective, with
safety integrated to facilitate reward optimization.

In the following sub-section we discuss the effect of some
of our hyper-parameters on the outcome with respect to return
and constraint satisfaction.

5.5 Ablation Studies

We conduct ablation studies to evaluate the effect of hyper-
parameters on the performance of our approach, focusing on
two key parameters: the o hyper-parameter, and the cost limit
d. These experiments are carried out across different envi-
ronments to provide a comprehensive understanding of how
variations in these hyper-parameters impact performance.
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Figure 9: Ablation experiments using « on the Half-Cheetah and the
Humanoid environments.

The effect of « is studied in the Half-Cheetah and Hu-
manoid tasks from the MuJoCo Safety Velocity benchmark.
For these experiments, the cost limit d is fixed at 25. As
shown in Figure 9, setting @ = 0.5 achieves optimal con-
straint satisfaction while maintaining a reasonable reward.
Reducing a to 0.1, although resulting in higher rewards, leads
to frequent constraint violations, as shown in Figure 9. On the
other hand, increasing o beyond 0.5 does not significantly im-
prove constraint satisfaction in environments where reward
and constraints are intrinsically tied to velocity. In scenar-
ios with tight safety constraints, prioritizing constraint satis-
faction with higher « values is beneficial. However, in less

safety-critical tasks, relaxing the safety weight may allow for
better reward maximization.
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Figure 10: Ablation experiments using the cost limit d hyper-
parameter on the PointGoall and the CarGoall environments.

In addition, we also analyze the robustness of IP30 across
varying cost limit levels d in the PointGoal 1l and CarGoall en-
vironments from the Safety Gymnasium benchmark, to better
highlight the effect of cost limit on the policy learning. The
results, presented in Figure 10, demonstrate that our approach
effectively learns constraint satisfying policies, m € Il¢, for a
range of d values while maximizing rewards. This highlights
the flexibility of our method in adapting to diverse safety re-
quirements. Overall, these results underline the importance
of careful tuning of hyper-parameters to achieve the desired
balance between safety and reward.

6 Conclusion

In this paper, we introduced Incrementally Penalized Proxi-
mal Policy Optimization (IP30), a novel policy optimization
algorithm designed to solve safe RL tasks for combining con-
straint satisfaction with reward maximization. IP30 demon-
strates adaptability to diverse safety requirements. Our exper-
iments demonstrated the efficacy of IP30 across benchmark
environments in safe RL, such as MuJoCo Safety Velocity,
Safety Gymnasium, and Bullet Safety Gymnasium. The re-
sults highlight its superior ability to balance safety and re-
ward compared to state-of-the-art approaches. Additionally,
the algorithm’s scalability to multi-agent settings, as shown
in MetaDrive scenarios, shows its potential for real-world ap-
plications like autonomous driving and robotics.

IP30 can be tailored to different safety-critical tasks as
shown in the ablation studies that validate the impact of key
hyper-parameters such as o and constraint limits. These
findings demonstrate the algorithm’s practicality for safe RL
tasks. In conclusion, IP30 provides a framework for advanc-
ing safe RL research through practical applications and theo-
retical guarantees. Future work could explore its scalability to
larger multi-agent systems and further analyze its theoretical
properties under varying safety thresholds.
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