
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

BinMetric: A Comprehensive Binary Code Analysis Benchmark for Large
Language Models

Xiuwei Shang1 , Guoqiang Chen3 , Shaoyin Cheng1,2∗ , Benlong Wu1 , Li Hu1 ,
Gangyang Li1 , Weiming Zhang1,2 , Nenghai Yu1,2

1University of Science and Technology of China, Hefei, China
2Anhui Province Key Laboratory of Digital Security, Hefei, China

3QI-ANXIN Technology Research Institute, Beijing, China
{shangxw, ch3nye, dizzylong, pdxbshx, ligangyang}@mail.ustc.edu.cn

{sycheng, zhangwm, ynh}@ustc.edu.cn

Abstract
Binary analysis is crucial for software security,
offering insights into compiled programs without
source code. As large language models (LLMs) ex-
cel in language tasks, their potential for complex
decoding binary data structures is growing. How-
ever, the lack of standardized benchmarks hinders
their evaluation and progress in this domain. To
bridge this gap, we introduce BinMetric, a first
comprehensive benchmark designed specifically
to evaluate LLMs performance on binary analy-
sis tasks. BinMetric comprises 1,000 questions
derived from 20 real-world open-source projects
across 6 practical binary analysis tasks, including
decompilation, code summarization, etc., which re-
flect actual reverse engineering scenarios. Our em-
pirical study on this benchmark investigates various
state-of-the-art LLMs, revealing their strengths and
limitations. The findings indicate that while LLMs
show strong potential, challenges still exist, partic-
ularly in the areas of precise binary lifting and as-
sembly synthesis. In summary, BinMetric makes a
significant step forward in measuring binary analy-
sis capabilities of LLMs, establishing a new bench-
mark leaderboard, and our study offers valuable in-
sights for advancing LLMs in software security.

1 Introduction
Binary analysis is pivotal in various fields like software re-
verse engineering [Sutherland et al., 2006], malware preven-
tion [Nguyen Hung et al., 2023], and patch analysis [Xu et al.,
2017], enabling the understanding and dissecting of software
functionalities without source code access. According to a re-
search report by Statista, approximately 21.5 billion IoT de-
vices will be connected globally by 2025 [Statista, 2024]. The
diversity in instruction architectures and operating systems,
coupled with the predominance of closed-source code and
documentation, limits the applicability of source code anal-
ysis for securing IoT device firmware, which drives further
updates of binary analysis technology.

∗Corresponding Author

Unfortunately, understanding and interpreting the structure
and behavior of binary files is challenging due to their com-
plexity and lack of direct human readability [Zhang et al.,
2021]. Traditional tools [Hex-RaysSA, 2024] and techniques
[LLVM, 2024], while effective, often require extensive man-
ual effort and expertise, making the process time-consuming
and prone to errors. The integration of automated tools, espe-
cially AI-powered ones, has the potential to revolutionize this
field by increasing efficiency and reducing human oversight.

Recently, large language models (LLMs) have demon-
strated increasing proficiency in a range of complex tasks,
particularly showing promise in more specialized code-
intensive areas like code synthesis [Jiang et al., 2023] and au-
tomated programming assistance [Wei et al., 2023]. This has
sparked questions among many software engineering practi-
tioners: Can LLMs like ChatGPT and CodeLlama effectively
perform binary analysis tasks? However, the specific applica-
tion of LLMs in this delicate area is still in its infancy, to some
extent due to the lack of dedicated benchmarking frameworks
that can adequately measure and drive progress in this area.

To address this limitation, we present BinMetric, the first
comprehensive benchmark designed to evaluate LLMs ca-
pabilities on binary analysis tasks, which supports multiple
tasks following realistic reverse engineering scenarios. Bin-
Metric standardizes the evaluation process, offering a consis-
tent and replicable framework to assess LLM performance in
this critical area. Specifically, it is composed of six distinct
tasks that mirror real-world binary analysis challenges, in-
cluding call-site reconstruction, decompilation, signature re-
covery, binary code summarization, algorithm classification,
and assembly instruction generation. These tasks are built on
20 open-source projects, ensuring the realisticity, diversity,
quality, credibility, and maintenance of data sources. After
filtering and inspection, we extract 1,000 question items from
these projects. Furthermore, to evaluate these tasks from dif-
ferent dimensions, we built 4 evaluators and integrated them
into an automated pipeline for easy one-click invocation.

Next, to quantify the binary analysis capabilities of con-
temporary LLMs, we conduct an empirical study on Bin-
Metric to assess widely-used LLMs, including open-source
models such as Llama2 [Touvron et al., 2023], CodeLlama
[Roziere et al., 2023], Mistral [Jiang et al., 2024], DeepSeek-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Coder [Guo et al., 2024], as well as closed-source like Chat-
GPT [Ouyang et al., 2022] and GPT-4 [Achiam et al., 2023].
The aim is to answer a couple of crucial questions:

• RQ1: What is the overall effectiveness of LLMs in
binary analysis?

• RQ2: Which LLM we investigated performs the best?
And which type of LLMs performs better?

• RQ3: What factors affect the effectiveness of LLMs?

Our empirical study reveals several findings. First, LLMs
show promise in binary analysis but struggle with tasks like
call-site reconstruction and assembly generation. Notably,
each model exhibits expertise in specific perspectives, like
GPT-4 shines in binary lifting and logical analysis, while
WizardCoder and CodeLlama excel in semantic comprehen-
sion and assembly synthesis. Second, GPT-4 leads overall,
and open-source models like CodeLlama-34B show competi-
tive capabilities, highlighting the potential of open-source so-
lutions in this domain. Finally, LLMs efficiency varies with
model size and tasks. Larger models tend to perform better
but at the cost of efficiency. One-shot prompts enhance effec-
tiveness, whereas longer inputs may hinder performance.

In summary, our major contributions are as follows:

• Benchmark. We introduce BinMetric, a pioneering com-
prehensive benchmark for assessing LLMs performance
across multiple real-world binary analysis tasks. It in-
cludes 6 distinct tasks, 1,000 questions extracted and fil-
tered from 20 real open-source projects, and 4 evaluators
integrated into the automated evaluation pipeline.

• Empirical Study. We conduct the first large-scale inves-
tigation of widely-used LLMs using BinMetric, studying
(1) the overall effectiveness of LLMs across diverse bi-
nary analysis tasks, (2) the performance comparisons of
different LLMs, (3) factors affecting their effectiveness.

• Findings and Insights. Our results reveal the untapped
potential of LLMs in binary analysis, providing new in-
sights and future research directions for the field.

2 Background and Related Works
2.1 Problem Definition
Given a source code S, it undergoes a compilation and strip-
ping process to produce a binary file B, represented as B =
R(C(S)), where C is the compiler and R denotes the stripping
process of symbolic information. The binary code analyzer
A, designed to support a series of binary analysis tasks T =
{t1, t2, . . . , tn}, takes binary file B as input and applies these
tasks to generate corresponding outputs, formalized as:

O = A(B) = {o1, o2, . . . , on}. (1)

where each oi corresponds to the output of each task ti. In this
paper, we consider LLMs as binary code analyzers A, assess-
ing their ability to perform accurate analysis, ensuring high
fidelity and comprehensibility to the original source code S,
and showing their effectiveness in binary analysis scenarios.

2.2 Related Works
Binary Analysis. Binary analysis involves examining bi-
nary code, the machine-level representation of software ex-
ecuted by the CPU, which, unlike source code, is not human-
readable and requires specialized techniques and tools [David
et al., 2020]. Traditional tools like IDA Pro [Hex-RaysSA,
2024] have been the backbone of binary analysis for decades,
but they are often labor-intensive, require expertise, and
struggle to extract high-level semantic information, which
is crucial for understanding the code’s broader context and
functionality, leading to inefficiency with large or highly op-
timized binaries and incomplete analysis. With the rise of
deep learning, many data-driven techniques have transformed
this landscape. These methods leverage large datasets and ad-
vanced algorithms to enhance and automate the process. For
example, data-driven disassembly and decompilation gener-
ate more accurate, human-readable code [Tan et al., 2024a].
Deep learning techniques infer variable types and function
signatures [Chen et al., 2022], and generative models create
concise summaries of binary code [Xiong et al., 2023]. These
data-driven approaches promise a more automated, accurate,
and efficient future for binary analysis, reducing manual ef-
fort and coping with increasingly complex software systems.
Large Language Models. In early sequential language tasks,
including both natural and programming languages, task-
specific fine-tuning has shown strong performance, which
updates model weights to improve performance by learning
input-output relationships from task datasets. The rapid ad-
vancement of LLMs, such as ChatGPT [Ouyang et al., 2022],
with billions to hundreds of billions of parameters, has revo-
lutionized related fields. Trained on massive text data, LLMs
possess powerful language understanding and generation ca-
pabilities, encapsulating extensive knowledge, and can per-
form downstream tasks via in-context learning [Dai et al.,
2022]. This approach allows models to handle tasks using
task-related context without requiring large datasets for fine-
tuning. In this paper, we leverage in-context learning to guide
LLMs in understanding binary analysis tasks from multiple
perspectives, enabling a thorough performance evaluation.

2.3 Challenges and Insights
Challenges. LLMs have recently been deployed to address
software engineering challenges, excelling in tasks such as
vulnerability detection [Gao et al., 2023] and automatic pro-
gram synthesis [Jiang et al., 2023], boosting developer pro-
ductivity and streamlining software development. Corre-
sponding various benchmarks have emerged, like HumanEval
[Chen et al., 2021] for code generation and Defect4j [Just
et al., 2014] for automated repair, standardizing evaluation,
providing clear metrics, and fostering competition to drive
progress. However, in binary analysis, no official benchmarks
exist yet, and the challenges of creating one are as follows:

1 Lack of Reliable Data Sources and Standardized
Preprocessing. The source and quality of binaries affect
benchmark validity, yet no standardized framework exists for
data collection or preprocessing, such as compilation envi-
ronment settings, decompilation tool selection, and ground-
truth identification. The lack of consistency, combined with
the black-box nature of LLMs, complicates comparisons and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

B
in

ar
y

 A
n

al
y

si
s

P
ro

ce
ss

4 Assembly Instruction
Generation

Assembly Synthesis

Binary Analysis Tasks

3

2

1

Logical Analysis Algorithm Classification

Semantic Comprehension
Binary Code Summarization

Signature Recovery

Binary Code Lifting
Decompilation

Call-site Reconstruction

Figure 1: Binary analysis tasks in our benchmark.

risks data leakage from training sets, undermining credibility.
2 Diverse Tasks in Binary Analysis. Existing works fo-

cus on isolated tasks like decompilation [Tan et al., 2024a],
or summarization [Jin et al., 2023]. However, binary analysis
is inherently a complex, multifaceted process requiring ex-
traction and understanding of various information types and
dependencies. Benchmarks limited to individual tasks fail to
capture the comprehensive capabilities needed for effective
analysis and are not representative of real-world applications.

3 Complexity of Real-World Scenarios. Benchmarks
should avoid oversimplifying real-world binary analysis, such
as relying on a narrow data scope that doesn’t reflect the va-
riety of project types and contexts encountered in practice.
Additionally, benchmarks should account for the real work-
flows of reverse engineers to more accurately reflect the mul-
tifaceted challenges faced in actual binary analysis.
Insights. To address the challenges mentioned earlier, com-
bined with our analysis of real binary analysis scenarios, we
propose the following solution:

1 Establish Data Collection and Preprocessing Crite-
ria. Enhance the quality of binary analysis benchmarks re-
quires robust criteria for data collection and preprocessing.
Inspired by related works and following standards, we advo-
cate that data sources should cover 5 dimensions: realistic-
ity, diversity, quality, credibility, and maintenance. We em-
phasize standardized preprocessing processes, which require
defining protocols for compilation, decompilation, metadata
extraction, ground-truth identification, data filtering, and leak
checking, minimizing biases to enhance reliability.

2 Enable Multifaceted Task Assessment. To truly
gauge LLMs’ performance in binary analysis, benchmarks
should assess a range of interconnected tasks across the anal-
ysis lifecycle. As shown in Figure 1, our benchmark consists
of six tasks in four dimensions, such as decompilation, func-
tion signature recovery, and assembly instruction generation,
to comprehensively evaluate the capabilities of LLM.

3 Simulate Real-World Complexity. In this paper, we
aim to replicate the complex challenges of real-world binary
analysis scenarios. To achieve this, we combine data from
diverse project domains to ensure broad coverage and cap-
ture the variety of real-world environments. Subsequently, we
dissect the complex challenges faced by reverse engineers in
actual binary analysis efforts, and thus craft a series of assess-
ment tasks to reflect the complexity of real-world analysis.

3 BinMetric Benchmark
The overview framework of BinMetric is shown in Figure 2.

3.1 Binary Analysis Tasks
BinMetric contains six representative binary analysis tasks in
four dimensions that reflect the challenges faced by human
reverse engineers, and LLMs also confront similar obstacles.

Call-site Reconstruction (CSR): Function call relation-
ships reveal control flow and dependencies between program
modules. CSR is crucial in reverse engineering to identify
and reconstruct function calls, including function names and
its calling parameters, from provided assembly code. It takes
assembly code and specified call locations as input, produc-
ing high-level source code representation of the calls. Eval-
uation focuses on textual consistency, ensuring the recovered
call sites match the original code’s intent and structure.

Decompilation (DEC): Decompilation is essential for an
intuitive and in-depth understanding of binary programs,
which aims to reconstruct a human-readable high-level pro-
gramming language representation, such as C or C++, based
on assembly code. The input is assembly code with func-
tion granularity, while the output is the corresponding source
code. This task is evaluated using the CodeBLEU [Ren et al.,
2020], which assesses both syntax and semantic accuracy by
comparing the decompiled code with the original source.

Signature Recovery (SR): Function signatures represent
the interface of a function, including its name, parameter
types & names, and return type, which are essential for un-
derstanding program behavior [Jin et al., 2022]. In this task,
the input is decompiled pseudo code from stripped binaries,
and the output is the complete function signature. Text con-
sistency metrics are used to evaluate the match between the
recovered signature and the original source code signature.

Binary Code Summarization (BCS): Code Summariza-
tion aims to generate concise natural language summaries of
binary code, highlighting its core functions and operations
without needing to examine complex details [Xiong et al.,
2023]. The input is decompiled pseudo code, and the out-
put is a corresponding natural language summary. Evaluation
uses text consistency metrics to ensure the prediction aligns
with the ground truth in terms of relevance and clarity.

Algorithm Classification (AC): This task involves identi-
fying and classifying algorithmic patterns within binary code,
revealing key operations like sorting, encryption, etc., essen-
tial for understanding the function and purpose of the code
segment during security analysis. The input is decompiled
pseudo code, and the output is its corresponding algorithm
category label. Evaluation is done using accuracy.

Assembly Instruction Generation (AIG): Analyzing
malware and fixing vulnerabilities without source code often
requires modifying assembly code, i.e., assembly synthesis.
The AIG task takes a natural language description of specific
functionality as input, and generates corresponding assembly
instructions. To evaluate whether the generated can imple-
ment intended function, we assess syntax and execution cor-
rectness, and also use text consistency to measure reliability.

3.2 Data Collection and Preprocessing
Data Collection. A reliable benchmark dataset is essential
for evaluating the binary analysis capabilities of LLMs. To
ensure robustness and real-world relevance, we set criteria

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Github
Repository

① Dataset Collection & Preprocessing

BinMetric
Benchmark

Project Domain

Binary
Files

Disassembly

② Dataset Construction ③ Query & Evaluation

Compilation
Audio

Crypto

Database

Compress

Algorithm

Network

Deep Learning

· · · · · ·

Call-site
Reconstruction

Assembly Instruction
Generation

Decompilation

Signature Recovery

Binary Code
Summarization

Algorithm
Classification

Source
Code

Stripped
Binary

LLMs Response
Generation

Post-processing
of Response

Evaluators &
Metrics

Meta Data Filtering &
Constructio

n

Five Criteria

1. Realisticity

2. Diversity

3. Quality

4. Credibility

Strip

Parse

Assembly
Code

Pseudo
Code

Decompilation

Source
Info.

Binary-
Source

Matching

Project Name

File Name

Source Code

Assembly

Comment

Pseudo Code

· · · · · ·

Func. Signature

Extract & Assemble
Question Item

Construct Prompt

Length Filtering

Data Leakage
Filtering

Semantic
Comprehension

Evaluator

Binary Lifting
Evaluator

Logical Analysis
Evaluator

Assembly
Synthesis
Evaluator

5. Maintenance

Figure 2: Overview framework of BinMetric benchmark.

Criteria Description Quantification

Realisticity
Code should be derived from complete, devel-
oper written real-world projects, not toy pro-
grams, incomplete or synthesized snippets

Whether from
Real-world Projects

Diversity
Code should cover various fields and applica-
tion domains to avoid bias and assess perfor-
mance across different contexts

Quantity of Domains
Encompassed

Quality High-quality code with clear structure, logical
organization, and good naming conventions

Average Github
Stars / Forks

Credibility
Code should come from projects maintained by
reputable developers or organizations for better
reliability

Maintained by
Reputable
Organization

Maintenance
Code should from regularly updated, actively
maintained, and well-documented projects, re-
flecting current practices and standards

Average
Releases / Commits

Table 1: Data Sources Criteria for BinMetric benchmark.

for code sources, as shown in Table 1. These criteria are in-
formed by industry standards like NIST’s guidelines for trust-
worthy AI [of Standards and (NIST), 2023], as well as soft-
ware lifecycle and quality assurance international standards
such as ISO/IEC 25010:2011 [for Standardization, 2011] and
IEEE Std-730-2014 [Heimann, 2014]. Many LLM bench-
marks [Sawada et al., 2023; Zeng et al., 2024] also emphasize
attributes like realisticity, diversity, quality, and credibility.

As shown in Table 2, we curate 20 high-star C language
projects from GitHub, ensuring excellent code quality, credi-
bility, and maintenance. These projects average 18.48K Stars,
3.9K Forks, 75.8 Releases, and 15.5K Commits, covering
eleven domains such as audio, image, web, crypto, and net-
work, ensuring both real coding practice and diversity.
Data Preprocessing. Our preprocessing pipeline, shown in
Figure 2, involves the following steps:

1 Compile, Strip and Decompile. We compile selected
projects on Ubuntu 22.04 OS for the x86-64 architecture, in-
cluding DWARF [International, 2010] debugging information
to ensure detailed metadata is available for subsequent align-
ment. Each project uses its default compiler settings, reflect-
ing typical environments. We remove all symbolic informa-
tion using the strip command to simulate real-world condi-
tions where symbolic is often unavailable. We then disassem-
ble and decompile the stripped binaries with IDA Pro, obtain-
ing assembly instructions and decompiled pseudo code.

2 Source Code Information Extraction. We use srcML
[Maletic and Collard, 2015] to parse source files and extract
key information including function signatures, implementa-
tions, human-written summaries, etc. srcML converts the
source files into XML format, enabling accurate extraction

Project Domain Project Domain Project Domain
audio Audio Llama2.c Deep Learning Libexpat Format
miniaudio Audio Whisper.cpp Deep Learning Ultrajson Format
OpenSSL Crypto Mongoose Web Curl Network
libsodium Crypto libhv Web Masscan Network
Redis Database Libvips Image 7z Compress
SQLite Database ImageMagick Image zstd Compress
FFmpeg Video C-Algorithms Algorithm

Table 2: Data sources of our benchmark dataset.

and processing through XML parsing techniques. This ex-
tracted information is then stored for subsequent alignment.

3 Binary-Source Alignment. We align the source and bi-
nary code using DWARF debugging information, which links
binary functions and variables to their locations in the source
code (file name, line and column number). This enables pre-
cise matching of assembly instructions and decompiled code
to their corresponding source code locations.

3.3 Data Construction
Data Filtering. To avoid incomplete analysis from exces-
sively long code snippets and lack of context from very short
ones, we apply double-threshold filtering to remove snippets
that are too short or exceed the LLMs’ context window, en-
suring evaluation feasibility. We also ensure our benchmark
dataset is not part of LLMs’ training set. All evaluation data
are disassembled or decompiled code from self-compiled bi-
naries stripped of symbol information, greatly reducing the
risk of inclusion in training sets. To further verify this, we
use Google search engine to check if any code appears as
plain text online. Any exact whole-word matches found are
removed, enhancing dataset credibility.
Extract and Assemble Question Item. After preprocessing
and filtering, we obtain high-quality alignment metadata from
binary and source code to construct question items.

For DEC and SR tasks, we randomly sample 250 pairs
of pseudo code and output ground-truth from the metadata.
For CSR, 70 assembly snippets are sampled and manually
annotated with call site locations to be recovered and their
ground truth. For the BCS task, we initially considered us-
ing human-written comments from source files as labels, but
less than 20% of functions have comments, many of which
lacked functional summaries and contained noisy content. In-
spired by recent works [Tan et al., 2024b] that utilize LLMs
like ChatGPT to perform data annotation tasks with reason-
able reliability, we turn to ChatGPT to generate summaries of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Tasks Prompt Template

Call-site
Reconstruction

Please imagine you are an experienced binary reverse engineer. The following is a disassembled assembly code, your task is to understand its semantics and behavior, and output
call point in the form of C source code at ’call sub 5F57E’, including only a descriptive function name and function parameters, wrapped in three backticks (```), do not explain.
{Example}. Input assembly function: ```{Assmebly Code} ```

Decompilation Please imagine you are an experienced binary reverse engineer. The following is a disassembled assembly code, your task is to understand it and output its corresponding C
source code, wrapped in three backticks (```), do not explain. {Example}. Input assembly function: ```{Pseudo Code} ```

Signature
Recovery

Please imagine you are an experienced binary reverse engineer. The following is a stripped decompiled C function, your task is to understand it and output the descriptive function
signature in its corresponding source code. This includes the function name, parameter list and its type, and return value type. Wrap the output with three backticks (```), do not
explain. {Example}. Input decompiled C function: ```{Pseudo Code} ```

Binary Code
Summarization

Please imagine you are an experienced binary reverse engineer. The following is a stripped decompiled C function, your task is to understand it and generate a short comment to
the function describing its functionality. {Example}. Input decompiled C function: ```{Pseudo Code} ```

Algorithm
Classification

Please imagine you are an experienced binary reverse engineer. The following is a stripped decompiled C function, your task is to understand it and output its algorithm class
from the following list: [Sorting, Searching, Numerical Methods, Hash, Conversions, Math, Dynamic Programming, Cipher,]. Wrap the output with three backticks (```),
do not explain. {Example}. Input decompiled C function: ```{Pseudo Code} ```

Assembly
Generation

{Example}. Design an x64 architecture assembly code for {a bubble sort algorithm, which requires an array to be input from the terminal, and then the terminal outputs the sorted
result }. The generated assembly code is required to be wrapped in three backticks (```), can be compiled into an executable program by gcc, and does not contain comments.

Table 3: Base prompt templates of LLMs. {Example} represents the golden demonstration example in the One-shot prompts, and {··· ···}
represents the specific input for each piece of data.

the source code, outlining code functionality. We select 250
pseudo code-summary pairs, which are manually reviewed
for correctness to ensure high-quality ground truth for BCS.
For the AC task, we sample 80 pseudo-code snippets from
the C-Algorithms [C-Algorithms, 2024] project and manu-
ally annotate the respective algorithm categories. For the
AIG task, we design 100 clear instructions to guide LLMs
in generating assembly code snippets following Intel syntax
for given functionalities, such as implementing bubble sort.
We also provide test cases with inputs and outputs to verify
the functional correctness of the generated assembly code.

Overall, the above tasks, which required manual annota-
tion, review, and verification, cost about 60 man-hours.

3.4 Base Prompt Templates
To leverage the in-context learning capabilities of LLMs, we
adopt the one-shot prompt strategy, also and explore zero-
shot performance in §4.4. While zero-shot performs well on
simple tasks, it often lacks sufficient context for complex bi-
nary analysis, resulting in lower accuracy and consistency.
The chain-of-thought method aids step-by-step reasoning but
faces challenges like context length limits, reasoning effi-
ciency, and uncertain performance improvements.

Table 3 presents detailed one-shot prompts for different
tasks. Carefully selected golden examples are included in
the prompts to help the model grasp the task context and ex-
pected output format. Moreover, role-play prompts [Kong et
al., 2023] position the model as an ”experienced binary re-
verse engineer” to clarify task requirements and reduce am-
biguity. Code within prompts is enclosed in triple backticks
(```) to specify formatting, and the model’s output is sim-
ilarly wrapped to facilitate easier parsing in post-processing
and minimize noisy text interference.

3.5 Evaluators and Metrics
We build 4 evaluators, each targeting a specific dimension,
and integrate into an automated pipeline for easy invocation.

1 Binary Lifting Evaluator. This evaluator assesses
LLMs’ ability to convert binary code in assembly form into a
higher-level representation, crucial for reconstructing binary
program structure. It applies to CSR and DEC tasks, with
evaluation metrics Rouge-L [Lin, 2004] and CodeBLEU [Ren
et al., 2020]. Rouge-L measures textual consistency between
generated and reference call-site information, while Code-

BLEU evaluates the syntactic and semantic similarity of the
decompiled code to the source code.

2 Semantic Comprehension Evaluator. This evaluator
measures LLMs’ understanding and interpretation of binary
code, focusing on capturing the intent behind code snippets.
It applies to SR and BCS tasks, using BLEU-1 [Papineni
et al., 2002], METHOR [Lavie and Denkowski, 2009], and
Rouge-L to assess precise word matching, semantic flexibil-
ity and richness, and structural coherence.

3 Logical Analysis Evaluator. This evaluator tests
LLMs’ ability to comprehend algorithmic logic in binary
code, classifying algorithms or patterns. It applies to AC
tasks, with Accuracy as the metric.

4 Assembly Synthesis Evaluator. This evaluator as-
sesses LLMs’ ability to generate accurate, executable assem-
bly code from natural language descriptions for the AIG task.
The evaluation includes three metrics: Syntactic correctness,
Execution correctness, and Rouge-L. Syntactic correctness
ensures the generated code compiles without errors, adhering
to proper syntax rules. Execution correctness is verified using
pre-designed test cases to confirm the intended functionality.
To mitigate security risks, code execution is conducted in an
isolated Docker environment. Rouge-L measures the textual
consistency between the generated code and expected output.

4 Evaluation
4.1 Experiment Setup
Large Language Models Setup. We evaluate 12 LLMs
from 5 model families, including both locally deployable
open-source and API-callable closed-source models, based
on the following criteria: (1) State-of-the-art LLMs ranked
on leaderboards like EvalPlus [EvalPlus, 2024]. (2) Exten-
sive code pre-training to enhance programming understand-
ing. (3) Strong capabilities in both natural language and code
generation tasks. (4) Instruction-tuned to effectively follow
detailed instructions.

Implementation Details. The experiments are conducted
on an Ubuntu 22.04 server with 8 NVIDIA RTX A6000
GPUs. For closed-source LLMs, i.e. ChatGPT and GPT4,
we call OpenAI’s API to access gpt-3.5-turbo-16k-0613
and gpt-4-0613 backend models. Open-source LLMs are
downloaded from Huggingface, with half-precision in FP16
enabled for inference. Given the context window limitations,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

BinMetric Benchmark
CSR DEC SR BCS AC AIGType Model Size

Rouge-L CodeBLEU Rouge-L BLEU METEOR Rouge-L Acc. Syntax
Corr.

Execution
Corr. Rouge-L

Baseline
Methods

LLM4-
Decompile

1.3B - 21.53 - - - - - - - -
6.7B - 22.97

(↑6.7%)
- - - - - - - -

33B - 24.48
(↑6.6%)

- - - - - - - -
IDA Pro - 8.52 18.56 10.27 - - - - - - -
BinT5 220M - - - 31.58 1.82 4.28 - - - -
HexT5 223M - - - 36.92 4.99 7.65 - - - -
Llama2 7B 3.83 24.71 6.51 35.83 21.64 19.00 15.00 1.00 0.00 31.58

7B 4.91
(↑28.2%)

23.62
(↓4.4%)

14.49
(↑122.6%)

16.32
(↓54.5%)

16.81
(↓22.3%)

13.05
(↓31.3%)

36.25
(↑141.7%)

68.00
(↑6700%)

0.00
(↑0.0%)

24.44
(↓22.6%)

CodeLlama 34B 6.17
(↑25.7%)

20.60
(↓12.8%)

26.59
(↑83.5%)

29.04
(↑77.9%)

28.89
(↑71.9%)

22.89
(↑75.4%)

65.00
(↑79.3%)

63.00
(↓7.4%)

2.00
(↑inf%)

23.98
(↓1.9%)

DeepSeek 7B 4.92 16.63 8.95 40.44 26.97 23.92 20.00 17.00 0.00 14.50
7B 2.99

(↓39.2%)
21.36

(↑28.4%)
11.66

(↑30.3%)
32.45

(↓19.8%)
30.23

(↑12.1%)
23.44

(↓2.0%)
47.50

(↑137.5%)
41.00

(↑141.2%)
4.00

(↑inf%)
24.54

(↑69.2%)

DeepSeek-Coder 33B 6.35
(↑112.4%)

22.77
(↑6.6%)

19.97
(↑71.3%)

43.58
(↑34.3%)

30.41
(↑0.6%)

27.60
(↑17.7%)

71.25
(↑50.0%)

16.00
(↓61.0%)

1.00
(↓75.0%)

12.64
(↓48.5%)

15B 0.05 22.62 27.04 25.76 27.44 20.16 51.25 0.00 0.00 4.02WizardCoder 33B 8.34
(↑inf%)

23.62
(↑4.4%)

28.12
(↑4.0%)

45.93
(↑78.3%)

28.09
(↑2.4%)

27.93
(↑38.5%)

75.00
(↑46.3%)

1.00
(↑inf%)

0.00
(↑0.0%)

9.95
(↑147.5%)

7B 4.63 19.51 19.49 41.39 31.00 26.63 48.75 2.00 0.00 7.51

Open
Source

Mixtral 8x7B 7.27
(↑57.0%)

22.15
(↑13.5%)

21.91
(↑12.4%)

43.19
(↑4.3%)

29.88
(↓3.6%)

26.73
(↑0.4%)

65.00
(↑33.3%)

32.00
(↑1500%)

1.00
(↑inf%)

27.89
(↑271.4%)

GPT-3.5-Turbo / 4.09 21.04 19.62 36.16 30.69 25.09 60.00 15.00 0.00 23.97Close
Source GPT-4 / 9.61 25.99 20.69 44.48 24.81 23.25 83.75 11.00 1.00 18.62

Average 5.26 22.05 18.75 36.21 27.24 23.31 53.23 22.25 0.75 18.64

Table 4: Overall effectiveness of LLMs and baselines on BinMetric. ↑and ↓represent a relative increase and decrease between two rows.

we set max length to 8192 and max new tokens to 2048.
Since accuracy is prioritized over diversity in most code-
related tasks, the sampling temperature is set to 0.1, with
top k and top p both set to 1 for deterministic responses.
Baseline Methods. To evaluate LLMs’ effectiveness, we en-
deavor to include as many baseline methods as possible. For
static analysis tool IDA Pro [Hex-RaysSA, 2024], we use its
Hex-rays decompiler for CSR, DEC, and SR tasks, though it
doesn’t support others. For DEC task, we evaluate three ver-
sions (1.3B, 6.7B, and 33B) of LLM4Decompile [Tan et al.,
2024a], a LLM fine-tuned on DeepSeek-Coder for decompi-
lation task. For BCS task, we reproduce the methods BinT5
[Al-Kaswan et al., 2023] and HexT5 [Xiong et al., 2023]. For
AC and AIG tasks, no existing baselines are available, and our
BinMetric provides a potential baseline for future research.

4.2 Overall Effectiveness
In Table 4, we present the overall effectiveness of various
LLMs across different binary analysis tasks.
Results on Binary Lifting. We evaluate binary lifting us-
ing Rouge-L and CodeBLEU to assess LLM performance in
CSR and DEC, respectively. The average scores are 5.26%
and 22.05%. Reconstructing call-sites without additional
knowledge about callees themselves is highly challenging
for general LLMs. Although GPT-4 achieves the highest
CSR score (9.61%), manual inspection reveals limited use-
ful reconstructions. Except for GPT-4, all LLMs score be-
low the IDA Pro baseline (8.52%), with WizardCoder-15B
scoring the lowest (0.05%) due to its failure to follow in-
structions. In contrast, DEC scores are relatively higher, sug-
gesting that LLMs have the potential to perform the semantic
mapping between disassembled code and source code. GPT-
4 and DeepSeek-7B achieve the highest and lowest scores of
25.99% and 16.63%, indicating that decompilation presents
consistent challenges for non-tailored models, and does not
show dramatic performance variations based on model size
and domain. LLM4Decompile shows slight improvements
over its base model, DeepSeek-Coder, at the same scale.
Results on Semantic Comprehension. We evaluate seman-
tic comprehension via SR and BCS. For these two semantic
understanding tasks, LLMs perform relatively well, mostly
surpassing baseline methods. In SR, the average Rouge-L

is 18.75%, with WizardCoder-33B scoring highest (28.12%)
and Llama2-7B has struggled in it (6.51%). Furthermore,
performance improved with model size (up to 42.8%) and
code-specific LLMs outperform general ones by 76.45%. For
BCS, we use BLEU, METEOR, and Rouge-L to provide a
comprehensive evaluation. WizardCoder-33B achieves the
best mean score (33.3%), while CodeLlama-7B performs
the worst (22%). Interestingly, DeepSeek-Coder-7B under-
performs compared to its general counterpart DeepSeek-7B,
scoring 28.71% vs. 30.44%, suggesting code-specific pre-
training might hinder natural language expression.
Results on Logical Analysis. The AC task evaluates LLMs’
ability to identify pseudo code classes among a given can-
didate list. LLMs achieve an overall score of 53.23%,
indicating that they can understand high-level semantics and
support deeper logical reasoning to a certain extent. GPT-
4 lead with 83.75%, while smaller models like Llama2-7B
and DeepSeek-7B score the lowest (15.00% and 20.00%).
Code-specific LLMs outperform general ones by 139.6%,
and larger models show notable gains.
Results on Assembly Synthesis. AIG evaluates LLMs’ abil-
ity to generate assembly code from natural language descrip-
tions using Intel Syntax. Only compilable outputs are consid-
ered syntactically correct. CodeLlama-7B achieves the high-
est syntax correctness score (68%), likely due to additional
pre-training on assembly code. In contrast, other models
struggle, with GPT-4 scoring only 11%. Execution correct-
ness, assessed via test cases, has an average pass rate of less
than 1%. We also use Rouge-L to measure textual consis-
tency. Llama2-7B achieves the highest score (31.58%), with
manual identification revealing more similar code-blocks be-
tween its prediction and the reference. However, models like
WizardCoder-15B (4.02%) and Mixtral-7B (7.51%) fail to
follow instructions. These results indicate LLMs currently
struggle with reconstructing low-level operations due to the
complexity of assembly and lack of domain expertise.

4.3 LLMs Comparison
As shown in Figure 4, we aggregate model scores across
various tasks into a radar chart to illustrate performance
differences. We calculate task scores using the average
of relevant metrics and determine relative scores based on
the highest score in each task. Overall, GPT-4 dominates

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

15 20 25 30
BinMetric Overall Score

GPT-4
GPT-3.5-Turbo

CodeLlama-34B
WizardCoder-33B

Mistral-8x7B
DeepSeekCoder-33B

DeepSeekCoder-7B
Mistral-7B

WizardCoder-15B
CodeLlama-7B
DeepSeek-7B

Llama2-7B

Avg:27.46Avg:22.93

Closed-Source
LLMs

Open-Source
LLMs

(a) Overall scores of LLMs across 6 tasks.
Dashed lines for two LLM types’ average.

Lla
ma2

-7B

Cod
eL

lam
a-7

B

Cod
eL

lam
a-3

4B

Dee
pSee

k-7
B

Dee
pSee

k-C
od

er-
7B

Dee
pSee

k-C
od

er-
33B

Wiza
rdCod

er-
15B

Wiza
rdCod

er-
33B

Mixt
ral

-7B

Mixt
ral

-8x7
B

GPT-
3.5-Tu

rbo
GPT-

4
10

15

20

25

30

O
ve

ra
ll

Sc
or

es Zero-shot Prompts
One-shot Prompts

(b) Overall scores of LLMs with Zero-shot
(Left) and One-shot (Right) prompts.

Lla
ma2

-7B

Cod
eL

lam
a-7

B

Cod
eL

lam
a-3

4B

Dee
pSee

k-7
B

Dee
pSee

kC
od

er-
7B

Dee
pSee

kC
od

er-
33B

Wiza
rdCod

er-
15B

Wiza
rdCod

er-
33B

Mixt
ral

-7B

Mixt
ral

-8x7
B

GPT-
3.5-Tu

rbo
GPT-

4
10

15

20

25

30

O
ve

ra
ll

Sc
or

es Short Code Length
Long Code Length

(c) Overall score of LLMs for short (Left)
and long (Right) code input lengths.

Figure 3: Overall scores of LLMs, and the impact of prompts design and code length.

Call-site
 Reconstruction

DecompilationSignature Recovery

Binary Code
 Summarization

Algorithm ClassificationAssembly Instruction
 Generation

DeepSeek
DeepSeek-Coder 7B
DeepSeek-Coder 33B
Llama2
CodeLlama 7B
CodeLlama 34B
Mixtral 7B
Mixtral 8x7B
WizardCoder 15B
WizardCoder 33B
GPT-3.5-Turbo
GPT-4

Figure 4: Relative performance against the best in each task.

the arena in DEC, CR, and AC tasks but underperforms in
AIG. Trailing closely, WizardCoder-33B, CodeLlama-34B,
and Mixtral-8x7B demonstrate comparable performance with
distinct strengths and weaknesses.
Open-source v.s. Closed-source. Figure 3 (a) presents the
average scores of all models across tasks. Closed-source
LLMs achieve a higher mean score (27.46%) compared to
open-source ones (22.93%). However, certain open-source
models, like CodeLlama-34B, surpass the closed-source av-
erage. This suggests that open-source LLMs can be competi-
tive in binary analysis, offering strong confidence in develop-
ing expert LLMs in the binary domain based on these models.
Parameter Size & Code-specific Knowledge. Our study
examines two model size ranges (7-15B & 33-8x7B) and
involves models with code domain knowledge from multi-
ple LLM families. As shown in Figure 3 (a), larger models
generally perform better, likely due to improved instruction-
following capabilities and richer embedded knowledge. Ad-
ditionally, domain-specific knowledge within the code do-
main enhances performance, even though code datasets rarely
include decompiled binary code.

4.4 Other Factors
We examine the impact of prompts design and code length.
Prompts Design. Figure 3 (b) compares performance us-
ing zero-shot and one-shot prompts. In most cases, one-shot
prompts significantly improved overall scores, with an aver-
age increase of 16.65%, emphasizing the importance of pro-
viding examples in guiding LLMs in the complex domain bi-
nary analysis. However, Llama2-7B’s performance drops by
10.79% with one-shot prompts. Analysis reveals that it tends
to replicate provided examples rather than generate context-
based responses, likely due to its inherent capacity limitations
affecting its ability to generalize from demonstrations.

Code Length. To study the impact of input code length on
performance, we divide the problem items of each task into
shorter and longer groups. Figure 3 (c) shows that longer code
snippets result in an average score drop of 6.00% compared
to shorter ones. This trend, consistent across tasks, highlights
the challenges in handling extended code snippets.

5 Discussion
Potential and Limitations of LLMs. This paper presents an
empirical study of various LLMs, highlighting their strengths
and weaknesses in binary analysis. GPT-4 and WizardCoder-
34B excel in algorithm classification and binary code sum-
marization, showcasing their ability to extract high-level se-
mantics and support logical reasoning. However, LLMs face
challenges in call-site reconstruction and assembly genera-
tion due to the complexity of assembly instructions and lim-
ited domain knowledge. While LLMs show promise, chal-
lenges remain, and future work should address these gaps.
Future Development to Binary-Specific LLMs. The ad-
vancement of foundation LLMs and domain-specific models
makes binary expert LLMs both feasible and promising. Like
source code models, binary-specific LLMs should cover di-
verse tasks across the binary analysis lifecycle. As a multi-
task benchmark leaderboard, BinMetric will be crucial for
evaluating and guiding progress in this area. Binary expert
LLMs should incorporate extensive binary domain knowl-
edge during pre-training, including various assembly lan-
guages, compiler optimizations, instruction set architectures,
etc., enabling a deeper grasp of code semantics and structure.
Techniques like retrieval-augmented generation and special-
ized instruction fine-tuning can expand LLMs’ binary knowl-
edge. Our studies indicate different LLMs excel in specific
areas, pointing to the potential of combining their strengths
to create an expert ensemble model for binary analysis.

6 Conclusion
In this paper, we present a pioneering study on LLMs’ bi-
nary analysis capabilities. We develop a standardized data
pipeline, resulting in BinMetric, a comprehensive benchmark
with 1,000 question items across 6 key tasks reflecting real-
world challenges. Our evaluation of various LLMs highlights
their strengths and limitations, showing promising potential
but also significant challenges. As LLMs evolve, we believe
BinMetric will serve as a crucial benchmark leaderboard for
assessing and advancing progress in this field.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported in part by the Natural Science
Foundation of China under Grant U20B2047, 62072421,
62002334, 62102386, and 62121002.

References
[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini

Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[Al-Kaswan et al., 2023] Ali Al-Kaswan, Toufique Ahmed,
Maliheh Izadi, Anand Ashok Sawant, Premkumar De-
vanbu, and Arie van Deursen. Extending source code pre-
trained language models to summarise decompiled binarie.
In 2023 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages 260–
271. IEEE, 2023.

[C-Algorithms, 2024] C-Algorithms. https://github.com/
TheAlgorithms/C, 2024.

[Chen et al., 2021] Mark Chen, Jerry Tworek, Heewoo Jun,
Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

[Chen et al., 2022] Qibin Chen, Jeremy Lacomis, Edward J
Schwartz, Claire Le Goues, Graham Neubig, and Bogdan
Vasilescu. Augmenting decompiler output with learned
variable names and types. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 4327–4343, 2022.

[Dai et al., 2022] Damai Dai, Yutao Sun, Li Dong, Yaru
Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why
can gpt learn in-context? language models implicitly per-
form gradient descent as meta-optimizers. arXiv preprint
arXiv:2212.10559, 2022.

[David et al., 2020] Yaniv David, Uri Alon, and Eran Yahav.
Neural reverse engineering of stripped binaries using aug-
mented control flow graphs. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–28, 2020.

[EvalPlus, 2024] EvalPlus. https://evalplus.github.io/
leaderboard.html, 2024.

[for Standardization, 2011] International Organization for
Standardization. Systems and Software Engineering: Sys-
tems and Software Quality Requirements and Evaluation
(SQuaRE): System and Software Quality Models. ISO,
2011.

[Gao et al., 2023] Zeyu Gao, Hao Wang, Yuchen Zhou,
Wenyu Zhu, and Chao Zhang. How far have we gone in
vulnerability detection using large language models. arXiv
preprint arXiv:2311.12420, 2023.

[Guo et al., 2024] Daya Guo, Qihao Zhu, Dejian Yang,
Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the
large language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024.

[Heimann, 2014] D Heimann. Ieee standard 730-2014 soft-
ware quality assurance processes. IEEE Computer Society,
New York, NY, USA, IEEE Std, 730:2014, 2014.

[Hex-RaysSA, 2024] Hex-RaysSA. ”ida pro”. https://www.
hex-rays.com/products/ida, 2024.

[International, 2010] I. UNIX International. Dwarf debug-
ging information format version 4. https://dwarfstd.org/
doc/DWARF4.pdf, 2010.

[Jiang et al., 2023] Nan Jiang, Kevin Liu, Thibaud Lutellier,
and Lin Tan. Impact of code language models on auto-
mated program repair. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE), pages
1430–1442. IEEE, 2023.

[Jiang et al., 2024] Albert Q Jiang, Alexandre Sablayrolles,
Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. Mixtral of ex-
perts. arXiv preprint arXiv:2401.04088, 2024.

[Jin et al., 2022] Xin Jin, Kexin Pei, Jun Yeon Won, and
Zhiqiang Lin. Symlm: Predicting function names in
stripped binaries via context-sensitive execution-aware
code embeddings. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1631–1645, 2022.

[Jin et al., 2023] Xin Jin, Jonathan Larson, Weiwei Yang,
and Zhiqiang Lin. Binary code summarization: Bench-
marking chatgpt/gpt-4 and other large language models.
arXiv preprint arXiv:2312.09601, 2023.

[Just et al., 2014] René Just, Darioush Jalali, and Michael D
Ernst. Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Proceed-
ings of the 2014 international symposium on software test-
ing and analysis, pages 437–440, 2014.

[Kong et al., 2023] Aobo Kong, Shiwan Zhao, Hao Chen,
Qicheng Li, Yong Qin, Ruiqi Sun, and Xin Zhou. Bet-
ter zero-shot reasoning with role-play prompting. arXiv
preprint arXiv:2308.07702, 2023.

[Lavie and Denkowski, 2009] Alon Lavie and Michael J.
Denkowski. The meteor metric for automatic eval-
uation of machine translation. Machine Translation,
23(2–3):105–115, sep 2009.

[Lin, 2004] Chin-Yew Lin. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain, 2004. As-
sociation for Computational Linguistics.

[LLVM, 2024] LLVM. ”clang static analyzer”. https://
clang-analyzer.llvm.org/, 2024.

[Maletic and Collard, 2015] Jonathan I. Maletic and
Michael L. Collard. Exploration, analysis, and manipula-
tion of source code using srcml. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
volume 2, pages 951–952, 2015.

[Nguyen Hung et al., 2023] Thinh Nguyen Hung, Hai
Nguyen Phuc, Khoa Tran Dinh, Nhan Le Tran Thanh,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/TheAlgorithms/C
https://github.com/TheAlgorithms/C
https://evalplus.github.io/leaderboard.html
https://evalplus.github.io/leaderboard.html
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/DWARF4.pdf
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Nghia To Trong, Khoa Ngo Khanh, Duy Phan The,
and Hau Pham Van. Binary representation embedding
and deep learning for binary code similarity detection
in software security domain. In Proceedings of the
12th International Symposium on Information and
Communication Technology, pages 785–792, 2023.

[of Standards and (NIST), 2023] National Institute of Stan-
dards and Technology (NIST). Trustworthy and respon-
sible ai., 2023.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in neural informa-
tion processing systems, 35:27730–27744, 2022.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia, Penn-
sylvania, USA, 2002. Association for Computational Lin-
guistics.

[Ren et al., 2020] Shuo Ren, Daya Guo, Shuai Lu, Long
Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a
method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297, 2020.

[Roziere et al., 2023] Baptiste Roziere, Jonas Gehring,
Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

[Sawada et al., 2023] Tomohiro Sawada, Daniel Paleka,
Alexander Havrilla, Pranav Tadepalli, Paula Vidas,
Alexander Kranias, John J Nay, Kshitij Gupta, and Aran
Komatsuzaki. Arb: Advanced reasoning benchmark for
large language models. arXiv preprint arXiv:2307.13692,
2023.

[Statista, 2024] Statista. https://www.statista.com/statistics/
1101442/iot-number-of-connected-devices-worldwide/,
2024.

[Sutherland et al., 2006] Iain Sutherland, George E Kalb,
Andrew Blyth, and Gaius Mulley. An empirical exami-
nation of the reverse engineering process for binary files.
Computers & Security, 25(3):221–228, 2006.

[Tan et al., 2024a] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun
Zhang. Llm4decompile: Decompiling binary code with
large language models. arXiv preprint arXiv:2403.05286,
2024.

[Tan et al., 2024b] Zhen Tan, Alimohammad Beigi, Song
Wang, Ruocheng Guo, Amrita Bhattacharjee, Bohan
Jiang, Mansooreh Karami, Jundong Li, Lu Cheng, and
Huan Liu. Large language models for data annotation: A
survey. arXiv preprint arXiv:2402.13446, 2024.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, Kevin
Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[Wei et al., 2023] Yuxiang Wei, Chunqiu Steven Xia, and
Lingming Zhang. Copiloting the copilots: Fusing large
language models with completion engines for automated
program repair. In Proceedings of the 31st ACM Joint Eu-
ropean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 172–
184, 2023.

[Xiong et al., 2023] Jiaqi Xiong, Guoqiang Chen, Kejiang
Chen, Han Gao, Shaoyin Cheng, and Weiming Zhang.
Hext5: Unified pre-training for stripped binary code infor-
mation inference. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 774–786. IEEE, 2023.

[Xu et al., 2017] Zhengzi Xu, Bihuan Chen, Mahinthan
Chandramohan, Yang Liu, and Fu Song. Spain: secu-
rity patch analysis for binaries towards understanding the
pain and pills. In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE), pages 462–472.
IEEE, 2017.

[Zeng et al., 2024] Zhengran Zeng, Yidong Wang, Rui Xie,
Wei Ye, and Shikun Zhang. Coderujb: An executable and
unified java benchmark for practical programming scenar-
ios. arXiv preprint arXiv:2403.19287, 2024.

[Zhang et al., 2021] Zhuo Zhang, Wei You, Guanhong Tao,
Yousra Aafer, Xuwei Liu, and Xiangyu Zhang. Stochfuzz:
Sound and cost-effective fuzzing of stripped binaries by
incremental and stochastic rewriting. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 659–676.
IEEE, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/

