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Abstract

Virtual Reality (VR) headsets, while integral to the
evolving digital ecosystem, present a critical chal-
lenge: the occlusion of users’ eyes and portions
of their faces, which hinders visual communica-
tion and may contribute to social isolation. To
address this, we introduce RevAvatar, an inno-
vative framework that leverages AI methodologies
to enable reverse pass-through technology, funda-
mentally transforming VR headset design and in-
teraction paradigms. RevAvatar integrates state-of-
the-art generative models and multimodal AI tech-
niques to reconstruct high-fidelity 2D facial images
and generate accurate 3D head avatars from par-
tially observed eye and lower-face regions. This
framework represents a significant advancement in
AI4Tech by enabling seamless interaction between
virtual and physical environments, fostering im-
mersive experiences such as VR meetings and so-
cial engagements. Additionally, we present VR-
Face, a novel dataset comprising 200,000 sam-
ples designed to emulate diverse VR-specific con-
ditions, including occlusions, lighting variations,
and distortions. By addressing fundamental limita-
tions in current VR systems, RevAvatar exemplifies
the transformative synergy between AI and next-
generation technologies, offering a robust platform
for enhancing human connection and interaction in
virtual environments.

1 Introduction
Augmented Reality (AR) and Virtual Reality (VR) have be-
come critical technological advancements, transforming in-
dustries such as gaming, remote collaboration, education,
and healthcare [Al-Ansi et al., 2023; Rambach et al., 2020;
Kanschik et al., 2023]. As immersive technologies, they en-
able new forms of interaction and engagement, reshaping
human-computer interfaces and digital experiences. While
VR headsets have become mainstream consumer technology,
they inherently isolate users from their surroundings, limiting
their integration into shared environments and public spaces
[Hobbs, 2017; Gugenheimer et al., 2019]. Eye contact is a

cornerstone of human connection and emotional communica-
tion, yet current VR headsets obscure users’ eyes and facial
expressions, severing visual interaction with the real world.
This lack of transparency not only diminishes social presence
but also leaves bystanders unaware of the user’s engagement
with VR content or their attentiveness.

Addressing this fundamental limitation requires transfor-
mative AI-driven solutions to bridge the gap between virtual
and physical environments. One such approach is reverse
pass-through technology, which reconstructs and displays a
user’s eyes and facial expressions on the outward-facing sur-
face of the headset. This technique enables real-time inter-
action, allowing bystanders to perceive eye movements and
emotional expressions, effectively bridging the gap between
virtual and physical environments.

Figure 1: Our proposed RevAvatar framework for reverse pass-
through, enabling the display of eyes and full-head avatars.

Efforts to mitigate VR isolation made effort to main-
tain social presence, while they suffer from inauthentic eye
movements [Chan and Minamizawa, 2017; Bozgeyikli and
Gomes, 2022], hardware requirements, limited facial recon-
struction [Matsuda et al., 2021], and underwhelming perfor-
mance [Apple, 2024], as shown in Table 1. Besides, photo-
realistic avatar generation has significantly improved realism
[Feng et al., 2021; Danecek et al., 2022; Zheng et al., 2023;
Grassal et al., 2022; Li et al., 2023], but limited by the need
for multi-view images or specialized VR headsets. Person-
specific avatar generation struggles with high customization
needed, hindering widespread adoption [Lombardi et al.,
2018; Wei et al., 2019; Schwartz et al., 2020].

To address the limitations of current VR systems, we pro-
pose RevAvatar, a framework to generalize across VR head-
sets with minimal device-specific fine-tuning. Unlike existing
solutions, RevAvatar leverages advanced AI techniques to
overcome the isolation caused by VR headsets by reconstruct-
ing and displaying the user’s eyes and facial expressions in
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Methods Pros Cons

Reverse Pass
FrontFace, Google Eyes Displays animated eyes Lacks authenticity; fails to convey emotions
[Matsuda et al., 2021] Improves social presence Requires custom hardware; lacks full facial reconstruction
EyeSight-Apple Vision Pro Displays eyes externally Limited realism; unclear effectiveness
Ours Full face reconstruction -

Avatar
Photo-realistic Avatar Increases realism Requires multi-view images and specialized VR headsets
Person-specific Avatar Enables personalization High customization limits scalability
Ours One-shot avatar -

Table 1: Comparison of Existing VR Social Presence Methods

real-time, enabling seamless interaction between virtual and
physical environments. Additionally, RevAvatar facilitates
the creation of full-head 3D avatars, enhancing immersive
experiences for applications like virtual meetings. The main
pipeline combines real-time 2D face restoration for “reverse
pass-through” and a one-shot 3D avatar generation model,
achieving 0.008-second inference on mobile SoCs like Ap-
ple M2. It is compatible with consumer mixed-reality de-
vices such as the Apple Vision Pro and upcoming Samsung
and Google VR headsets. Crucially, it eliminates the need for
3D scans, requiring only a selfie-like Digital Persona (DP)
image, improving accessibility and convenience.

Developing generalized solutions for diverse VR headsets
is challenging due to variability in camera specifications and
placements across brands like Apple, Samsung, Meta, Vive,
and Varjo. To address this, we introduce VR-Face, a novel
dataset comprising 200,000 samples that simulate diverse VR
conditions, including occlusions, lighting variations, and dis-
tortions. VR-Face not only supports RevAvatar’s develop-
ment but also provides a foundational resource for advancing
research in AI-driven VR technologies.

Our contributions are: ① RevAvatar Framework: We
introduce RevAvatar, an AI-driven framework for real-time
reverse pass-through and 3D avatar generation in VR. This
solution enhances VR immersion by eliminating the need for
user-specific models or custom hardware. ② Efficient AI for
Mobile SoCs: Our 2D face reconstruction model operates ef-
ficiently on mobile SoCs, such as the Apple M2 in Apple Vi-
sion Pro, achieving an inference time of just 0.008 seconds.
This demonstrates its scalability across diverse VR devices.
③ VR-Face Dataset: We present VR-Face, a public dataset
with 200,000 samples simulating challenging VR scenarios.
It supports the development of AI technologies adaptable to
various headset specifications and advances research in VR.
④ AI-Enabled VR Advancements: Through RevAvatar and
VR-Face, we drive significant AI innovations that address key
VR challenges like user isolation and hardware diversity, set-
ting a new standard for AI-driven progress in VR.

2 Related Work
Eye tracking based animation FrontFace [Chan and Mi-
namizawa, 2017] and Googly Eyes [Bozgeyikli and Gomes,
2022] aimed to represent user attention and gaze using an-
imated eye movements via eye tracking and Head-Mounted
Displays (HMDs). However, these approaches focus on dis-
playing animated eye states, such as whether the eyes are

open or closed, and the gaze direction, without conveying
genuine emotions or expressions.

Eye and Face Reconstruction: Reverse Pass-Through A
“reverse pass-through” prototype headset [Matsuda et al.,
2021] reconstructs and displays users’ eyes on an external
screen but requires costly and custom hardware inaccessi-
ble to most users. Apple’s Vision Pro with “EyeSight”
projects eyes onto an external display, but its functional-
ity remains unclear [Apple, 2024], and early reviews sug-
gest underwhelming performance [Chokkattu, 2024; Patel,
2024]. Other face-restoration methods from partial VR head-
set data often require multiple views or customized head-
sets, making them impractical for widespread use. They also
rely on user-specific avatars, requiring costly individualized
training and limiting real-world use [Lombardi et al., 2018;
Wei et al., 2019; Schwartz et al., 2020].

Face image composition and one-shot Avatar generation
Several methods were proposed for face composition and
synthesis. PixelStyle2Pixel (PSP) [Richardson et al., 2021]
performs image-to-image translation using StyleGAN’s la-
tent space, while failing to preserve the identity of unseen
individuals. StyleMapGAN [Kim et al., 2021] faces similar
identity preservation challenges during inference. One-shot
photo-realistic avatar generation made significant strides,
like ROME [Khakhulin et al., 2022] generating mesh-based
avatars from single images, and CVTHead [Ma et al., 2024]
using transformers and point-based neural rendering. Por-
trait4D [Deng et al., 2024] employs a part-wise 4D genera-
tive model for synthesizing multi-view images and leverages
transformers to create highly detailed, animatable avatars.
They are closest to our task of one-shot avatar generation.

VR simulation dataset Despite growing interest in VR
simulations, publicly available datasets remain scarce. Eye
images captured by IR cameras in VR headsets suffer from
occlusions and limited fields of view. MEAD data [Chen
et al., 2024] was used for VR simulations but lacked real-
world scenario complexity, particularly in occlusions like
eyebrow obstruction. Other works [Lombardi et al., 2018;
Wei et al., 2019] used custom VR headsets with IR cameras
for optimal eye capture, but these setups are not generalizable
to commercial headsets, and datasets are publicly inaccessi-
ble.

3 VR-Face Dataset
We develop the VR-Face dataset (Figure 2), containing
200,000 samples, each comprising a full-face image, left and
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Figure 2: Sample processed images from the VR-Face dataset simu-
lating VR environments.

Aspect Description
Total Samples 200,000
Image Types Full-face, left eye, right eye, lower face
Angles Front, left-60°, right-60°, top-30°
Expressions Anger, contempt, disgust, fear, happy, neu-

tral, sad, surprise
Preprocessing Distortion, masking, vignetting, blur,

grayscale
Effects Occlusions, lighting shifts, noise, eyebrow

reduction
Diversity Skin tones, genders, ethnicities

Table 2: Overview of the VR-Face Dataset

right eye images from various angles, and a lower-face im-
age. The dataset captures a wide range of facial expressions
and perspectives, with pre-processing to simulate visual ef-
fects observed in VR headset imagery (details in Table 2).
VR-Face is designed to be inclusive, representing diverse skin
tones, sex, race, and ethnicity. While it serves as a bench-
mark for reverse pass-through and analysis, it is not intended
to replace real-world VR headset data but can be adapted to
specific devices with suitable datasets.

4 Methodology
RevAvatar comprises an initial setup stage and the main
pipeline, which consists of image alignment, 2D face restora-
tion, and 3D avatar generation for reverse pass-through and
immersive VR experience, as shown in Figure 3. and 4.

During the initial VR headset setup, the user is prompted to
capture a selfie using the headset’s external camera or upload
an image via their online account. Manufacturers provide de-
tailed instructions to ensure the image captures the entire face
without occlusions and under good lighting. The image is
then processed using a facial landmark model [Bulat and Tz-
imiropoulos, 2017] for cropping and alignment in subsequent
stages. This selfie, referred to as the Digital Persona (DP)
image, serves as the reference for 2D and 3D reconstruction.

The main pipeline aligns or frontalizes the processed eye
and face-tracking images. A lightweight GAN-based model
[Goodfellow et al., 2014; Dash et al., 2024] is then used
for full face restoration. For Avatar generation, we combine
3DMM [Egger et al., 2020] models with neural networks for
tri-plane representation and volume rendering to achieve ac-
curate 3D reconstruction.

4.1 Eye and Face Alignment
We use VR-Face dataset, consisting of non-aligned images
of left and right eyes, with the goal of aligning or frontal-

Figure 3: A - Left, Right Eye and Face alignment models based on
CycleGAN. B - The combined image is used as input for full face
restoration.

izing these images (Figure 3-A). To achieve this, we adopt
a CycleGAN-based framework [Zhu et al., 2017], which
learns bidirectional mappings between tilted eye images (do-
main A) and frontal eye images (domain B) through Cycle-
Consistency. We use two distinct alignment models, CGLE

and CGRE for each eye, and use a separate model CGFace

to frontalize the lower face image. To preserve gaze, we use
eye landmark detection [Bulat and Tzimiropoulos, 2017] and
compute Gaze Estimation Error as the angular difference be-
tween aligned and ground truth images, achieving errors be-
low one degree. Aligned eye and lower face images are then
pasted onto the DP image using facial landmarks. Dataset
details are in Section 5.1, with examples in Figure 3-B.

4.2 2D Full Face Restoration
To restore a full face image from frontalized eye and
face tracking images, we develop a lightweight GAN-based
restoration model with a Generator G and Discriminator D.
It takes aligned grayscale left and right eye images, along
with a lower face image pasted onto the color DP image, and
generates a restored output where the grayscale images blend
seamlessly with the rest of the face, capturing facial expres-
sions. Figure 4. shows our 2D Face Restoration Framework.
To handle high occlusion of input eye images, the model uses
a reference image for reconstructing facial features, provid-
ing context for occluded areas like eyebrows. During train-
ing, random reference images from various users are selected
to improve robustness. During deployment, the DP image
serves as a reference for reconstructing occluded areas.

The Generator G comprises an Input Encoder EI and a
Reference Encoder ER, which share a similar structure. EI

takes the DP image with partial VR observations pasted on
top of the base DP image x as the input, and the reference DP
image z is given as input to ER. To enhance the model’s
ability to capture both global and fine-grained details, the
encoders are extended to operate at multiple scales, where
each scale extracts features at different levels of resolution.
The Generator is built on multiple ResNet blocks, with each
block processing features at different resolutions. We use
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Figure 4: Overview of the 2D Face Restoration and One-Shot Avatar generation model. 2D Face Restoration: Partial VR observations
and the reference DP are inputs to the Input Encoder, while the reference image is processed by the Reference Encoder. The restored face
output drives the one-shot avatars. One-Shot Avatar: The DP image serves as the source, and the restored image from the 2D face restoration
model drives the avatar generation. A tri-plane is generated from concatenated encoder outputs, followed by volumetric rendering and super-
resolution to produce the final output.

cross-attention module to align and integrate features from
the reference image with those of the input image, enhanc-
ing context-aware and guided image generation. The cross-
attention module operates at multiple scales, where each scale
learns to focus on different levels of detail, from coarse struc-
tures to fine textures. This multi-scale feature fusion en-
sures the generation of high-fidelity images by combining
both global context and local detail. The architecture begins
with initial convolutional layers for downsampling through
EI and ER, extracting multi-scale features. The multi-scale
features are then processed through cross-attention and resid-
ual block processing. Finally, the decoder reconstructs the
synthesized image G(x, z), utilizing the multi-scale features
to improve the quality of the generated image at all levels.
We use a Multiscale Discriminator, which employs multiple
instances of a PatchGAN [Isola et al., 2017] discriminator,
each responsible for evaluating the image at a specific scale.

The Generator G is trained to minimize the following loss
functions. (1) The adversarial loss Ladv ensures that the gen-
erated image G(x, z) is indistinguishable from real images
y by the Discriminator D. (2) The L1 loss LL1 ensures the
generated image G(x, z) is close to the ground truth image y.
(3) The LPIPS (Learned Perceptual Image Patch Similarity)
[Zhang et al., 2018] loss LLPIPS assesses perceptual similar-
ity between the generated image G(x, z) and the target image
y. The total loss is defined as Ltotal = LG + LD.

LG = λadvLadv + λL1LL1 + λLPIPSLLPIPS (1)
Ladv = Ey [logD(y)] + Ex [log(1−D(G(x, z)))] (2)

where the weights λadv , λL1, and λLPIPS balance the con-
tributions of each loss term.

The Discriminator D is trained to distinguish between real
images and generated images using the adversarial loss:

LD = Ey [logD(y)] + Ex [log(1−D(G(x, z)))] (3)
where D(y) is the probability that the image y is real,
and D(G(x, z)) is the probability that the generated image
G(x, z) is real.

4.3 One-shot 3D Head Avatar Model
We extend our reverse pass-through system to generate full-
head avatars for immersive VR, building on recent one-shot
facial avatar generation advancements. This approach over-
comes the limitations of requiring specialized models for
each subject or multi-view inputs, addressing challenges that
hinder practical real-world applications.

Our Framework uses the user’s DP or selfie image as the
source image Is and the reconstructed image from 2D full-
face restoration serves as the driving or target image It. The
source image is used to extract the identity, and the target
image is responsible for providing the pose and expression
information. Our framework comprises three main branches
which include the Global Branch EG, Detail Branch ED and
the Expression Branch EE . The output is then up-scaled and
refined using a super-resolution module.

The EG branch uses a hybrid transformer model with a se-
ries of convolutional and transformer blocks along with Seg-
Former [Xie et al., 2021] to generate a tri-plane representa-
tion. We use SegFormer as it allows for effective mapping
from 2D space to 3D space. This is achieved by predicting a
tri-plane Tg that represents the neutral expression of the hu-
man face in a canonical 3D space. To ensure that the gener-
ated tri-plane Tg aligns with the identity of Is and maintains
a neutral expression, we incorporate a 3D Morphable Model
(3DMM) to render a face with the same identity and camera
pose as the source image, but with a neutral expression. The
Detail Branch ED builds on the geometry provided by the
Global Branch by capturing and reconstructing intricate facial
details from the source image Is. The features of the Detail
Branch are transferred to the global triplane, creating an ap-
pearance triplane Td that improves the initial reconstruction
with fine-grained details, such as texture and surface features.
The Expression Branch focuses on modeling and transferring
the expression from the target image It onto the reconstructed
3D avatar. This branch utilizes a 3DMM to predict the shape
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and expression coefficients for both the source image Is and
target image It. The expression coefficients of It are used
to render a frontal-view expression image Ie, which is then
encoded into an expression tri-plane Te. This expression tri-
plane is added to the canonical tri-plane Tg along with the ap-
pearance tri-plane Td to generate the final 3D reconstruction.
The integration of these three branches allows the model to
combine the identity from the source image with the expres-
sion and head pose from the target image, effectively trans-
ferring the desired expression onto the source image while
maintaining high fidelity in both appearance and geometry.
Given the high computational demands of volumetric ren-
dering, we first render low-resolution images and then use
a super-resolution [Wang et al., 2021] module to produce the
final high-quality output.

We use a two-stage training schedule for multi-view con-
sistency and efficiency. In the first stage, the model trains at a
lower resolution without an upscaling module, optimizing L1

and LLPIPS losses between the Global Branch feature ren-
dering and the 3DMM rendering of the source image, as well
as the combined tri-plane features and target image.

LG = L1(R(Tg), R3DMM(Is))

+ LLPIPS(R(Tg), R3DMM(Is)) (4)
LCombined = L1(R(Tcombined), It)

+ LLPIPS(R(Tcombined), It) (5)
LStage1 = λGLG + λCombinedLCombined (6)

In the second stage of training, we only fine-tune the up-
scaling module using L1, LLPIPS , and GAN loss objective.
Additionally, we use an eye region loss which calculates the
L1 between only the eye region rendering the output image
and the target ground truth image to ensure accurate gaze.

LStage2 = λL1L1(Io, It) + λLPIPSLLPIPS(Io, It)

+ λGANLGAN + λEyeL1(Ieye-output, Ieye-target)

+ LLPIPS(Ieye-output, Ieye-target) (7)
LTotal = LStage1 + LStage2 (8)

4.4 Reverse Pass-through and Avatar Outputs
The output from our Full Face Restoration model can be
cropped to display the eye region and realize reverse pass-
through on mainstream VR headsets(Figure 5). This allows
users to maintain eye contact and convey expressions. Addi-
tionally, the outputs from our head avatar model can be lever-
aged for immersive applications such as VR meetings and
the metaverse, providing visually accurate and expressive 3D
avatars that enhance virtual interactions and communication.

5 Experiments
5.1 Datasets
We utilize VR-Face as the main dataset to train and test
our framework, and three additional datasets for training to
enhance the generalization. (1) The Eye and Face Align-
ment model is exclusively trained and tested on VR-Face
dataset. (2) For 2D face restoration model, we integrate
CelebHQ [Karras et al., 2017] and FFHQ [Karras et al.,
2019] datasets, which contain images only, in conjunction

Figure 5: Sample output from 2D Face Restoration model which can
be used for Reverse pass-through.

with VR-Face dataset for training, allowing for better gener-
alization across different skin tones and facial attributes. (3)
For 3D avatar generation, besides VR-Face, we further lever-
age FFHQ, CelebV-HQ [Zhu et al., 2022], VFHQ [Xie et al.,
2022] datasets to provide a rich set of facial attributes and
emotional variations.

5.2 Implementation
All models are trained on 512× 512 images. The Alignment
and 2D face restoration models use a single A100 GPU, while
the 3D head avatar model is trained on 4 A100 GPUs. We
train three alignment models: two for the eyes and one for
the lower face. Batch sizes are set to 32 for Alignment, 16
for 2D face restoration, and 4 for the 3D avatar model. All
models use the Adam optimizer with a 0.0001 learning rate.
During inference, the alignment models run in 0.004s, the
face restoration model in 0.006s per image, and the avatar
model achieves 22 FPS. All inferences are performed on a
single A100 GPU including mobile GPUs such as Apple M2
GTX 1050, and MX350.

5.3 Baseline
Given the lack of well-established baseline models for re-
verse pass-through VR, a direct holistic comparison of our
entire framework is not feasible. Instead, we evaluate our
2D full-face restoration model by comparing it with state-of-
the-art GAN-based approaches in image composition and re-
construction: CycleGAN, PSP [Richardson et al., 2021], and
SMG [Kim et al., 2021]. Additionally, we include DifFace
[Yue and Loy, 2024] as a diffusion-based baseline. Although
we considered diffusion models such as OSDFace [Wang et
al., 2024], DifFace [Yue and Loy, 2024], OSEDiff [Wu et
al., 2024], and DiffBIR [Lin et al., 2024], their inference
times of 0.1, 6.1, 0.12, and 8.01 seconds, respectively, on
an A100 GPU make them unsuitable for real-time appli-
cations. In contrast, CycleGAN, PSP, SMG, and our model

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Model Full Face Eye Region of Interest Inference Time (s)SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
CycleGAN 0.8414 23.0429 0.0618 0.6711 20.2291 0.1122 0.016

PSP 0.6271 19.6809 0.1714 0.5737 18.7591 0.1694 0.041
SMG 0.6521 21.0219 0.2349 0.6211 19.2129 0.1521 0.039

DifFace (2024) 0.9541 29.8129 0.1306 0.8122 26.0021 0.1023 6.125
Ours 0.9445 31.3951 0.0243 0.8572 28.2897 0.0510 0.006

Table 3: Quantitative Comparison for Full Face and Eye Region Reconstruction, including Inference Time (s).

Figure 6: Qualitative comparison of full-face restoration results on unseen test data.

Model Inference Time (s)
A100 Apple M2 MX350 GTX 1050

CycleGAN 0.016 0.020 0.350 0.278
PSP 0.041 0.050 0.852 0.544
SMG 0.039 0.045 0.791 0.365
Ours 0.006 0.012 0.125 0.0517

Table 4: Inference Time for A100, Apple M2, MX350, and GTX
1050 for Full Face Reconstruction for Reverse Pass-Through.

achieve real-time performance with inference times of 0.016,
0.041, 0.038, and 0.006 seconds, respectively. For 3D avatar
reconstruction, we benchmark our model against leading one-
shot approaches: ROME [Khakhulin et al., 2022], CVTHead
[Ma et al., 2024], and Portrait-4D [Deng et al., 2024].

5.4 Results
For our 2D face reconstruction model and avatar, we gener-
ate images at 512x512 resolution and evaluate them against
ground truth images using three metrics: SSIM [Wang et al.,
2004], PSNR, and LPIPS. These metrics assess visual accu-
racy and perceptual quality by considering structural similar-
ity, pixel-level differences, and perceptual relevance.

2D Face Restoration Figure 6. and Table 3. presents
the qualitative and quantitative comparison between our face
restoration model and baselines. Despite its lightweight de-
sign, our model performs better than other baselines. While
CycleGAN performs comparably to other GAN-based mod-
els, it struggles to effectively colorize and blend eye and lower
face, leading to severe artifacts, as shown in Figure 6. PSP

and SMG, which rely on StyleGAN-based generators, map
inputs to a latent space, resulting in a loss of identity and
inaccurate face restorations. During testing, SMG tends to
output similar images from its training set but with altered
expressions, while PSP produces outputs that often diverge
significantly from the ground truth, as highlighted in Figure 6.
This exposes a critical limitation of StyleGAN-based models:
poor generalization on unseen data. DifFace, as a diffusion-
based model, achieves high SSIM and PSNR for full-face
reconstruction, outperforming other baselines in preserving
global facial structure. However, it struggles to retain indi-
vidual identity, leading to subtle yet noticeable shifts in facial
features. Additionally, the iterative nature of the diffusion
process results in significantly higher inference time, making
DifFace less suitable for real-time applications. In contrast,
our model excels at handling unseen face images, demonstrat-
ing superior generalization capabilities. It achieves the high-
est PSNR and the lowest LPIPS, indicating better perceptual
quality and sharpness. Moreover, its inference time is orders
of magnitude faster than DifFace, making it highly efficient
for real-time applications. Figure 5 depicts how the output
of our face restoration model enables real-time reverse pass-
through capabilities in VR applications.
3D Head Avatar For 3D avatar generation, we compare
rendered images with ground truth images. Additional videos
showing different views for the reconstructed 3D avatars, as
well as the appendix, are available at1. Our model shows sig-
nificant improvements in key metrics, achieving the highest
SSIM and PSNR, along with the lowest LPIPS, as shown in

1https://github.com/ankan2709/eye-see-you-vr
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Model SSIM↑ PSNR↑ LPIPS↓
ROME (ECCV’22) 0.7522 22.7538 0.1089

CVTHead (WACV’24) 0.7616 21.5395 0.1368
Portrait4D-v2 (ECCV’24) 0.7922 24.3271 0.0638

Ours 0.8025 25.1284 0.0629

Table 5: Comparison of one-shot avatar models.

Table 5. It indicates that our model excels in maintaining both
structural integrity and perceptual quality. The high SSIM
reflects our model’s ability to accurately capture fine details
and facial features, while the superior PSNR highlights its
robustness in minimizing reconstruction noise and artifacts.
Moreover, the lower LPIPS suggests that our method pro-
duces image reconstructions that are perceptually closer to
the ground truth, ensuring high-fidelity 3D avatars with real-
istic texture. Although Portrait4D-v2 performs competitively
and ranks slightly behind our model, the noticeable jittering
in the output faces during eye blinks affects the overall real-
ism. ROME and CVTHead exhibit more challenges in pre-
serving facial identity, reflected in higher LPIPS and lower
SSIM. CVTHead, in particular, struggles to maintain iden-
tity consistency across different poses, as shown in Figure
7. In contrast, our approach preserves identity more effec-
tively, yielding visually accurate avatars that are faithful to the
subject’s original appearance. This underscores our model’s
ability to generate high-quality, realistic 3D avatars with im-
proved generalization across diverse inputs.

Figure 7: Qualitative comparison of one-shot full head avatar gener-
ation.

Realtime Face Reconstruction To assess the real-time per-
formance of our 2D face reconstruction model for reverse
pass-through on VR headsets like the Apple Vision Pro (with
Apple M2 chip) and Meta Quest 3, we tested the model and
compared inference times on the A100 GPU (used for train-

ing) with the Apple M2 SoC (in the Vision Pro), tested on
a MacBook Air (8-core CPU, 4 performance cores, 4 ef-
ficiency cores, 10-core GPU, 16-core Neural Engine, and
16GB unified memory), as well as on the NVIDIA MX350
and GTX1050. Table 4 shows that the Apple M2, with
MPS acceleration, delivers inference times comparable to the
A100, demonstrating its ability to efficiently run complex
models in real-time. The NVIDIA MX350, though slower
due to its older architecture, and the GTX1050, showed
promising performance for model inference.

Model SSIM↑ PSNR↑ LPIPS↓
2D Face-Recon (original) 0.9445 31.395 0.0243

AE alignment model 0.8725 27.2211 0.1025
w/o cross attention 0.9124 27.4019 0.0921

w/o LPIPS loss 0.9102 29.0121 0.1001
w/o Reference Image 0.8921 28.209 0.1129

Table 6: Ablation study for framework components.

Ablation Study Table 6 presents the quantitative results of
ablation experiments. Eye alignment ablation: We com-
pare the performance of Cycle-GAN versus Auto Encoder
(AE) [Bank et al., 2021] for eye and face alignment, as de-
scribed in section 4.1. The results show that Cycle-GAN out-
performs AE in alignment tasks, leading to better reconstruc-
tion quality. Cross attention ablation: The model’s perfor-
mance significantly degrades when the reference and input
features are concatenated, rather than using cross attention.
This highlights the importance of cross attention in captur-
ing fine-grained details for accurate reconstruction. Refer-
ence image ablation: Omitting the reference image results
in lower performance, as it limits the model’s ability to ac-
curately reconstruct occluded areas, which are critical for re-
alistic face restoration. The absence of this contextual infor-
mation hinders the model’s ability to recover facial features
that are obstructed in the input. LPIPS ablation: Excluding
LPIPS loss degrades the perceptual quality of the generated
images, as evidenced by increased LPIPS score. Including
it helps the model generate more visually accurate and per-
ceptually consistent reconstructions by optimizing for human
perception rather than pixel-wise similarity alone.

6 Conclusion

We introduce RevAvatar, an AI-driven solution to mitigate
social isolation induced by VR headsets by restoring full-face
images from tracking cameras using a user’s DP image, en-
abling real-time eye movement display on an outward-facing
VR screen. Additionally, RevAvatar generates realistic one-
shot full-head avatars for VR meetings and interactions. As
AR/VR continues to revolutionize digital interaction, we sup-
port this advancement with VR-Face, a dataset designed to
simulate real-world VR scenarios and drive research in this
field. Through RevAvatar and VR-Face, we aim to set new
benchmarks for AI-driven VR experiences, enhancing social
presence and immersion.
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