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Abstract

Graph anomaly detection (GAD), with its ability
to accurately identify anomalous patterns in graph
data, plays a vital role in areas such as network se-
curity, social media platforms, and fraud detection.
Graph autoencoder-based methods are widely used
for GAD due to their efficiency and effectiveness
in capturing complex patterns and learning mean-
ingful representations. However, the above meth-
ods are constrained by hardware memory, hinder-
ing the detection for large-scale graph data. In
this paper, we propose a Memory-Efficient frame-
work for large-scale attributed Graph Anomaly
Detection (MEGAD). Specifically, MEGAD first
generates node embeddings and then refines them
through a lightweight joint optimization model,
ensuring minimal memory overhead. The opti-
mized embeddings are subsequently fed into a de-
tector to compute anomaly scores. Extensive ex-
periments demonstrate that our framework achieves
comparable accuracy to state-of-the-art methods
across multiple datasets while significantly reduc-
ing memory consumption on large-scale graphs.

1 Introduction
Graph Anomaly Detection (GAD) aims to identify unusual
patterns in graph data that deviate from the majority, with
diverse applications in social network analysis, vulnerabil-
ity detection, and biological network analysis [Pazho et al.,
2023]. Although anomaly points constitute a small propor-
tion of the graph data and occur infrequently, failing to detect
these anomalies promptly can lead to serious consequences,
such as engineering accidents in manufacturing or fatalities
in healthcare. To address these issues, a lot of methods have
been proposed, such as matrix factorization-based methods
[Liu et al., 2017] and random walk-based methods [Wang
and Davidson, 2009]. These methods provide intuitive results
and high computational efficiency [Tang et al., 2023]. While
the aforementioned methods are capable of handling simple

graph structures, they often fail to capture the nonlinear re-
lationships and intricate patterns present in attributed graph
data. To comprehensively analyze graph data with node at-
tributes, isolation forest-based models have been introduced
for the GAD task [Xiang et al., 2024; Zhang et al., 2024].
A significant advantage of tree ensemble models is their
ability to efficiently train models on large-scale graph data
while maintaining strong interpretability [Zhang et al., 2017;
Xiang et al., 2023]. Unfortunately, tree ensemble-based mod-
els focus on node attributes while neglecting the graph struc-
ture information, resulting in poor robustness and low accu-
racy. In summary, traditional models struggle to account for
both graph structure information and node attribute informa-
tion when addressing GAD issues.

Recently, deep learning-based GAD methods have exhib-
ited superior performance, as they can fully exploit both
the graph structure and node attribute information. For in-
stance, Graph Attention Networks (GAN) [Veličković et al.,
2018] and Graph Autoencoders (GAE) [He et al., 2024]
have achieved remarkable success in capturing complex
graph structures and node relationships. However, these
methods rely heavily on relatively complete labeled data,
and their accuracy drops significantly when labeled data is
scarce[Tang et al., 2023]. To mitigate the impact of missing
labels, unsupervised learning GAD methods are employed
to prevent accuracy degradation. A widely used frame-
work is the combination of Graph Neural Networks (GNN)
and Autoencoders(AE) [Kipf and Welling, 2022; Zhu et al.,
2023], which achieves unsupervised graph anomaly detection
through graph reconstruction. Nevertheless, the memory con-
sumption of graph reconstruction technology increases expo-
nentially with the size of the graph, causing most devices
to fall short of the memory requirements when processing
large-scale graphs. To reduce memory consumption, numer-
ous methods based on subgraph sampling or neighborhood
reconstruction have been proposed, such as GADNR [Roy
et al., 2024]. These methods alleviated the issue of insuffi-
cient memory, but their accuracy is generally lower than that
of full-graph reconstruction methods due to information loss
caused by sampling [Tang et al., 2023]. An interesting ques-
tion arises naturally: How to design a GAD method for large-
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scale attributed graphs that optimizes precision while ensur-
ing low memory consumption?

To address the issue of memory constraints without sac-
rificing accuracy, we propose a novel GAD method, called
MEGAD. This method achieves efficient anomaly detec-
tion with low memory consumption by employing node-level
reconstruction, making it suitable for large-scale datasets.
Specifically, we first utilize a pre-training module to generate
graph embeddings. Subsequently, we design a lightweight
model to optimize these embeddings. The optimized em-
beddings are then passed to a detector to generate anomaly
scores. We conducted extensive experiments on multiple
datasets, including ablation experiments and comparative
studies. The results demonstrate that our proposed method
achieves accuracy comparable to state-of-the-art GAD meth-
ods while maintaining the lowest memory consumption on
large-scale graph datasets.

The main contributions of our work are summarised as fol-
lows:

• We propose a GAD method that combines pre-training
with a lightweight joint optimization model, success-
fully achieving high accuracy and robustness in large-
scale graph data.

• Our MEGAD enables dynamic trade-offs between com-
putational efficiency and memory usage, allowing flexi-
ble parameter adjustments based on the requirements of
specific application scenarios.

• Extensive experiments show that our proposed method
achieves state-of-the-art accuracy, especially on large-
scale graph datasets where other models struggle to per-
form effectively. The source code is available at https:
//github.com/GraphAnomalyDetection/MEGAD.

2 Related Work
2.1 Graph Anomaly Detection
The early works [Xu et al., 2007; Li et al., 2017] typically
used non-deep learning methods, such as node clustering, to
detect anomalies. However, these methods failed to fully
leverage the deep structural information in graphs, making
it difficult to improve detection accuracy. The rapid advance-
ment of deep learning technologies has led to the prolifera-
tion of AE-based GAD algorithms, achieving high accuracy.
DONE [Bandyopadhyay et al., 2020] trains separate autoen-
coders for attributes and structure, linking them through a
joint loss function. Building upon this, its successor AdONE
replaces the rigid L2 alignment constraint with an adversar-
ial discriminator to flexibly align the two embeddings. Sim-
ilarly, AnomalyDAE [Fan et al., 2020] employs a dual AE
to model attribute-structure interactions for anomaly scoring
jointly. Similarly, DOMINANT follows the reconstruction-
based paradigm but refines anomaly scoring by explicitly de-
coupling and fusing feature and structural reconstruction er-
rors, enhancing node-level anomaly detection. Additionally,
other non-AE-based methods have also shown strong perfor-
mance. Among them, CONAD [Xu et al., 2022a] innova-
tively incorporates contrastive learning, significantly enhanc-
ing the model’s discriminative capability for anomalous sam-

ples; while GAAN employs a generative adversarial frame-
work, where a generator synthesizes anomalous nodes and an
encoder contrasts structural features between real and gener-
ated nodes in the latent space, ultimately performing anomaly
detection by combining reconstruction error and real-sample
discrimination confidence.

2.2 Graph Autoencoder
GAE employs GCN as the encoder to learn low-dimensional
node embeddings and reconstructs the adjacency matrix
through a decoder [Kipf and Welling, 2022]. This archi-
tecture effectively captures structural information and has
demonstrated strong performance in graph embedding tasks
[Yin et al., 2024; Tao et al., 2024]. However, GAE-based
methods exhibit significant scalability bottlenecks. These
approaches require processing the complete adjacency ma-
trix, resulting in memory complexity that scales quadrati-
cally with the number of nodes, thereby hindering their ap-
plication to large-scale graph data. Although approximation
techniques such as neighborhood sampling [Hamilton et al.,
2017] and subgraph processing [Chiang et al., 2019] can
alleviate computational burdens, they typically come at the
cost of compromised anomaly detection accuracy. More crit-
ically, directly applying generic graph learning methods to
graph anomaly detection tasks often yields suboptimal detec-
tion performance. Consequently, the design of GAD methods
that simultaneously achieve scalability and high precision re-
mains a crucial research challenge.

3 Problem Statement
We are committed to identifying outlier nodes in a static at-
tributed graph. Specifically, a graph can be represented as
G = {V,A,X}, where V = {v1, v2 · · · vN} represents the
node set of G, A ∈ RN×N is a adjacency matrix. Ai,j = 1
if there exist an edge between vi and vj , otherwise Ai,j = 0.
X ∈ RN×M is a feature matrix of G. The i-th row of X
represent the M -dimensional feature of vi.

Due to the difficulty in obtaining ground truth for large-
scale graph datasets, we hope to use unsupervised learning
to complete the graph anomaly detection task. To address
this problem, a commonly employed approach is to train the
model for anomaly detection by leveraging reconstruction-
based loss functions:

Z = forward(X ,A),

L = ||A − ZZT ||2,
(1)

where common “forward” methods include GCN, GNN. Z ∈
RN×D is the embedding of the graph G with dimension D.

However, the aforementioned methods struggle to pro-
cess large-scale graph datasets due to excessive memory con-
sumption. To address these issues, we are committed to de-
signing an innovative memory-efficient GAD framework (F)
that aims to improve detection accuracy on large-scale graph
datasets while minimizing memory usage. The prediction re-
sult of F is represented as:

P = F(G),
G = {V, E ,X}, (2)
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Figure 1: Framework of MEGAD.

where P denotes the prediction result of F . E ⊆ V × V rep-
resents the edge set of G, Ei,j = 1 represents there is an edge
between vi and vj . It is worth noting that we emphasize the
use of E rather than A in the definition of G because storing
A or performing calculations based on A in large-scale graph
data results in unacceptable resource consumption. In the fol-
lowing, unless otherwise specified, our MEGAD uniformly
adopts the definition G = {V, E ,X}, which has no access to
A. Additionally, our objective function can be expressed as:

Minimize

(
N∑
i=1

(GTi − Pi)
2

)
,

s.t. Memory ≤ Memorymax,

(3)

where GTi represents the ground truth of each node in
G, Memory represents the memory usage of MEGAD,
Memorymax donates the memory limitation of the hardware.

4 Methodology
MEGAD is an unsupervised attributed graph anomaly de-
tection method comprising three core modules: Pre-training,
Training, and Testing, as illustrated in Fig. 1. First, the input
graph data is processed to generate low-dimensional embed-
dings Z ∈ RN×D. Then, weight coefficients are computed
to determine reconstruction weights between nodes, provid-
ing a foundation for node-level reconstruction. In the recon-
struction process, positive sampling and negative sampling
are employed for each node, and the reconstruction loss Lrec

and Lrec′ are calculated. Simultaneously, the embeddings are
used to extract node weights and variance distributions via a
shallow model, generating node distribution features and cal-
culating the distribution loss Ldis. By combining the recon-
struction loss and distribution loss, the embedding represen-
tations are jointly optimized to make them more suitable for
anomaly detection tasks. Finally, the optimized embeddings
are used by the detector to generate anomaly scores for each
node, enabling precise detection of anomalous nodes in graph
data.

4.1 Pre-training
Graph autoencoders are commonly used for graph anomaly
detection tasks. The encoder-decoder framework works by
mapping input data into a lower-dimensional latent space,
reconstructing the graph topology, and optimizing recon-
struction accuracy to ultimately identify anomalous patterns.
MEGAD adopts the encoder-decoder framework and designs
innovative modules to optimize its performance. Specifically,
MEGAD first generates node embeddings to represent the in-
put graph: Z = Embedding(G), where Z ∈ RN×D donates
the embedding result of G. The embedding method is flexi-
ble and can be implemented using any suitable approach. In
this work, we use node2vec [Grover and Leskovec, 2016] for
demonstration. The initial embeddings are then optimized
through a lightweight training module to enhance their ex-
pressiveness. Finally, the optimized embeddings are passed
to the detector for anomaly detection.

4.2 Node-level Reconstruction
One-hop reconstruction. The computational process for
training an encoder-decoder framework with graph recon-
struction typically involves the following steps: First, the
model computes the node embeddings Z through a forward
pass, denoted as Z = forward(A,X ). These embeddings
are then used to reconstruct the adjacency matrix by comput-
ing the dot product A′ = Z · ZT . The model is optimized by
minimizing the reconstruction loss L =

∑
i

∑
j |Ai,j−A′

i,j |,
which measures the discrepancy between the original and re-
constructed adjacency matrices. However, this approach in-
herently depends on the adjacency matrix A, resulting in sub-
stantial memory consumption and computational overhead
during training.

To address these issues, we introduce an edge sampling
strategy to optimize the graph reconstruction process. Specif-
ically, we begin by selecting an edge El,r connecting nodes vl
and vr. We then sample a set of neighboring nodes (positive
samples) vx ∈ nei of vl and non-neighboring nodes (negative
samples) vy ∈ neg of vl. Since vl and vx are connected in the
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Figure 2: Similarity distribution between outlier points and normal
points.

original graph, the reconstructed graph should preserve this
edge. Conversely, no edge should be reconstructed between
vl and vy as they are not neighbors. Based on the above anal-
ysis, Lrec can be calculated as follow:

Lrec =
∑
i∈E.l

αi(
∑
j∈nei

(1− E∗
i,j)

2 +
∑

k∈neg

(0− E∗
i,k)

2), (4)

where αi denotes the weight coefficient associated with vi,
which will be explained in the next section. E .l represents the
set of left nodes of all edges. E∗

i,j represents the probability
of an edge existing between vi and vj in the reconstructed
graph, which is calculated as follows:

E∗
i,j =

cos(zi, zj) + 1

2
, (5)

where cos(zi, zj) is the cosine similarity between vi and vj .
Two-hop message passing. To acquire more comprehensive
neighborhood information, we aim to gather 2-hop neighbor-
hood details to optimize Z . However, under the premise
of discarding the adjacency matrix, obtaining higher-order
neighborhood information proves to be quite challenging. To
overcome this challenge, we continue the 1-hop approach,
enumerating edges (vl, vr), positive samples x ∈ nei, and
negative samples y ∈ neg. Then, we calculate Lp to measure
the loss of the positive samples:

Lp = −∥zl − zr∥2 −
∑
j∈nei

attj,l ∥zj − zr∥2 , (6)

where attj,l = softmaxj∈nei(−∥zj − zl∥2), ∥zi − zj∥2 =∑
k(zi,k−zj,k)

2. Similarly, we use Eq. 7 to measure the loss
for negative samples.

Ln = −
∑
i∈neg

(∥zi − zl∥2 +
∑
j∈nei

attj,l ∥zi − zj∥2), (7)

Combining Eq. 6 and Eq. 7, we obtain the final loss function:

Lrec′ = − log(σ(Lp))− log(σ(−Ln)), (8)

where σ represents the sigmoid function.

4.3 Weight Coefficient of Reconstruction
To eliminate noise and interference from outlier nodes in the
model, we introduce a weighting coefficient α. Fig. 2 is

an example of anomaly detection, which contains 47 normal
points and 3 anomaly points. In the figure, Fig. 2(a) shows a
two-dimensional distribution, and Fig. 2(b) shows the corre-
sponding similarity matrix. The calculation method for simi-
lar matrices is as follows:

Si,j = f(Zi,Z ′
j) = 2 · (1− sigmoid(dis(vi, vj))), (9)

dis(vi, vj) =
∑D

k=1 abs(zi,k − zj,k)

D
, (10)

where Si,j donates the similarity between vi and vj , the cal-
culation method of dis(vi, vj) is not unique and does not af-
fect the conclusion, this paper adopts the Manhattan distance.
Notably, Z ′

j is used here rather than Zj because we sampled
Z to simplify the computation.

By analyzing the similarity matrix, it becomes apparent
that a point exhibiting high similarity with the majority of
other points is likely to be classified as normal. In contrast, if
the similarity is relatively low, the point in question may be
considered an outlier or noise. Based on this observation, we
can deduce the method for calculating the Weight Coefficient
of Reconstruction:

αi =

∑N
j=1 Si,j

N
≈
∑n

j=1 Si,j

n
. (11)

Given the large size of N , computing the full similarity
matrix becomes computationally prohibitive. To address this
issue, we leverage the law of large numbers by sampling n
points, allowing for an efficient approximation of α.

4.4 Distribution diffusion
The embedding results cannot achieve optimal performance
solely by minimizing the node-level reconstruction loss (i.e.,
Lrec and Lrec′ ). Embeddings trained exclusively with node-
level reconstruction loss typically have low discriminative
power, making them unsuitable for practical applications
when directly applied to the detector.

To enhance the discriminative power of the embeddings,
we designed the following loss function:

Ldis = e−
∑D

j=1 βi·
∑N

i=1(zi,j−zj)
2

N , (12)

where β denotes the weight assigned to each dimension in the
embedding. Given that different dimensions of the features
exert varying influences on the results, we quantified these
impact weights using the following approach:

β = H(Z, P ), (13)

where H donates a shallow model. In this paper, we adopted
a simple regression model to measure this weight.

4.5 Joint learning and Anomaly Detection
Joint learning. Building on the methods introduced in Sec-
tions 4.2 and 4.4, we derive the final loss function:

L = η(Lrec + Lrec′) + (1− η)Ldis, (14)

where Lrec and Lrec′ represent the reconstruction losses,
Ldis denotes the distribution loss, and η is a hyperparameter
used to balance these two components. By jointly optimizing
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module Time complexity
Weight Coefficient θ(NnD)
Node-level Reconstruction θ(EDT |nei||neg|)
Distribution diffusion θ(ND)
Detector train θ(tϕlogvϕD)
Detector predection θ(tNlogvϕD)

Table 1: Time complexity. All uppercase variables have large values,
while lowercase variables have small values.

these objectives, the model can better capture the latent struc-
tural features of the data, thereby improving its representation
capability and generalization performance.
Anomaly detection. During the anomaly detection phase,
the embedding vectors Z obtained from training are used as
input, and anomalies are identified by the detector:

P = Detector(Z), (15)

where P represents the anomaly score (i.e., detection result).
The embedding quality is crucial for the accuracy of anomaly
detection results. An appropriate detector can fully leverage
the information within the embeddings, improving detection
performance. Therefore, selecting the ideal detector is key to
optimizing detection outcomes. Our method allows for flexi-
ble detector selection based on task requirements. After test-
ing several detectors, such as ECOD, iForest, we found that
their accuracy and efficiency are generally comparable. In
this paper, we chose LSHiForest as the detector because it
strikes a good balance between computational resource con-
sumption and detection accuracy.

4.6 Time complexity analysis
The time consumption of MEGAD primarily stems from the
training and prediction modules. Hence, this section focuses
on analyzing the time complexity of these two components.
The time complexity of calculating the weight coefficient ma-
trix, which involves multiplying an N×D matrix with a D×n
matrix, is θ(NnD). During the Node-level Reconstruction
phase, the process begins by enumerating each edge. For each
edge, we sample |nei| neighboring nodes and |neg| negative
sample nodes. The loss is then computed based on these sam-
ples. Consequently, the overall time complexity for this phase
is θ(EDT |nei||neg|). The time complexity associated with
the distribution diffusion process is mainly determined by the
computation of multiple regressions, which depends solely on
the number of nodes (N ) and the feature dimensions (D). As
such, the time complexity for this stage is θ(ND). Finally,
the testing process consists of two components: training and
prediction. The time complexities for these components are
θ(tϕ logv ϕD) and θ(tN logv ϕD), respectively [Zhang et
al., 2017]. Here, v and ϕ are two key parameters of LSHi-
forest. Specifically, v represents the branching factor of the
Isolation Tree, and ϕ denotes the sampling size.

The MEGAD is specifically designed to address large-
scale GAD problems. In this context, N and E are considered
large parameters, while n, |nei| and |neg| are treated as small
constants. Therefore, we have:

Dataset Node Edges Feat. Degree Rate
Weibo 8,405 407,963 400 48.5 10.3%

Facebook 1081 27552 576 25.5 2.4%
Disney 124 335 28 2.7 4.8%
Books 1,418 3,695 21 2.6 2.0%

DGraph 3,700,550 4,300,999 17 1.2 0.4%
Flickr 89,250 933,804 500 10.5 4.9%

Table 2: Summary of dataset information. Here, “Feat.” represents
the number of features, and “Rate” represents the percentage of
anomalies.

θ(ND) < θ(NnD) < θ(EDT |nei||neg|),
θ(tϕlogvϕD) < θ(tNlogvϕD).

(16)

In summary, the time complexity of training is
θ(EDT |nei||neg|), while the time complexity of prediction
is θ(tNlogvϕD).

5 Experiment
In this section, we conduct extensive experiments on six
datasets to answer the following research questions:

• Q1: How does our MEGAD perform compared to the
SOTA methods in terms of precision?

• Q2: Is the memory consumption of MEGAD really
low?

• Q3: Have all modules of MEGAD functioned as ex-
pected?

• Q4: How do hyperparameters affect the experimental
results?

5.1 Experiment Setting
To ensure the fairness of the experiments, all experiments
were conducted using Python 3.9.20 in VScode and were
run on a computer equipped with an Intel(R) Core(TM) i7-
14700KF 3.40 GHz processor, 32.0 GB of memory, and
NVIDIA GeForce RTX 4070 SUPER GPU.
Baselines. We compare our method with several SOTA meth-
ods [Liu et al., 2022], including deep learning-based ap-
proaches such as GADNR [Roy et al., 2024] and CONAD
[Xu et al., 2022b], as well as ensemble-based techniques like
LSHiForest [Zhang et al., 2017]. Among the deep learning-
based methods, GAAN [Chen et al., 2020] utilizes Gener-
ative Adversarial Networks, while AdONE combines Multi-
Layer Perceptron (MLP) and AE. Other methods, including
GAE [Kipf and Welling, 2022], DOMINANT [Ding et al.,
2019], AnomalyDAE [Fan et al., 2020], CONAD [Xu et
al., 2022b], and GADNR [Roy et al., 2024], all leverage a
combination of GNN and AE.
Datasets. To validate the robustness of our method, we
selected six publicly available datasets, including five real-
world datasets (Weibo [Zhao et al., 2020], Facebook [Xu et
al., 2022a], Disney [Sánchez et al., 2013], Books [Sánchez
et al., 2013], and DGraph [Huang et al., 2022]) and one real
dataset with artificially injected anomalies (Flickr [Zeng et
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Algorithm SCAN LSHiForest GCNAE DOMINANT AdONE AnomalyDAE GAAN CONAD GADNR MEGAD
Year 2007 2017 2016 2019 2020 2020 2020 2022 2024 ours

Graph ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Deep × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weibo 63.9 92.2 91.0 85.7 83.0 91.2 91.9 72.7 87.7 95.0

Facebook 50.0 57.3 77.1 75.6 96.1 69.1 96.0 50.0 44.8 94.6
Disney 50.8 44.8 42.0 47.0 48.2 48.6 48.1 55.4 76.4 72.5
Books 49.6 38.1 50.1 50.3 53.7 62.0 54.3 45.6 65.7 62.1

DGraph TLE 46.3 40.8 OOM OOM OOM OOM OOM TLE 58.9
Flickr 62.3 71.2 64.6 OOM OOM OOM OOM OOM 73.2 73.7

Table 3: AUC-ROC(%) performance of all methods. “TLE” stands for running over 24 hours, and “OOM” stands for out-of-memory errors.
Our MEGAD achieves comparable performance to state-of-the-art methods.
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Figure 3: Memory consumption of different datasets.

al., 2019]), as shown in Table 2. These datasets are pub-
licly available and widely used in the field of anomaly de-
tection. The dataset selection covers different numbers of
nodes, sparsity levels, and feature dimensions. It is worth
noting that existing works rarely use datasets with more
than 40,000 points. In our experiments, we include a large-
scale dataset, Flickr (89,250 nodes), and an ultra-large-scale
dataset, DGraph (3,700,550 nodes). The inclusion of these
datasets allows for a thorough validation of our method across
datasets of varying scales.
Metrics. To evaluate the performance of the proposed frame-
work, we use the Area Under Receiver Operating Characteris-
tic Curve (AUC-ROC) as performance evaluation metric, fol-
lowing [Liu et al., 2022; Tang et al., 2023]. The AUC-ROC
values range from 0 to 1, with larger values indicating better
performance.

5.2 Comparison Results and Discussion
Q1: How does our MEGAD perform compared to the
SOTA methods in terms of precision?

Table 3 compares the AUC-ROC performance of various
methods across six datasets. Although MEGAD may not
achieve optimal results on all datasets, its overall performance
is the most outstanding. It is particularly noteworthy that ex-
isting methods commonly face Out-of-Memory (OOM) is-
sues when processing large-scale graph data, primarily due
to the infeasibility of adjacency matrix-based computations
caused by excessive node counts. Although techniques like
subgraph segmentation can mitigate this issue, it should be
especially noted that MEGAD fundamentally avoids OOM
risks through its batched training mechanism of node-level
reconstruction, making it more flexible in handling large-

Combination Weibo Facebook Disney Books DGraph Flickr
MEGAD 95.0 94.6 72.5 62.1 58.9 73.7

Without TR 67.8 73.5 63.1 53.0 44.3 64.8
Without PRE 92.3 63.1 49.1 30.4 47.4 66.5

Without PRE& TR 92.2 57.3 44.8 38.1 46.3 71.2

Table 4: AUC-ROC(%) results for different module combinations.
Here, “PRE” represents the pre-training module, and “TR” repre-
sents the training module.

scale graph data. In contrast, when employing the full-sample
learning strategy on four medium- and small-scale datasets,
the GPU memory consumption of the GADNR method re-
mained within controllable limits. However, when applied to
large-scale datasets like Flickr and DGraph, the method must
switch to mini-batch learning mode to avoid out-of-memory
errors. Unfortunately, this compromise solution still leads to
training time limit exceeded issues on the DGraph dataset,
highlighting its lack of robustness.
Q2: Is the memory consumption of MEGAD really low?
As shown in Fig. 3, we compared the maximum mem-
ory usage of various deep learning methods across different
datasets. The results indicate that the memory usage of most
methods increases significantly with larger datasets, eventu-
ally leading to “OOM” errors. GCNAE is the only method
capable of completing GAD tasks on the DGraph dataset
without encountering “OOM”. However, GCNAE’s mem-
ory usage reaches nearly 10GB, which is close to the hard-
ware limit. In contrast, MEGAD demonstrates exceptional
stability in memory usage, consistently maintaining around
3GB. These results demonstrate that MEGAD successfully
achieves high precision and low memory consumption on
large-scale graphs, aligning well with our expectations.

5.3 Ablation Studies and Discussion
Q3: Have all modules of MEGAD functioned as expected?
We divided MEGAD into three ablation experiment mod-
ules: pre-training, training, and testing. The testing mod-
ule is indispensable, as without it, no output would be gen-
erated. Four distinct experimental setups were conducted, as
presented in Table 4. The complete MEGAD demonstrated
the highest accuracy, aligning with our expectations. The sub-
optimal accuracy observed in MEGAD without the PRE &
TR modules can be attributed to the absence of graph struc-
ture information, which is crucial for performance. Although
omitting the PRE module improved accuracy by incorporat-
ing the training module, the system still failed to leverage
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Figure 4: The impact of emb size on the accuracy and runtime of
MEGAD.

the graph structure information. Furthermore, when only the
training module was omitted, the lack of a training module for
embedding optimization still resulted in suboptimal accuracy.
Q4: How do hyperparameters affect the experimental re-
sults? This section discusses the impact of three parame-
ters on the accuracy, efficiency, and memory consumption of
MEGAD.
Emb size. To explore the impact of Emb size on the ef-
ficiency and accuracy of MEGAD, we performed experi-
ments as shown in Fig. 4. Existing studies typically set
Emb size between 32 and 128. Considering that our dataset
includes examples with dimensions smaller than 32 (e.g.,
Books) as well as examples with dimensions larger than 128
(e.g., Weibo), we expanded the range of Emb size to include
[8, 16, 32, 64, 128, 256, 512]. As shown in Fig. 4(a), the
Emb size only marginally affects MEGAD’s accuracy. How-
ever, as depicted in Fig. 4(b), increasing Emb size leads to
a significant rise in runtime. Unless otherwise specified, all
time measurements in this paper represent the time required
for a single epoch.
Positive sampling size and Negative sampling size. As
shown in Fig. 5, the positive sampling size and negative
sampling size have an impact on the accuracy and efficiency
of MEGAD. Overall, as positive sampling size and nega-
tive sampling size increase, the running time also increases.
The accuracy improves with the increase of positive sampling
size, but it is not positively correlated with negative sampling
size. Specifically, when the negative sampling size equates
to 2, the overall accuracy is the best. This may be because
too many negative samples may cause the model to deviate
from normal, while too few negative samples cannot effec-
tively distinguish. Therefore, we set the negative sampling
size to 2. Considering that too many positive samplings will
increase the computational cost without significantly improv-
ing accuracy, we set the positive sampling size to 10.
Batch size. As shown in Fig. 6, GPU memory usage shows a
continuous increase as the batch size grows, while the train-
ing time decreases. For the Disney dataset, which includes
670 edges since each undirected edge is counted as two di-
rected edges in the code, GPU memory usage stabilizes when
the batch size reaches 4096. Similarly, for the Books dataset,
which contains 7390 edges under the same counting method,
GPU memory usage stabilizes at a batch size of 8192. This
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Figure 5: The performance of MEGAD on the Weibo dataset in
terms of AUC-ROC and time consumption under different sampling
sizes.
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Figure 6: The relationship between time consumption and memory
consumption of MEGAD.

stabilization occurs because, at these points, the sampling
size exceeds the number of edges in the dataset, and any
further increase in batch size will not result in additional
memory demand. In summary, MEGAD achieves efficient
memory usage while maintaining strong scalability, enabling
deployment across diverse hardware configurations with re-
laxed memory requirements. As evidenced in Fig. 6, the
framework provides configurable optimization strategies that
effectively manage the time-space trade-off - allowing users
to prioritize either memory efficiency or computational speed
based on their specific needs.

6 Conclusion
Existing graph reconstruction-based algorithms achieve good
accuracy in Graph Anomaly Detection problems. However,
they face issues such as high memory requirements and poor
scalability, which make their application to large-scale graph
data challenging. In this paper, we propose a memory-
efficient framework for large-scale attributed graph anomaly
detection. First, graph information is embedded into low-
dimensional representations; then, the embeddings are opti-
mized by a lightweight model; finally, an appropriate detec-
tor is selected to calculate anomaly scores. Extensive experi-
ments demonstrate that our proposed method achieves accu-
racy comparable to state-of-the-art methods while being more
robust, suitable for large-scale datasets, and requiring less
memory. In the future, we plan to introduce large language
models into MEGAD to further enhance its performance and
applicability.
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