
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Attractor-based Closed List Search: Sparsifying the Closed List for Efficient
Memory-Constrained Planning

Alvin Zou , Muhammad Suhail Saleem and Maxim Likhachev
Carnegie Mellon University

{azou, msaleem2}@andrew.cmu.edu, maxim@cs.cmu.edu

Abstract
Best-first search algorithms such as A* and
Weighted A* are widely used tools. However,
their high memory requirements often make them
impractical for memory-constrained applications,
such as on-board planning for interplanetary rovers,
drones, and embedded systems. One popular strat-
egy among memory-efficient approaches devel-
oped to address this challenge is to eliminate or
sparsify the Closed list, a structure that tracks states
explored by the search. However, such methods of-
ten incur substantial overhead in runtime, requiring
recursive searches for solution reconstruction. In
this work, we propose Attractor-based Closed List
Search (ACLS), a novel framework that sparsely
represents the Closed list using a small subset of
states, termed attractors. ACLS intelligently identi-
fies attractor states in a way that enables efficient
solution reconstruction while preserving theoreti-
cal guarantees on the quality of the solution. Fur-
thermore, we also introduce a lazy variant, Lazy-
ACLS, which defers the computation of attractor
states until necessary, substantially improving plan-
ning speed. We demonstrate the efficacy of ACLS
used in conjunction with A*, Weighted A*, and Di-
jkstra’s searches across multiple domains includ-
ing 2D and 3D navigation, Sliding Tiles, and Tow-
ers of Hanoi. Our experimental results demon-
strate that ACLS significantly reduces memory us-
age, maintaining only 9% of the states typically
stored in a Closed list, while achieving compa-
rable planning times and outperforming state-of-
the-art approaches. Source code can be found at
github.com/alvin-ruihua-zou/ACLS.

1 Introduction
Best-first search algorithms have long been a cornerstone of
planning systems, valued for their strong theoretical guaran-
tees and ability to solve diverse planning problems. However,
achieving these guarantees often requires significant com-
putational and memory resources, particularly in large and
complex search spaces. Over the past few decades, substan-
tial progress has been made in improving the runtime effi-
ciency of these algorithms. However, less attention has been
given to optimizing memory utilization, a critical considera-
tion in resource-constrained environments such as embedded

systems, interplanetary rovers, and drones. In such scenarios,
the high memory footprint of these algorithms can become a
critical bottleneck.

The Open and Closed lists are data structures central to the
operation of many widely used best-first search algorithms
(including A*, Weighted A*, and Dijkstra’s) [Dijkstra, 1959;
Hart et al., 1968; Pohl, 1970]. The Open list maintains the
search frontier by prioritizing states for expansion based on
their heuristic evaluation, processing the most promising ones
first. The Closed list, on the other hand, serves two critical
purposes. First, it prevents the algorithm from re-expanding
states that have already been expanded, thereby avoiding re-
dundant work. Second, it facilitates solution reconstruction.
Upon reaching the goal state, the solution path from the start
to goal must be traced. This is achieved through backtrack-
ing, leveraging the parent pointers stored within the states.
Together, these lists ensure both the efficiency and correct-
ness of the search process. However, they are also the primary
contributors to the high memory footprint of these algorithms.

Over the years, various approaches have been developed
to improve the memory efficiency of best-first search algo-
rithms [Korf, 1993; Reinefeld and Marsland, 1994; Edelkamp
et al., 2004; Lovinger and Zhang, 2017; Bu and Korf, 2019],
as discussed in Section 2. A particularly effective strat-
egy involves sparsifying (reducing the size of) or completely
eliminating the Closed list [Zhou and Hansen, 2003; Korf et
al., 2005]. While this significantly reduces memory usage,
it comes at the cost of increased computation time. Tech-
niques have been developed to mitigate state re-expansion
in the absence of the Closed list [Zhou and Hansen, 2003;
Korf et al., 2005]. However, eliminating or naively sparsify-
ing the Closed list compromises the ability to quickly back-
track from the goal state to reconstruct the solution path. In-
stead, it requires a series of recursive searches, resulting in
much longer planning times.

To this extent, in this manuscript we propose Attractor-
based Closed List Search (ACLS) framework. As opposed
to completely eliminating the Closed list, our framework in-
telligently identifies and maintains a small subset of states,
termed attractors, which enables the reconstruction of the so-
lution without performing recursive searches. The key idea is
that a complete path between the start and goal can be recon-
structed from a sparse set of intermediate states guided by a
heuristic function. For example, in Figure 1, a 10-state path
from the start to the goal can be represented using just three
states (sgoal, sstart, and sattractor) and the Euclidean heuris-
tic function. By greedily selecting predecessors based on

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The path from sgoal to sstart can be represented by just
3 states (sgoal, sstart, sattractor) and the Euclidean heuristic func-
tion.

heuristic minimization, i.e., minimizing the Euclidean heuris-
tic function with respect to the next attractor state (either
sattractor if on the right segment or sstart if on the left seg-
ment), which we refer to as Attractor-based greedy tracing,
the path can be reconstructed efficiently from the goal back to
the start. This approach reduces the number of stored states in
the Closed list to only the necessary intermediates, drastically
cutting memory usage while still supporting solution recon-
struction. To ensure that all relevant paths are represented,
ACLS evaluates each state to determine whether it should be
stored as an attractor. However, a naive implementation of
this process could lead to excessive computational overhead.
To mitigate this, we also introduce a lazy variant of the frame-
work, Lazy-ACLS (LACLS), which postpones these evalua-
tions until necessary, accelerating the planning process.

ACLS and LACLS are generic frameworks compatible
with various optimal and bounded-suboptimal search algo-
rithms. In this manuscript, we evaluate their performance
with A*, Weighted A*, and Dijkstra’s across diverse do-
mains, including 2D and 3D navigation, Sliding Tiles, and
Towers of Hanoi. Our results demonstrate the ability of our
framework to significantly reduce memory usage, retaining
only 9% of the states typically stored in a Closed list, while
still maintaining competitive planning times.

2 Related Work
Over the years, two broad classes of ideas have been ex-
plored to reduce the memory utilization of best-first search
algorithms. The first class focuses on reducing the size of
the Open list. Techniques include pruning states with high
f -values [Ikeda and Imai, 1999], partially expanding states
to prioritize the most promising successors [Yoshizumi et al.,
2000; Goldenberg et al., 2014], and pruning the least promis-
ing states and then regenerating them if no solution is found
[Chakrabarti et al., 1989; Russell, 1992; Zhou and Hansen,
2002; Lovinger and Zhang, 2017]. While effective, these
strategies are tangential to our work which aims to sparsify
the Closed list.

The second major class of techniques, which we closely
identify with, focuses on reducing the size of the Closed list.
Frontier Search [Korf et al., 2005] eliminates the Closed list
by maintaining a set of action operators for each state. These
operators enable the search to avoid re-expanding states in
the absence of the Closed list. However, by removing the
Closed list, solution reconstruction now requires a series of
recursive searches. Each search identifies a midpoint on the
optimal path, and Frontier Search is recursively called to find
a path from the start to the midpoint and from the midpoint to
the goal. A similar method, Sparse Memory Graph Search

(SMGS) [Zhou and Hansen, 2003], retains only a portion
of the Closed list by dividing it into a kernel and a bound-
ary. The boundary contains expanded states that have at least
one immediate successor in the search frontier (i.e., Open
list), while the kernel contains the rest of the states. Since
the kernel states do not impact the optimal path to states in
the Open list, they are deleted when the size of the Closed
list reaches some predefined threshold. To reconstruct the
solution, SMGS keeps track of relay states, which, like the
midpoints in Frontier Search, divide the search into smaller
subproblems. While effective in reducing memory, both ap-
proaches significantly increase time complexity. Empirical
comparisons with Frontier Search and SMGS are examined
in Section 5.

Apart from the two broad approaches mentioned above,
depth-first approaches have also been developed, includ-
ing Recursive Best-First Search [Korf, 1993] and Iterative-
Deepening-A* [Korf, 1985], solving problems in linear space
by performing a series of depth-first searches with increas-
ing depth. However, these methods cannot detect differ-
ent paths that lead to the same state, resulting in duplicate
search efforts. Enhancements such as using transposition ta-
bles [Reinefeld and Marsland, 1994; Romein et al., 1999] or
combing IDA* with other algorithms [Bu and Korf, 2019] re-
duces duplicate search efforts, but the runtime still remains a
bottleneck.

Efforts have also been made to address high memory con-
sumption by utilizing external memory. These include storing
the Open and Closed lists on disk [Korf, 2004; Edelkamp et
al., 2004; Korf and Schultze, 2005], which extends memory
capacity but incurs additional I/O overhead. Finally, our work
draws inspiration from the concept of attractors introduced
by [Islam et al., 2019], which were used for offline computa-
tion to allow the planner to compute solutions online within
a predefined time bound. However, our focus is diametrically
different, it is to utilize attractors to sparsely represent the
Closed list.

3 Terminologies and Preliminary
Let S denote the search space and let s ∈ S represent a
state within this space. The set of successor states directly
reachable from s is denoted as Succ(s), while the set of
predecessor states that directly lead to s is represented as
Pred(s). The cost of transitioning from a state s to a suc-
cessor state s′ is defined by the cost function c(s, s′). Given
a start state sstart ∈ S and a goal state sgoal ∈ S , the
optimal solution path π∗ = {sstart, s1, s2, ...sgoal} is a se-
quence of states such that each consecutive pair of states are
directly connected, i.e., si+1 ∈ Succ(si), and the total path
cost c(π∗), defined by the summation of the transition costs
c(π∗) =

∑
i∈len(π∗) c(si, si+1), is minimized.

In undirected graphs, successors and predecessors are iden-
tical for all states (Succ(s) = Pred(s), ∀s ∈ S). Although
in this manuscript the ACLS framework is illustrated using
undirected graphs, it applies to directed graphs as well.

Typical best-first search algorithms maintain two lists, the
Open list and the Closed list. The Closed list contains states
that have been expanded, and the Open list contains states that
have been generated but not yet expanded. For a state s, let
g(s) be the cost from the start state sstart to s, and h(s) be the
estimated cost from s to the goal state sgoal, given by a consis-
tent heuristic function (h is consistent if, for all states s and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

s′, h(s) ≤ c(s, s′) + h(s′)). A backpointer, s.parent, repre-
sents the best parent leading to s. The states in the Open list
are ordered for expansion based on a priority function (e.g.,
g(s) + w ∗ h(s), w ≥ 0). During the expansion process,
all successors of the current state are generated. Those that
have not been previously expanded are added to the Open list,
while the expanded state itself is moved to the Closed list.

[Korf et al., 2005] introduced the idea of action operators to
circumvent the problem of re-expanding states in the absence
of a Closed list. Each operator corresponds to an action, and
when a state s is expanded, all predecessors s′ ∈ Pred(s)
mark their operator associated with the action of generating s
as used. This ensures that when a predecessor s′ is expanded,
the action that regenerates s is excluded. However, operators
do not encode any information that can help with solution
reconstruction. Hence, in our framework we adopt the idea
of operators to prevent re-expansions, and develop the idea of
attractors to enable efficient solution reconstruction. It should
be noted that our framework can also be combined with other
techniques that prevent state re-expansions (e.g., SMGS).

Since our framework relies on the concept of greedy trac-
ing, we begin by defining the notions of a greedy predecessor
and greedy tracing, inspired by [Islam et al., 2019], before
detailing how the algorithm operates.
Definition 1. Let s be some state and s′ its predecessor.
s′ is a greedy predecessor of s with respect to some non-
negative function p(s), i.e., p(s) ≥ 0 ∀ s ∈ S , if it has the
minimal p-value with respect to all predecessors of s, i.e.,
s′ = argmins′′∈Pred(s)p(s

′′).
Note that for a given p and a deterministic tiebreaking rule,

every state with a non-zero number of incoming edges has a
unique greedy predecessor. In our framework, a predefined
action order induces an order over parent states; ties are bro-
ken in favor of the earliest parent in this order.
Definition 2. Given such a function p and some determin-
istic tiebreaking rule, an algorithm is said to greedily trace
with respect to p if, for any state, it iteratively identifies and
returns its greedy predecessor according to p, terminating
when reaching a state with p(s) = 0.

Note that we have defined greedy tracing in the backward
direction, i.e., picking the best predecessor (instead of the
successor), the reason for which will become clearer once
we elucidate how we utilize it. We assume that the frame-
work has access to some deterministic tiebreaking and a
non-negative heuristic function, hdist : S × S → R, s.t.,
hdist(s, s

′) ≥ 0 ∀ s, s′ ∈ S , which estimates the distance be-
tween any two states in S . The heuristic function satisfies the
property hdist(s, s) = 0, i.e., the heuristic estimate from a
state to itself is 0. Given such a heuristic function hdist, an
algorithm is said to greedily trace toward a target state s ∈ S
if we trace with respect to a function p, where p is parame-
terized by s and is equal to hdist(s, s

′), ∀ s′ ∈ S .

4 Methodology
In typical best-first search algorithms, all expanded states are
stored in the Closed list. Upon expanding the goal state, the
solution path is reconstructed by starting at the goal and it-
eratively moving to the best parent by either following back-
pointers if they were maintained during the search or comput-
ing a parent state whose g-value plus the cost of the transition
is minimal among all parents. Either of these options relies

Figure 2: The states generated by the search can be decomposed
into subregions, each associated with a different attractor. The re-
constructed solution from the goal state is highlighted in green.

on having access to the entire Closed list. Our key insight is
to replace the Closed list with a sparse set of states called at-
tractors, such that the reconstruction of the solution becomes
a series of greedy traces with respect to the attractors, with
every greedy trace recovering a segment of the optimal path.

The ACLS framework is structured similarly to a typical
best-first search, with one key difference: instead of maintain-
ing a Closed list, the algorithm maintains a set of attractors,
denoted as Attractors. The main algorithm is presented in
Algorithm 1 with the procedures for creating and deleting at-
tractors detailed in UPDATEATTRACTOR and TIEBREAKAT-
TRACTOR. Solution reconstruction is outlined in the RECON-
STRUCTPATH procedure. To reiterate, ACLS is a generic
framework, and the ideas employed by it can be integrated
with a number of search algorithms.

ACLS
Every state generated by the search is assigned an attractor
state, which is always one of the previously expanded states.
An attractor a is assigned to a state s, if i) a greedy trace from
s towards a recovers the current best path from a to s, and ii)
this recovered path is a segment of the current best path from
the start state sstart to s. Every state’s best parent qualifies
to be its attractor. However, our objective is to assign each
attractor to many states, enabling path reconstruction while
reducing the number of attractors stored in memory.

Every attractor state except the start state has its own parent
attractor. Since attractors are expanded states and the search
ensures the discovery of (bounded sub-)optimal paths to all
expanded states, the presence of a parent attractor for every
attractor ensures that the (bounded sub-)optimal path from
the start state to any attractor can be reconstructed through
successive greedy traces from the attractor to its parent at-
tractor and onward. This hierarchical structure allows for the
reconstruction of the current best path to any state in the Open
list. This ensures that when the goal state is expanded the
(bounded sub-)optimal solution can be reconstructed.

This methodical creation and assignment of attractor states
ensure that at any point during the search, both the Closed and
Open lists can be conceptually decomposed into subregions,
each associated with an attractor as illustrated in Figure 2.
Greedy tracing from a closed (or open) state to its assigned
attractor, followed by successive traces from the attractor to
its parent attractor, allows for the reconstruction of the op-
timal (or current best) path to that state. Maintaining these
attractors is enough to recover all relevant solutions, and all
other expanded states can be deleted.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 ATTRACTOR-BASED CLOSED LIST SEARCH

Input: sstart, sgoal ∈ S
Output: solution path π

1: procedure ACLS(sstart, sgoal)
2: INSERT sstart in Open with f(sstart)
3: INSERT sstart in Attractors with parent ∅
4: while Open ̸= ∅ do
5: POP s with the smallest f -value from Open
6: if s = sgoal then
7: return RECONSTRUCTPATH(sstart, sgoal)
8: end if
9: for s′ ∈ Succ(s) do

10: if s.operator(s′) = used then
11: continue
12: end if
13: s′.operator(s) = used
14: if g(s′) > g(s) + c(s, s′) then
15: g(s′) = g(s) + c(s, s′)
16: UPDATEATTRACTOR(s, s′)
17: else if g(s′) = g(s) + c(s, s′) then
18: TIEBREAKATTRACTOR(s, s′)
19: end if
20: if s′ /∈ Open then
21: INSERT s′ in Open with f(s′)
22: end if
23: end for
24: DELETE s
25: DELETE all a ∈ Attractors that are unassigned
26: end while
27: end procedure
28: procedure UPDATEATTRACTOR(s, s′)
29: s

′′

min ← argmins′′∈Pred(s′) hdist(s
′′
, s.attractor)

30: s′.attractor ← s
31: if s

′′

min = s then
32: s′.attractor ← s.attractor
33: else if s not in Attractors then
34: INSERT s in Attractors with parent s.attractor
35: end if
36: end procedure
37: procedure TIEBREAKATTRACTOR(s, s′)
38: s

′′

min ← argmins′′∈Pred(s′) hdist(s
′′
, s.attractor)

39: if s
′′

min = s then
40: if hdist(s

′, s.attr) > hdist(s
′, s′.attr) then

41: s′.attractor ← s.attractor
42: end if
43: end if
44: end procedure

Hence, the high level idea is that during every expansion
we determine if the state s that is being expanded is required
to reconstruct the current best path to any of its successors s′.
If it is, we store s as an attractor (line 34, Alg. 1). If not, we
delete the state (line 24, Alg. 1).

When expanding s, if a better path to one of its successors
s′ is discovered, we must be able to reconstruct this new path
to s′. To minimize the number of attractors saved, we attempt
to assign s′ the same attractor as s. For s′ to inherit s’s attrac-
tor, it is necessary that s′’s greedy tracing through this attrac-

Algorithm 2 RECONSTRUCTPATH

Input: sstart, sgoal ∈ S
Output: solution path π
Global: Attractors, hdist

1: scurr ← sgoal
2: acurr ← sgoal.attractor
3: π ← scurr
4: while scurr ̸= sstart do
5: while scurr ̸= acurr do
6: scurr ← argmins′∈Pred(scurr)

hdist(s
′
, acurr)

7: π ← π ∪ {scurr}
8: end while
9: scurr ← acurr

10: acurr ← acurr.parent
11: end while
12: return Reverse(π)

tor leads to s. If this condition is met, s can be deleted without
affecting the path reconstruction. If this condition is not met,
then s itself is assigned as the attractor for s′, in which case
it is saved with its parent attractor set to s.attractor (line 34,
Alg. 1). By assigning s′’s attractor in this way, the best path
to s′ is always recoverable.

Attractor maintenance relies on a data structure called
Attractors. This structure maintains the list of attractors,
along with their parent attractor and a counter representing
the number of states assigned to each attractor (line 34, Alg.
1). These states include both those in the Open list and those
within the Attractors structure itself. The counter is dynam-
ically updated as states are newly assigned to an attractor, re-
assigned to a different attractor, or removed from the Open
list. If an attractor is no longer assigned to any state (counter
is zero), it is deleted from the Attractors structure (line 25,
Alg. 1).

Tiebreaking
When multiple paths of the same cost lead to a state s, we
tiebreak by selecting the path that assigns an attractor farthest
from s. Here, “farther away” is quantified as the attractor with
a higher hdist value relative to s. For example, consider two
parents s′ and s′′, both sharing the same attractor t. If s′ is
the greedy predecessor of s based on t (due to deterministic
tiebreaking), but s′′ was expanded first, s′′ might be unneces-
sarily added to the Attractors structure and assigned as s’s
attractor instead of t. To prevent such scenarios, we tiebreak
by favoring the path with the attractor that is farther away
(line 40, Alg. 1), such that t will be assigned as s’s attractor
once s′ is expanded. Alternatively, it is possible to bypass the
tiebreaking routine altogether at the expense of saving more
attractors. The empirical impact of this tiebreaking strategy
is analyzed in Section 5.5.

Lazy-ACLS
The major computational overhead in maintaining attractors
is the routine required for calculating the greedy predeces-
sor of a successor state s′ whenever the same or better cost
path to it is found during the expansion of a state s. This
process involves enumerating all predecessors of s′ and ver-
ifying whether s has the smallest hdist value with respect to
s.attractor among them (UPDATEATTRACTOR). Repeating
this evaluation for every generated state can be computation-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ally expensive, particularly in high-branching scenarios. To
mitigate this, we propose a lazy evaluation approach that de-
fers these computations until s′ is expanded (Alg. 3).

The key insight is that, at the time of expanding a state s,
its attractor is either its best parent (bp) or the attractor of its
best parent (bp attractor). Rather than calculating and as-
signing the attractor each time a better path to s is found, we
store the current best parent and its attractor for all generated
states, updated as better paths are discovered. When s is fi-
nally expanded, we use the stored parent and its attractor to
determine s’s attractor (line 6, Alg. 3). Although this ap-
proach incurs a minor additional cost in terms of memory, it
significantly reduces the computational burden by postponing
attractor calculations until expansion.

In experiments, we tested two tiebreaking strategies for
handling same-cost paths to a state s. The first strategy
heuristically selects the parent with the farthest attractor, de-
spite uncertainty over whether the parent (bp) or its attrac-
tor (bp attractor) will ultimately be assigned to s. The sec-
ond strategy stores all parents (and their attractors) associ-
ated with same-cost paths. At the time of s’s expansion, the
attractor corresponding to each parent is computed sequen-
tially, and the first attractor that matches s’s greedy predeces-
sor to bp is assigned. Both strategies were implemented, with
the first being more effective. Ablation studies in Section 5.5
examine the impact of these strategies.

Theoretical Properties
Theorem 1. When ACLS is used with the priority function
f = g + h, where h is a consistent heuristic function (i.e.,
ACLS with A*), the path recovered by recursively performing
greedy traces from state sgoal at the time of its expansion is
guaranteed to be optimal.

Proof Sketch. We prove this by induction.
Base Case: The optimal path to s′, a successor of sstart, is
recoverable at the time of its expansion. As sstart does not
have a parent attractor it will be assigned as s′’s attractor, thus
guaranteeing the recovery of the optimal path to s′.
Inductive Step: Let s ∈ Pred(s′) be the sole best parent
of s′. If a recursive greedy trace from s at the time of its
expansion recovers the optimal path from sstart to s, we must
show that a recursive greedy trace from s′ at the time of its
expansion is also guaranteed to recover the optimal solution.

If s is the best parent of s′, then it is guaranteed to be
expanded before s′ (since h(s) is consistent). At the time
of its expansion the framework is guaranteed to enter the
UPDATEATTRACTOR(s, s′) routine. Here, the framework
verifies if s is the greedy predecessor of s′ with respect to
s.attractor. If it is, then recursively greedy tracing from s′

to s.attractor and from s.attractor to its parent attractor is
guaranteed to return the optimal solution to s′, as a recursive
greedy trace from s to s.attractor recovers the optimal so-
lution to s. If not, then s is assigned as the attractor to s′

with its parent attractor being s.attractor. In which case,
again, recursively greedy tracing from s′ recovers the opti-
mal solution. A similar case can be made for when there are
multiple best parents, in which case the search would enter
the TIEBREAKATTRACTOR(s, s′) routine.

A proof identical to this exists for when the framework is
integrated with a bounded suboptimal search, where the re-
cursive greedy traces from sgoal recover the bounded sub-

Algorithm 3 Lazy-ACLS
Input: sstart, sgoal ∈ S
Output: solution path π

1: procedure LACLS(sstart, sgoal)
2: INSERT sstart in Open with f(sstart)
3: INSERT sstart in Attractors with parent ∅
4: while OPEN ̸= ∅ do
5: POP s with the smallest f -value from Open
6: UPDATEATTRACTOR(s.bp, s)
7: if s = sgoal then
8: return RECONSTRUCTPATH(sstart, sgoal)
9: end if

10: for s′ ∈ Succ(s) do
11: if s.operator(s′) = used then
12: continue
13: end if
14: s′.operator(s) = used
15: if g(s′) > g(s) + c(s, s′) then
16: g(s′) = g(s) + c(s, s′)
17: s′.bp = s; s′.bp attractor = s.attractor
18: else if g(s′) = g(s) + c(s, s′) then
19: TIEBREAKATTRACTORLAZY(s, s′)
20: end if
21: if s′ /∈ OPEN then
22: INSERT s′ in Open with f(s′)
23: end if
24: end for
25: end while
26: end procedure
27: procedure TIEBREAKATTRACTORLAZY(s, s′)
28: if hdist(s

′.bp, s′.bp attractor) <
hdist(s, s.attractor) then

29: s′.bp← s
30: s′.bp attractor ← s.bp attractor
31: end if
32: end procedure

optimal path to sgoal. It is important to note that while the
heuristic function h must be consistent to ensure optimality,
the function hdist used for greedy tracing toward attractors
need not be.

5 Experimental Results
The performance of our framework is presented on four dif-
ferent domains: 2D and 3D grid world navigation, Sliding
Tiles and Towers of Hanoi. We compare the performance of
ACLS and Lazy-ACLS (LACLS) against memory-efficient
baselines that focus on sparsifying/eliminating the Closed
list: Frontier Search with A* (FA*) and SMGS (described
in Section 2). All planners utilize a priority function of
f = g + w ∗ h, with w = 1, unless explicitly mentioned
otherwise. For each problem, the SMGS threshold for prun-
ing the Closed list was set to 10% the size of A*’s Closed list
at termination.

5.1 2D Navigation
Table 2 presents the results averaged over 2,500 problems
evaluated across five maps from the Moving AI 2D bench-
mark [Sturtevant, 2012] (random512-10-0, maze512-1-0,
brc202d, den012d, orz800d). A 4-connected grid action set

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Weight
A* ACLS LACLS FA* SMGS

Runtime Closed Runtime Closed Runtime Closed Runtime Closed Runtime Closed
(ms) states (ms) states (ms) states (ms) states (ms) states

0 (Dijkstra’s) 65.6 59,955 95.0 306 83.0 291 368.2 - 2,299 6,000
1 (A*) 18.0 20,340 26.0 631 23.0 353 101.0 - 3,192 2,533
5 (WA*) 7.5 8,431 10.5 432 10.7 218 61.2 - 353.1 1,071
10 (WA*) 6.0 6,575 8.3 396 8.6 180 49.8 - 359.4 883

Table 1: Results for 2D Navigation highlighting the impact of different heuristic weights w.

Planner
Plan Closed Open Closed Total
Time states Mem. Mem. Mem.
(ms) (bytes) (bytes) (bytes)

A* 18 20,340 20,115 325,440 345,555
ACLS 26 631 17,601 10,102 27,703
LACLS 23 353 22,630 5,850 28,480
FA* 101 - 20,115 - 20,115
SMGS 3,192 2,533 17,601 50,669 68,270

Table 2: Average Results for 2D Navigation.

Figure 3: 2D Navigation (orz800d, w=0) results highlighting the
impact of solution length (buckets of 300) on planning time.

was used, with the Manhattan distance serving as both the
search heuristic and the attractor distance function hdist.

The results highlight the effectiveness of ACLS and LA-
CLS in significantly sparsifying the Closed list while main-
taining competitive runtimes. LACLS achieves a runtime
only 1.3 times slower than A*, while reducing the size of the
Closed list by a factor of 58. ACLS performs similarly, with a
1.4 times slowdown and a 32-fold reduction in the Closed list
size. As expected, LACLS improves planning speed by post-
poning attractor computation to the state expansion phase.
This not only enhances efficiency but also results in fewer at-
tractors, by eliminating attractors created by states that were
generated but never expanded in ACLS. The strong plan-
ning times achieved by our frameworks contrast with those
of FA* and SMGS. While FA* achieves greater memory sav-
ings by completely eliminating the Closed list, it is signifi-
cantly slower, taking 5.6 times the runtime of A*. SMGS has
the worst overall performance, running 177.3 times slower
while reducing the Closed list by a factor of 8.

Planner
Plan Closed Open Closed Total
Time states Mem. Mem. Mem.
(ms) (Kb) (Kb) (Kb)

A* 523.7 219,464 513.3 3,511.4 4,024.7
ACLS 653.3 7,202 449.1 115.2 564.4
LACLS 540.8 3,613 577.4 57.8 635.2
FA* 949.6 - 513.3 - 513.3

Table 3: Average results for 3D Navigation

To provide a comprehensive view of memory efficiency,
we explicitly report the memory consumption of each plan-
ner, reflecting the data required to maintain the Open and
Closed lists. As expected, LACLS consumes more memory
for its Open list than ACLS, even though both maintain the
same number of Open states. This additional memory is due
to the bookkeeping needed to determine attractors at expan-
sion, which we optimized to incur only 8 additional bytes per
Open state. In this domain, the Closed list is significantly
larger than the Open list, making its reduction critical for
memory savings. By dramatically reducing the size of the
Closed list, ACLS (and LACLS) achieves up to 12.5x (and
12.1x) memory savings compared to A*, similar to the sav-
ings achieved by FA* (17.2x).

We also present the impact of path length on runtime in
Fig. 3. As path length increases, planning times rise for FA*
and SMGS compared to A*, as they require more recursive
searches to reconstruct the path. The runtime of FA* com-
pared to A* increases from 5.7 to 10.2, while ACLS and LA-
CLS remain relatively stable (around 1.5 and 1.3).

To understand the impact of our framework when used with
Dijkstra, A*, and Weight A* (WA*), we altered the heuristic
weight w in the priority function and studied the performance
of the planners (Table 1). We observe that as w increases, the
memory savings achieved decreases. LACLS reduces the size
of the Closed list by a factor of 206 when w = 0, but goes
down to 36.5 for w = 10.

5.2 3D Navigation
Table 3 summarizes the results averaged over 3,000 problems
evaluated on three maps from the Moving AI 3D benchmark
[Sturtevant, 2012] (A1, BA1, DC3) A 6-connected grid ac-
tion set was employed, with Manhattan distance used as both
the search heuristic and the attractor distance function hdist.
The trends observed are consistent with those in 2D naviga-
tion. LACLS achieves a runtime nearly identical to A* while
reducing the Closed list size by a factor of 61, demonstrat-
ing its potential to significantly reduce memory usage with
minimal runtime overhead. FA* also performs better in this

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Path A* ACLS LACLS FA*
Length Runtime Closed Runtime Closed Runtime Closed Runtime Closed

(ms) states (ms) states (ms) states (ms) states
25 27.8 1,594 39.7 437 33.4 234 66.0 -
27 35.1 2,042 55.2 550 43.8 294 85.9 -
29 128.9 7,427 182.4 2,037 151.6 1,086 295.0 -
31 131.8 7,509 183.3 2,083 159.5 1,128 299.9 -
33 539.4 30,927 743.4 8,295 640.8 4,467 1,192.8 -
35 445.3 26,065 612.4 6,926 541.3 3,793 1,000.8 -

Table 4: Average Results for Sliding Tiles.

Discs
A* ACLS LACLS FA* SMGS

Runtime Closed Runtime Closed Runtime Closed Runtime Closed Runtime Closed
(ms) states (ms) states (ms) states (ms) states (ms) states

4 0.312 49 0.905 11 0.634 12 1.7 - 8.74 14
6 2.71 518 5.58 92 4.2 88 14.1 - 51.8 57
7 9.16 1,715 17.8 298 13.5 254 46.3 - 173 175
9 93.7 17,348 173 3,009 131 2,280 454 - 1,720 1,741
10 282 54,127 519 9,383 414 6,957 1,429 - 5,752 5,418
12 2,767 508,038 4,961 87,887 3,804 64,351 14,128 - 90,074 50,808
13 8,889 1,545,697 15,209 267,325 11,650 194,627 43,753 - 432,193 154,573
14 27,382 4,679,464 45,937 809,140 35,651 587,446 136,538 - 2,764,541 467,957

Table 5: Average Results for Towers of Hanoi.

domain, exhibiting a smaller relative slowdown compared to
its performance in the 2D case. The algorithms demonstrate
a similar reduction in memory footprint, with LACLS reduc-
ing memory usage (in comparison to A*) by a factor of 6.3,
while FA* achieves a reduction of 7.8. SMGS, tested with a
timeout of 30x the time of A*, exhibited a poor success rate
of 7%, and therefore its results are omitted from the table.

5.3 Sliding Tiles
Table 4 summarizes the results averaged over 55 random fif-
teen Sliding Tiles puzzles with six different solution lengths.
The Manhattan distance + linear conflicts was used for the
heuristic and the number of mismatched tiles was used for the
attractor distance function hdist. LACLS achieves a runtime
1.2 times slower and reduces the size of the Closed list by a
factor of 6.9 compared to A*, while FA* experiences a slow-
down of 2.2. SMGS again performed poorly in this domain,
timing out for every instance (30x time of A*). As such, its
results are omitted from the table.

5.4 Towers of Hanoi
Table 5 presents the results of the planners for three pegs
Towers of Hanoi with different numbers of discs, using the
number of misplaced discs as the heuristic and the attractor
distance function hdist. The results highlight that LACLS
achieves substantial savings in planning time compared to
FA*. Specifically, LACLS incurs an average slowdown of
only 1.3 times and ACLS 1.7 times, while FA* has a slow-
down of 5 times. In terms of memory, LACLS reduces the
size of the Closed list by 8 times compared to A*, and ACLS
achieves a factor of 5.8. On the other hand, SMGS expe-
riences a considerable slowdown of 83.6 times compared to
A*, with a Closed list reduction factor of 10.

5.5 Ablations
This subsection presents ablation studies analyzing the im-
pact of two key design choices. The first study focuses on
the effect of using TIEBREAKATTRACTOR in ACLS. When
tiebreaking was omitted, the number of attractors stored in-
creased drastically by 25 times while the runtime remained
constant, as expected. This highlights the importance of
tiebreaking. For LACLS, the impact was less pronounced,
with an increase of 5 times when tiebreaking was not em-
ployed. This difference may be attributed to LACLS inher-
ently requiring fewer attractors than ACLS.

The other study investigates different tiebreaking strategies
for LACLS. One approach involved maintaining a list of par-
ents (and their attractors) for cases where multiple paths with
the same cost exist, while another only kept one parent (and
attractor) by heuristically selecting the parent with a farther
attractor. Both strategies produced a similar number of at-
tractors, but the additional bookkeeping and evaluations re-
quired in the first approach resulted in a 2 times slowdown.
Consequently, the heuristic-based strategy was preferred.

6 Conclusion
In this work, we introduced a general and effective framework
that intelligently sparsifies the Closed list by maintaining a
small subset of states, referred to as attractors. These attrac-
tors enable efficient solution path reconstruction through a
series of greedy traces. Compatible with various search algo-
rithms, the developed ACLS and LACLS frameworks signif-
icantly reduce memory requirements—retaining only 9% of
the states typically stored in a Closed list—while delivering
competitive planning times across diverse problem domains.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
The research was supported by the National Science Foun-
dation by grant IIS-2328671. The views and conclusions in
this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
U.S. government.

References
[Bu and Korf, 2019] Zhaoxing Bu and Richard E Korf. A*+

ida*: A simple hybrid search algorithm. In IJCAI, pages
1206–1212, 2019.

[Chakrabarti et al., 1989] P.P. Chakrabarti, S. Ghose,
A. Acharya, and S.C. de Sarkar. Heuristic search in
restricted memory. Artificial Intelligence, 41(2):197–221,
1989.

[Dijkstra, 1959] E. W. Dijkstra. A note on two problems in
connexion with graphs. Numer. Math., 1(1):269–271, De-
cember 1959.

[Edelkamp et al., 2004] Stefan Edelkamp, Shahid Jabbar,
and Stefan Schrödl. External a. In Annual Conference
on Artificial Intelligence, pages 226–240. Springer, 2004.

[Goldenberg et al., 2014] Meir Goldenberg, Ariel Felner,
Roni Stern, Guni Sharon, Nathan Sturtevant, Robert C
Holte, and Jonathan Schaeffer. Enhanced partial expansion
a. Journal of Artificial Intelligence Research, 50:141–187,
2014.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, 1968.

[Ikeda and Imai, 1999] Takahiro Ikeda and Hiroshi Imai. En-
hanced a algorithms for multiple alignments: optimal
alignments for several sequences and k-opt approximate
alignments for large cases. Theoretical Computer Science,
210(2):341–374, 1999.

[Islam et al., 2019] Fahad Islam, Oren Salzman, and Maxim
Likhachev. Provable indefinite-horizon real-time planning
for repetitive tasks. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, pages 716–724, 2019.

[Korf and Schultze, 2005] Richard E Korf and Peter
Schultze. Large-scale parallel breadth-first search. In
AAAI, volume 5, pages 1380–1385, 2005.

[Korf et al., 2005] Richard E Korf, Weixiong Zhang, Ignacio
Thayer, and Heath Hohwald. Frontier search. Journal of
the ACM (JACM), 52(5):715–748, 2005.

[Korf, 1985] Richard E Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
intelligence, 27(1):97–109, 1985.

[Korf, 1993] Richard E Korf. Linear-space best-first search.
Artificial intelligence, 62(1):41–78, 1993.

[Korf, 2004] Richard E Korf. Best-first frontier search with
delayed duplicate detection. In AAAI, volume 4, pages
650–657, 2004.

[Lovinger and Zhang, 2017] Justin Lovinger and Xiaoqin
Zhang. Enhanced simplified memory-bounded a star
(sma*+). In Christoph Benzmüller, Christine Lisetti, and
Martin Theobald, editors, GCAI 2017. 3rd Global Confer-
ence on Artificial Intelligence, volume 50 of EPiC Series
in Computing, pages 202–212. EasyChair, 2017.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph. Artificial intelligence, 1(3-4):193–204,
1970.

[Reinefeld and Marsland, 1994] Alexander Reinefeld and
T. Anthony Marsland. Enhanced iterative-deepening
search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 16(7):701–710, 1994.

[Romein et al., 1999] John W Romein, Aske Plaat, Henri E
Bal, and Jonathan Schaeffer. Transposition table driven
work scheduling in distributed search. In AAAI/IAAI,
pages 725–731, 1999.

[Russell, 1992] Stuart Russell. Efficient memory-bounded
search methods. In Proceedings of the 10th European
Conference on Artificial Intelligence, ECAI ’92, page 1–5,
USA, 1992. John Wiley & Sons, Inc.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144 – 148, 2012.

[Yoshizumi et al., 2000] Takayuki Yoshizumi, Teruhisa
Miura, and Toru Ishida. A* with partial expansion for
large branching factor problems. In AAAI/IAAI, pages
923–929, 2000.

[Zhou and Hansen, 2002] Rong Zhou and Eric Hansen.
Memory-bounded a* graph search. pages 203–209, 01
2002.

[Zhou and Hansen, 2003] Rong Zhou and Eric A Hansen.
Sparse-memory graph search. In IJCAI, pages 1259–1268,
2003.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


