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Abstract
Hierarchical optimization is attracting significant
attentions as it can be applied to a broad range
of machine learning tasks. Recently, many al-
gorithms are proposed to improve the theoreti-
cal results of minimax and bilevel optimizations.
Among these works, a core issue that has not been
well studies is to escape saddle point and find lo-
cal minimum. In this paper, thus, we investigate
the methods to achieve second-order optimality
for nonconvex minimax and bilevel optimization.
Specifically, we propose a new algorithm named
PRGDA without the computation of second order
derivative of the primal function. In nonconvex-
strongly-concave minimax optimization, we prove
that our algorithm can find a second-order station-
ary point with the gradient complexity that matches
state-of-the-art result to find first-order stationary
point. To our best knowledge, PRGDA is the first
stochastic algorithm that is guaranteed to obtain
the second-order stationary point for nonconvex
minimax problems. In nonconvex-strongly-convex
bilevel optimization, our method also achieves bet-
ter gradient complexity to find local minimum. Fi-
nally, we conduct two numerical experiments to
validate the performance of our new method.

1 Introduction
Hierarchical optimization (including minimax and bilevel op-
timization) is a popular and important optimization frame-
work which is applied to a wide range of machine learn-
ing problems, such as Generative Adversarial Net [Goodfel-
low et al., 2014], adversarial training [Madry et al., 2018],
multi-agent reinforcement learning [Wai et al., 2018], meta-
learning [Franceschi et al., 2018; Bertinetto et al., 2018] and
hyperparameter optimization [Shaban et al., 2019; Feurer and
Hutter, 2019]. In this paper, we study the following stochastic
hierarchical optimization problem

min
x∈Rd1

Φ(x) := f(x, y∗(x)) = Eξ∈D[F (x, y∗(x); ξ)] (1)

s.t. y∗(x) = arg min
y∈Rd2

g(x, y) = Eζ∈D′ [G(x, y; ζ)],

where the upper-level function f(x, y∗(x)) is smooth and
possibly nonconvex, and the lower-level function g(x, y) is
smooth and strongly-convex w.r.t. variable y so that y∗(x)
and Φ(x) can be well defined. ξ and ζ are samples drawn
from data distribution D and D′. Stochastic problem is a gen-
eral form that covers a couple of optimization tasks, includ-
ing online optimization and finite-sum optimization. When
g(x, y) = −f(x, y), the above bilevel optimization problem
is reduced to a standard minimax optimization which can be
rewritten as Eq. (2)

min
x∈Rd1

max
y∈Y

f(x, y) = Eξ∈D[F (x, y; ξ)] (2)

where Y is a convex domain (not required to be compact).
The loss function f(x, y) is smooth, nonconvex w.r.t. x and
strongly-concave w.r.t. y.

1.1 Minimax Optimzation
Recently, there are plenty of works studying minimax op-
timization problem in a variety of research fields in ma-
chine learning. Many deterministic and stochastic algo-
rithms with asymptotic or non-asymptotic convergence anal-
ysis have been developed, such as Gradient Descent Ascent
(GDA) [Du and Hu, 2019; Nemirovski, 2004] and Stochastic
Gradient Descent Ascent (SGDA) [Lin et al., 2020b]. Some
algorithms adopt a single loop structure [Heusel et al., 2017;
Lin et al., 2020b; Xu et al., 2023] while the others use a
nested loop to update y more frequently so that they can ob-
tain a better estimation of the maximum y∗(x) [Jin et al.,
2020; Nouiehed et al., 2019].

Besides, some algorithms have been proposed to improve
the theoretical results of minimax optimization, such as
SREDA [Luo et al., 2020] and Acc-MDA [Huang et al.,
2022] which take advantage of variance reduction to acceler-
ate the convergence rate and reduce the gradient complexity.
Moreover, on deterministic setting some recently proposed
algorithms [Lin et al., 2020a] have already matched the opti-
mal lower bound [Zhang et al., 2021].

However, most of these works only consider the criterion
of finding first-order stationary point. In nonconvex setting,
convergence to first-order stationary point is not always satis-
factory because a first-order stationary point could be a local
minimum, saddle point or even local maximum. Therefore,
second-order stationary point that reaches local minimum be-
comes a popular and important issue in nonconvex optimiza-
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Name Reference Stochastic Local Minimum Pure First-Order

SGDA [Lin et al., 2020b]
√

×
√

Cubic-GDA [Chen et al., 2021] ×
√

×
MCN [Luo and Chen, 2022] ×

√
×

Perturbed GDmax [Huang et al., 2025] ×
√ √

PRGDA (ours)
√ √ √

Table 1: Comparison of properties between related algorithms for minimax optimization.

tion. Since finding global minimum in nonconvex optimiza-
tion is usually an NP-hard problem [Hillar and Lim, 2013], in
some situations we attempt to find a local minimum instead.
Moreover, in some machine learning tasks such as tensor de-
composition [Ge et al., 2015], matrix sensing [Bhojanapalli
et al., 2016; Park et al., 2017], and matrix completion [Ge
et al., 2016], finding local minimum is equivalent to finding
global minimum, which makes second-order stationary point
more crucial.

Therefore, we are motivated to study the second-order op-
timality for minimax optimization which captures the local
minimum of Φ(x). We will discuss the relation between the
second-order stationary point of Φ(x) and the local equilib-
rium of f(x, y) in Section 3.2. In Section 3.1 we can see that
under certain conditions the primal function Φ(x) is twice
differentiable. An O(ϵ, ϵH) second-order stationary point sat-
isfies ∥∇Φ(x)∥ ≤ O(ϵ) and λmin(∇2Φ(x)) ≥ −ϵH where
λmin(·) means the smallest eigenvalue.

Although several recent works have been proposed to study
the second-order stationary point for nonconvex-strongly-
concave minimax optimization based on cubic-regularized
gradient descent ascent [Chen et al., 2021; Luo and Chen,
2022] or perturbed gradient [Huang et al., 2025], they are
only adaptive to deterministic gradient oracle and finite-sum
problem. The study of the second-order stationary point for
stochastic nonconvex minimax problem where the full gra-
dient is not available is still limited. A comparison between
related minimax algorithms is demonstrated in Table 1.

Thus, to fill in this gap, we propose a new algorithm named
Perturbed Recursive Gradient Descent Ascent (PRGDA) to
search second-order stationary point for stochastic noncon-
vex problem (2). To our best knowledge, PRGDA is the first
algorithm that is guaranteed to obtain second-order stationary
point for stochastic nonconvex minimax optimization prob-
lems. Furthermore, our method is a pure first-order algorithm
that only requires the computation of gradient oracle, which
makes our method more efficient to implement. We also pro-
vide the analysis to show that the gradient complexity of our
algorithm is Õ(κ3ϵ−3) to achieve O(ϵ,

√
ρΦϵ) second-order

stationary point where κ and ρΦ are defined in Section 3.1,
which matches the best result of finding first-order stationary
point for the same stochastic nonconvex minimax problem.

1.2 Bilevel Optimization
Recently, many bilevel algorithms are proposed, such as
deterministic algorithms AID-BiO and ITD-BiO [Ji et al.,
2021], and stochastic algorithms BSA [Ghadimi and Wang,
2018] and StocBiO [Ji et al., 2021]. These methods are pro-

posed to improve the convergence analysis of bilevel opti-
mization since most earlier works [Domke, 2012; Pedregosa,
2016] only provide the asymptotic convergence analysis.

StocBiO algorithm [Ji et al., 2021] is a recent work to solve
stochastic nonconvex-strongly-convex bilevel optimization
via AID. In this paper, we also study the convergence of our
method under this condition where Φ(x) is stochastic and
probably nonconvex. According to previous studies of bilevel
optimization, when f(x, y) and g(x, y) are differentiable and
g(x, y) is strongly-convex with respect to y, Φ(x) is also dif-
ferentiable and automatically ∥∇Φ(x)∥ ≤ ϵ is a criterion of
first-order stationary point. Notice that in [Ji et al., 2021]
∥∇Φ(x)∥2 ≤ ϵ is used as the criterion. In this paper, we will
uniformly adopt ∥∇Φ(x)∥ ≤ ϵ as the convergence criterion.
More recently, many stochastic algorithms with variance re-
duction are proposed, such as RSVRB [Guo et al., 2021],
SUSTAIN [Khanduri et al., 2021], MRBO and VRBO [Yang
et al., 2021]. The gradient complexity of bilevel optimization
is enhanced to O(ϵ−3), which is the best theoretical result as
far as we know. StocBiO with iNEON [Huang et al., 2025]
is a recent work that combines StocBiO with pure first-order
method inexact negative curvature originated from noise (iN-
EON) to escape saddle point and find second-order stationary
point for nonconvex-strongly-convex bilevel optimization.

Although these works are proposed to improve the perfor-
mance of algorithms for bilevel optimization, the complexity
of current methods that achieve second-order stationary point
are still high. Actually, the complexity of StocBiO with iN-
EON is even higher than the standard StocBiO algorithm in
order to find a local minimum with high probability. Thus,
to fill these gap, we are motivated to propose an accelerated
algorithm with variance reduction that requires lower com-
plexity to find second-order stationary point for stochastic
nonconvex-strongly-convex bilevel optimization.

The comparison between our method and related works to
find O(ϵ) first-order stationary point or O(ϵ,

√
ρΦϵ) second-

order stationary point is shown in Table 2, where Gc(f, ϵ) and
Gc(g, ϵ) are the numbers of gradient evaluations of function
f(x, y) and g(x, y) respectively. The last column represents
whether the algorithm can escape saddle point and find local
minimum. Notation Õ(·) hides the logarithm term. StocBiO
with iNEON and our PRGDA algorithm involve a logarithm
term in the complexity because they converge to second-order
stationary point with high probability.

From Table 2 we can see our PRGDA algorithm improves
the gradient complexity Gc(f, ϵ) and Gc(g, ϵ) of StocBiO
with iNEON algorithm significantly and matches state-of-
the-art complexity O(ϵ−3), which is one of the most impor-
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Name Reference Gc(f, ϵ) Gc(g, ϵ) Local Minimum

StocBiO [Ji et al., 2021] O(κ5ϵ−4) O(κ9ϵ−4) ×
SUSTAIN [Khanduri et al., 2021] O(p(κ)ϵ−3) O(p(κ)ϵ−3) ×

MRBO/VRBO [Yang et al., 2021] O(p(κ)ϵ−3) O(p(κ)ϵ−3) ×
StocBiO + iNEON [Huang et al., 2025] Õ(κ5ϵ−4) Õ(κ10ϵ−4)

√

PRGDA (ours) Õ(κ3ϵ−3) Õ(κ7ϵ−3)
√

Table 2: Comparison between related bilevel algorithms. We use p(κ) for some algorithms that do not provide the explicit dependence on κ.

tant contribution of this paper.

1.3 Contributions
We summarize our main contributions as follows:

• We propose a new PRGDA algorithm which is the
first algorithm to reach second-order stationary point
for stochastic nonconvex minimax optimization prob-
lem. Our method is pure first-order and does not require
any calculation of second-order derivatives. Our method
does not involve nested loops either, which makes it
more efficient to implement.

• We prove that the gradient complexity of our algorithm
is Õ(κ3ϵ−3) to achieve O(ϵ,

√
ϵ) second-order station-

ary point in stochastic nonconvex minimax optimization,
which matches the best result of finding first-order sta-
tionary point in the same problem.

• PRGDA can also be applied to nonconvex bilevel opti-
mization and we can prove that the gradient complexity
is Gc(f, ϵ) = Õ(κ3ϵ−3) and Gc(g, ϵ) = Õ(κ7ϵ−3) to
find O(ϵ,

√
ϵ) second-order stationary point in stochas-

tic nonconvex bilevel optimization, which outperforms
the previous best theoretical results and matches state-
of-the-art to find first-order stationary point.

2 Related Work
2.1 Stochastic Minimax Optimization
Many algorithms are proposed to solve stochastic nonconvex-
strongly-concave minimax problem, including intuitive meth-
ods SGDmax [Jin et al., 2020] and Stochastic Gradient De-
scent Ascent (SGDA) [Lin et al., 2020b]. Recently, some
methods integrate variance reduction with minimax problem
to accelerate the convergence, such as Stochastic Recursive
gradiEnt Descent Ascent (SREDA) [Luo et al., 2020], Hy-
brid Variance-Reduced SGD [Tran Dinh et al., 2020] and
Acc-MDA [Huang et al., 2022]. There are also some works
that study the weakly-convex concave minimax optimization
such as [Rafique et al., 2022] and [Yan et al., 2020]. More re-
lated to this work, Cubic-Regularized Gradient Descent As-
cent (Cubic-GDA) [Chen et al., 2021] and Minimax Cubic
Newton (MCN) [Luo and Chen, 2022] are two recent al-
gorithms that can reach the second-order stationary point in
nonconvex-strongly-concave minimax optimization.

2.2 Perturbed Gradient Descent
Perturbed Gradient Descent (PGD) [Jin et al., 2017] was pro-
posed to find second-order stationary point for nonconvex

optimization which introduces a perturbation under specific
condition. It is a deterministic gradient based algorithm and
only involves first-order oracle. Perturbed Gradient Descent
algorithm consists of two phases, a descent phase and an es-
caping phase. In the descent phase, the algorithm runs gra-
dient descent to make the function value decrease until the
magnitude of the gradient is smaller than a certain threshold.
In the escaping phase, it first introduces a perturbation drawn
from a uniform distribution on the ball B0(r) with center 0
and radius r. After certain iterations of gradient descent, if
the function value is reduced by a significant threshold then
it indicates that the algorithm escapes a saddle point and it
will do the descent phase again. Otherwise, it can be proven
that the point where the last descent terminates is second-
order stationary with high probability. To extend PGD to
the stochastic setting and incorporate it with variance reduc-
tion, SSRGD [Li, 2019] was proposed to reach second-order
stationary point with stochastic first-order oracle (SFO) of
O(ϵ−3.5). After that Pullback algorithm [Chen et al., 2022]
was proposed to improve the complexity to O(ϵ−3).

2.3 Cubic-GDA and Minimax Cubic Newton
Cubic-Regularized Gradient Descent Ascent (Cubic-GDA)
[Chen et al., 2021] and Minimax Cubic Newton (MCN) [Luo
and Chen, 2022] are two recent algorithms that can reach the
second-order stationary point in nonconvex-strongly-concave
minimax optimization. Both of these two algorithms are in-
spired by cubic regularization and designed for deterministic
problem. Cubic regularization was first proposed in [Nes-
terov and Polyak, 2006] which is a standard method that con-
verges to second-order stationary point in conventional non-
convex optimization. However, Cubic-GDA and MCN are
both designed for deterministic problem and neither of them
works for the stochastic minimax problem (2) considered in
this paper. Therefore, we are motivated to propose an algo-
rithm that is suitable for the stochastic problem. Besides,
Cubic-GDA and MCN involves the calculation of second-
order oracle or Hessian vector product while our method only
requires the first-order information, which indicates that our
method is more efficient to implement because the computa-
tion cost of Hessian matrix could be high.

2.4 StocBiO with iNEON
In [Huang et al., 2025], algorithms for both minimax and
bilevel optimization are proposed to find second-order sta-
tionary point. However, for minimax optimization only the
deterministic problem is studied. For bilevel optimization,
the stochastic problem is considered and the StocBiO with

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 Perturbed Recursive Gradient Descent Ascent
Input: initial value x0, y0
Parameter: stepsize η and ηH , perturbation radius r, escap-
ing phase threshold tthres, average movement D̄, tolerance ϵ,
maximum iteration T .

1: Set escape = false, s = 0, esc = 0.
2: for t = 0, 1, . . . , T − 1 do
3: Minimax: Update yt+1, vt, ut from Algorithm 2.
4: Bilevel: Update yt+1, vt, ut from Algorithm 3.
5: if escape = false then
6: if ∥vt∥ ≥ ϵ then
7: Update xt+1 = xt − (η/∥vt∥)vt.
8: else
9: Let ms = t, s = s+ 1.

10: Set escape = true, esc = 0.
11: Draw perturbation ξ ∼ B0(r).
12: update xt+1 = xt + ξ.
13: end if
14: else
15: Compute D =

∑t
j=ms+1 η

2
H∥vj∥2.

16: if D > (t−ms)D̄ then
17: Set ηt s.t.

∑t
j=ms+1 η

2
j ∥vj∥2 = (t−ms)D̄.

18: Update xt+1 = xt − ηtvt. Set escape = false.
19: else
20: Set ηt = ηH .
21: Update xt+1 = xt − ηtvt, esc = esc+ 1.
22: Return xms if esc = tthres.
23: end if
24: end if
25: end for
Output: xms

iNEON algorithm is proposed. The algorithm is inspired by
NEON [Xu et al., 2018; Allen-Zhu and Li, 2018], which is
a method to find local minimum merely based on first-order
oracles. Inexact NEON is a variant of NEON since the exact
gradient in bilevel optimization is unavailable. However, it
requires an extra nested loop to solve a subproblem that ex-
tracts a negative curvature descent direction. Besides, the gra-
dient complexity of StocBiO with iNEON is also higher than
the vanilla StocBiO. Therefore, we are motivated to propose
a more efficient bilevel optimization algorithm that converges
to second-order stationary point.

3 Preliminary
3.1 Notations and Assumptions
In this section we will present the notations used in this pa-
per and introduce some basic assumptions to further illustrate
the problem setting. In this paper we assume that upper-level
function f(x, y) is twice differentiable. Lower-level g(x, y)
is three times differentiable (only required in bilevel opti-
mization). The partial derivative is denoted by ∇x and ∇y ,
e.g., ∇f(x, y) = [∇xf(x, y),∇yf(x, y)]. Similarly, ∇2

x and
∇2

y represent the Hessian. ∇2
xy and ∇2

yx represent the Jaco-
bian. We use ∥ · ∥2 and ∥ · ∥F to denote the spectral norm and
Frobenius norm of matrix respectively. Notation Õ(·) means

the complexity after hiding logarithm terms. First, we assume
that lower-level function g(x, y) is strongly-convex with re-
spect to y so that y∗(x) and Φ(x) can be well defined.

Assumption 1. The lower-level function g(x, y) is µ-
strongly-convex with respect to y, i.e., there exists a constant
µ such that

g(x, y) + ⟨∇yg(x, y), y
′ − y⟩+ µ

2
∥y′ − y∥2 ≤ g(x, y′) (3)

for any x, y and y′.

Notice that in minimax optimization g(x, y) is the same as
−f(x, y) so we merge these two cases into one statement.
With Assumption 1, objective function Φ(x) is also differ-
entiable and the gradient is formulated as follows [Ji et al.,
2021].

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))·

[∇2
yg(x, y

∗(x))]−1∇yf(x, y
∗(x)) (4)

We can see the Hessian of g is automatically involved in the
gradient of Φ. Notice that in this paper first-order method
means only using the first-order information of Φ. In mini-
max optimization, since we always have ∇yf(x, y

∗(x)) = 0,
the expression of ∇Φ(x) is simplified by

∇Φ(x) = ∇xf(x, y
∗(x)) (5)

Next, we introduce the following assumptions about Lips-
chitz continuity of first and second order derivatives. These
assumptions are commonly used in the convergence analy-
sis of minimax and bilevel optimization [Luo et al., 2020;
Luo and Chen, 2022; Ji et al., 2021; Huang et al., 2025].

Assumption 2. The gradients of component functions
F (x, y; ξ) and G(x, y; ζ) are L-Lipschitz continuous, i.e.,
there exists a constant L such that

∥∇F (z; ξ)−∇F (z′; ξ)∥ ≤ L∥z − z′∥,
∥∇G(z; ζ)−∇G(z′; ζ)∥ ≤ L∥z − z′∥ (6)

for any z = (x, y) and z′ = (x′, y′).

Assumption 3. The second order derivatives ∇2
xf(x, y),

∇2
xyf(x, y), ∇2

yf(x, y), ∇2
xyg(x, y) and ∇2

yg(x, y) are ρ-
Lipschitz continuous.

The condition number κ of the hierarchical optimization
problem is defined by κ = L/µ. According to previous
works, in minimax optimization under Assumptions 1, 2 and
3, Φ(x) is twice differentiable. y∗(x) is κ-Lipschitz continu-
ous, ∇Φ(x) is LΦ-Lipschitz continuous and ∇2Φ(x) is ρΦ-
Lipschitz continuous.

According to [Ghadimi and Wang, 2018; Ji et al., 2021],
we know that in bilevel optimization function y∗(x) is also κ-
Lipschitz continuous, but we need an additional Assumptions
4 to guarantee Φ(x) has LΦ-Lipschitz gradient.

Assumption 4. The upper-level function f(x, y) is M -
Lipschitz continuous, i.e., there exists a constant M such that

∥f(z)− f(z′)∥ ≤ M∥z − z′∥ (7)

for any z = (x, y) and z′ = (x′, y′).
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Since in this paper we study the convergence to second-
order stationary point, we also need the following Assump-
tion 5 which is also assumed in [Huang et al., 2025] that
makes function Φ(x) twice differentiable and have ρΦ-
Lipschitz Hessian. We should notice that Assumption 4 and
5 are only used for bilevel optimization.
Assumption 5. The third order derivatives ∇3

xyxg, ∇3
yxyg

and ∇3
yg are ν-Lipschitz continuous.

3.2 Relations Between Local Nash Equilibrium
In nonconvex minimax optimization, local Nash equilibrium
is an important concept about the convergence criterion,
which is defined as follows in [Jin et al., 2020].
Definition 1. (Local Nash equilibrium) A point (x∗, y∗)
is a local Nash equilibrium of Problem (2) if f(x∗, y) ≤
f(x∗, y∗) ≤ f(x, y∗) for any x, y that satisfy ∥x − x∗∥ ≤ δ
and ∥y − y∗∥ ≤ δ.

However, as it is indicated in [Jin et al., 2020], a local Nash
equilibrium may not exist in sequential games such as GAN.
Hence a necessary condition of local Nash equilibrium is pro-
vided.
Definition 2. (Local minimax point) A point (x∗, y∗) is a
local minimax point of Problem (2) if y∗ is a local maxi-
mum of function f(x∗, ·) and there exists a constant δ0 >
0 such that x∗ is a local minimum of function gδ(x) =
max∥y−y∗∥≤δ f(x, y) for any 0 < δ ≤ δ0.

Next, we will prove that a saddle point of the primal func-
tion Φ(x) is not a local minimax point, which indicates the
importance to find second-order stationary point of Φ(x) in
minimax optimization.

Suppose x∗ is a saddle point of Φ(x) and y∗ is the maxi-
mum of f(x∗, ·). By the definition of saddle point, we know
for ∀δ > 0, there exists ∥x − x∗∥ < δ and Φ(x) < Φ(x∗).
Hence for ∀δ0 > 0 and ∀δ > 0, there exists x′ such
that ∥x − x∗∥ < min{δ0/κ, δ} and Φ(x′) < Φ(x∗). Let
y′ = max f(x′, ·). According to Proposition 1, we have
gδ0(x

′) = f(x′, y′) = Φ(x′) < Φ(x∗) = gδ0(x
∗), which

means x∗ is not a local minimum of function gδ0(x). There-
fore, a saddle point of the primal function Φ(x) will never be
a local minimax point of Problem (2).
Proposition 1. (Lemma 4.3 in [Lin et al., 2020b]) Suppose
function f satisfies Assumption 2 and Assumption 1. Then
function y∗(x) is κ-Lipschitz continuous, i.e.,

∥y∗(x1)− y∗(x2)∥ ≤ κ∥x1 − x2∥

for ∀x1, x2 ∈ Rd1 . Function Φ(x) is differentiable with
gradient ∇Φ(x) = ∇xf(x, y

∗(x)) and the gradient is LΦ-
Lipschitz continuous where LΦ = L+ κL.

4 Algorithm for Minimax Optimization
In this section, we will propose our PRGDA algorithm for
the special case of minimax optimization. The description
of our PRGDA algorithm is demonstrated in Algorithm 1.
Similar to SREDA, the initial value y0 is also yield by PiS-
ARAH algorithm to make it close to y∗(x0), which is a con-
ventional strongly-convex optimization subproblem. In our

Algorithm 2 Updater of Inner Loop (Minimax)
Input: status xt, xt−1, yt, vt−1, ut−1 and t
Parameter: stepsize λ, inner loop size K, batchsize S1 and
S2, period q.

1: Set xt,−1 = xt−1, xt,k = xt when k ≥ 0, yt,−1 = yt,0 =
yt.

2: if mod(t, q) = 0 then
3: Draw S1 samples {ξ1, . . . , ξS1}
4: vt,−1 = 1

S1

∑S1

i=1 ∇xF (xt, yt; ξi),

5: ut,−1 = 1
S1

∑S1

i=1 ∇yF (xt, yt; ξi).
6: else
7: vt,−1 = vt−1, ut,−1 = ut−1.
8: end if
9: for k = 0 to K − 1 do

10: Draw S2 samples {ξ1, . . . , ξS2
}

11: vt,k = vt,k−1 + 1
S2

∑S2

i=1(∇xF (xt,k, yt,k; ξi) −
∇xF (xt,k−1, yt,k−1; ξi))

12: ut,k = ut,k−1 + 1
S2

∑S2

i=1(∇yF (xt,k, yt,k; ξi) −
∇yF (xt,k−1, yt,k−1; ξi))

13: yt,k+1 =
∏

Y(yt,k + λut,k).
14: end for
15: Select st = argmink ∥G̃λ(yt,k)∥.
16: Let yt+1 = yt,st , vt = vt,st , ut = ut,st .
Output: yt+1, vt, ut.

convergence analysis this step costs the gradient complexity
of Õ(κ2ϵ−2). We use vt and ut to represent the gradient es-
timator of ∇xf(xt, yt) and ∇yf(xt, yt) respectively. In each
iteration, yt+1, vt and ut are computed by an inner loop up-
dater with K iterations, which is shown in Algorithm 2.

G̃λ(yt,k) =
yt,k −ΠY(yt,k + λut,k)

λ
(8)

In Algorithm 2, we use the SPIDER gradient estimator to
update yt,k, vt,k and ut,k. S1 is the large batchsize that is
loaded every q iterations of t. S2 is the small batchsize.
λ is the stepsize to update variable y. The output of the
inner loop updater depends on the minimum value of the
norm of G̃λ(yt,k) and its corresponding index (defined in
Eq. (8)). We will show that gradient estimator vt satisfies
∥vt −∇Φ(xt)∥ ≤ O(ϵ) based on this inner loop updater.

Inspired by perturbed gradient descent, our PRGDA is also
composed of a descent phase and an escaping phase. In the
descent phase our PRGDA algorithm follows the iterative up-
date rule of SPIDER that xt+1 = xt − (η/∥vt∥)vt until the
norm of vt satisfies ∥vt∥ ≤ O(ϵ). After the descent phase is
terminated, we use ms to denote the current counter t and uni-
formly draw a perturbation ξ from ball B0(r) where parame-
ter r is the perturbation radius. We add the perturbation to the
current status xt and start the escaping phase. In the escap-
ing phase, parameter tthres is maximum number of iterations
of the phase and D̄ is the average moving distance which is
used to determine if the escaping phase should be stopped.
The stepsize of x in this phase is denoted by ηH which is typ-
ically larger than η in the descent phase. We use D to denote
the accumulated squared moving distance. If the averaged
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squared moving distance is larger than D̄ then we pull it back
(line 17 in Algorithm 1) and break the escaping phase. In this
case we consider xms

as a saddle point and continue to run
next descent phase. Otherwise, if the escaping phase is not
broken after tthres iterations, we claim that xms

is a second-
order stationary point with high probability. This is because
when λmin(∇2Φ(xms

)) < −ϵH , the stuck region S defined
by the area {ξ ∈ B0(r)| the sequence started from xms+1 =
xms + ξ does not break the escaping phase} has a small vol-
ume. Informally, the stuck region S must be contained in a
“narrow band” or “thin disk” in a higher dimensional sphere.
Since the perturbation ξ is uniformly drawn from ball B0(r),
the probability that ξ belongs to the stuck region is low.

5 Algorithm for Bilevel Optimization
In this section we propose our PRGDA algorithm to solve
the more general bilevel optimization. Actually, we only
need to switch the inner loop updater in Algorithm 2 to the
bilevel mode, which is demonstrated in Algorithm 3. Simi-
lar to the case of minimax optimization, here we also need
a initialization algorithm to initialize y0 with the cost of
Gc(g, ϵ) = Õ(κ6ϵ−2) in the convergence analysis. Next
we will elaborate the inner loop updater for bilevel optimiza-
tion. We also use the update rule of SPIDER to compute v(1)t,k ,

v
(2)
t,k and ut,k, which represent the estimator of ∇xf(x, y),
∇yf(x, y) and ∇yg(x, y) respectively. We should notice that
the large and small batchsize of computing ut,k are different
from that of v

(1)
t,k or v

(2)
t,k . After the inner loop to compute

yt+1, we calculate the Jacobian Jt with a batch of size S5.
Then we compute vt, the estimator of ∇Φ(x) via AID. Here
we follow the method used in StocBiO, which is

vt=v
(1)
t −αJt

Q−1∑
q=−1

Q∏
j=Q−q

(I − α∇2
yG(xt, yt+1;Bj))v

(2)
t

(9)

where Bj is the set of samples to calculate the stochastic esti-
mator of Hessian ∇2

yg(xt, yt+1).

6 Convergence Analysis
In this section we will illustrate the convergence analysis of
our algorithm. First, we need to assume that Φ(x) is lower
bounded by Φ∗. Then we will present the main theorems of
our PRGDA algorithm. In this paper, we set ϵH =

√
ρΦϵ as

the tolerance of the second-order stationary point.

6.1 Main Theorem for Minimax Optimization
Theorem 1. Under Assumption 1, 2 and 3, we set step-
size η = Õ( ϵ

κL ), ηH = Õ( 1
κL ) and λ = O( 1

L ), batch-
size S1 = Õ(κ2ϵ−2) and S2 = Õ(κϵ−1), period q =
O(ϵ−1), inner loop K = O(κ), perturbation radius r =

min{Õ(
√

ϵ
κ3ρ ), Õ( ϵ

κL )}, threshold tthres = Õ( L√
κρϵ ) and

average movement D̄ = Õ( ϵ2

κ2L2 ). Then our PRGDA algo-
rithm requires Õ(κ3ϵ−3) SFO to achieve O(ϵ,

√
ρΦϵ) second-

order stationary point with high probability.

Algorithm 3 Updater of Inner Loop (Bilevel)

Input: status xt, xt−1, yt, v
(1)
t−1, v(2)t−1, ut−1 and t

Parameter: stepsize λ and α, inner loop size K and Q,
batchsize B, S1, S2, S3, S4 and S5, period q.

1: Set xt,−1 = xt−1, xt,k = xt when k ≥ 0, yt,−1 = yt,0 =
yt.

2: if mod(t, q) = 0 then
3: Draw samples with size S1 and S3.
4: v

(1)
t,−1 = 1

S1

∑S1

i=1 ∇xF (xt, yt; ξi),

5: v
(2)
t,−1 = 1

S1

∑S1

i=1 ∇yF (xt, yt; ξi),

6: ut,−1 = 1
S3

∑S3

i=1 ∇yG(xt, yt; ζi).
7: else
8: v

(1)
t,−1 = v

(1)
t−1, v(2)t,−1 = v

(2)
t−1, ut,−1 = ut−1.

9: end if
10: for k = 0 to K − 1 do
11: Draw samples with size S2 and S4.
12: v

(1)
t,k = v

(1)
t,k−1 + 1

S2

∑S2

i=1(∇xF (xt,k, yt,k; ξi) −
∇xF (xt,k−1, yt,k−1; ξi))

13: v
(2)
t,k = v

(2)
t,k−1 + 1

S2

∑S2

i=1(∇yF (xt,k, yt,k; ξi) −
∇yF (xt,k−1, yt,k−1; ξi))

14: ut,k = ut,k−1 + 1
S4

∑S4

i=1(∇yG(xt,k, yt,k; ζi) −
∇yG(xt,k−1, yt,k−1; ζi))

15: yt,k+1 = yt,k − λut,k.
16: end for
17: Select st = argmink ∥G̃λ(yt,k)∥. Let yt+1 = yt,st ,

v
(1)
t = v

(1)
t,st , v(2)t = v

(2)
t,st , ut = ut,st .

18: Compute Jacobian Jt =
1
S5

∑S5

i=1 ∇2
xyG(xt, yt+1; ζi).

19: Compute vt via AID in Eq. (9).
Output: yt+1, vt, ut.

6.2 Main Theorem for Bilevel Optimization
Theorem 2. Under Assumption 1, 2, 3, 4 and 5, we set
stepsize η = Õ( ϵ

κ3L ), ηH = Õ( 1
κ3L ), λ = O( 1

L )

and α = O( 1
L ), batchsize S1 = Õ(κ2ϵ−2), S2 =

Õ(κ−1ϵ−1), S3 = Õ(κ6ϵ−2), S4 = Õ(κ3ϵ−1), S5 =

Õ(κ2ϵ−2) and B = Õ(κ2ϵ−2), period q = O(κ2ϵ−1),
inner loop K = O(κ) and Q = Õ(κ), perturbation
radius r = min{Õ(

√
ϵ
ρΦ

), Õ( ϵ
κ3L )}, threshold tthres =

Õ( κ3L√
ρΦϵ ) and average movement D̄ = Õ( ϵ2

κ6L2 ). Then
our PRGDA algorithm requires complexity of Gc(f, ϵ) =

Õ(κ3ϵ−3), Gc(g, ϵ) = Õ(κ7ϵ−3), JV (g, ϵ) = Õ(κ5ϵ−4)

and HV (g, ϵ) = Õ(κ6ϵ−4) to achieve O(ϵ,
√
ρΦϵ) second-

order stationary point with high probability.

7 Experiments
In this section we conduct the matrix sensing [Bhojanapalli
et al., 2016; Park et al., 2017] experiment to validate the per-
formance of out PRGDA algorithm for solving both minimax
and bilevel problem. As a result of existing study on matrix
sensing problem [Ge et al., 2017], there is no spurious local
minimum in this circumstance, i.e., every local minimum is a
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Figure 1: Experimental results of our robust low-rank matrix sensing task. The first three subfigures show the loss function value of Φ(U)
against the number of gradient oracles with d = 50, d = 75, and d = 100 respectively. The last three subfigures show the ratio of distance
∥UUT −M∗∥2F /∥M∗∥2F against the number of gradient oracles with d = 50, d = 75, and d = 100 respectively.

global minimum. Therefore, the capability of escaping sad-
dle points of our algorithm can be verified by this experiment.
We follow the experiment setup of [Chen et al., 2022] to re-
cover a low-rank symmetric matrix M∗ = U∗(U∗)T where
U∗ ∈ Rd×r. Suppose we have n sensing matrices {Ai}ni=1
with n observations bi = ⟨Ai,M

∗⟩. Here the inner product
of two matrices is defined by the trace ⟨X,Y ⟩ = tr(XTY ).
Then the optimization problem can be defined by

min
U∈Rd×r

1

2

n∑
i=1

Li(U), Li(U) = (⟨Ai, UUT ⟩ − bi)
2 (10)

7.1 Robust Optimization
Similar to the problem setting of [Yan et al., 2019], we also
introduce another variable y and add a robust term to make
the model robust. Therefore, the optimization problem can
be formulated by

min
U∈Rd×r

max
y∈∆n

f(U, y) =
1

2

n∑
i=1

yiLi(U)− (yi −
1

n
)2 (11)

where ∆n = {y ∈ Rn|0 ≤ yi ≤ 1,
∑n

i=1 yi = 1} is the
simplex in Rn and Li(U) is defined in Eq. (10). Moreover, it
is easy to check there is no spurious local minimum given the
strict saddle property in [Ge et al., 2017].

The number of rows of matrix U is set to d = 50, d =
75 and d = 100 respectively and the number of columns is
fixed as r = 3. The ground truth low-rank matrix M∗ is
generated by M∗ = U∗(U∗)T where each entry of U∗ is
drawn from Gaussian distribution N (0, 1/d) independently.
We randomly generate n = 20d samples of sensing matrices
{Ai}ni=1, Ai ∈ Rd×d from standard Gaussian distribution
and calculate the corresponding labels bi = ⟨Ai,M

∗⟩ hence

Algorithm d = 50 d = 75 d = 100

SGDA -0.0819 -0.0434 -0.0330
Acc-MDA -0.0746 -0.0384 -0.0289
SREDA -0.0744 -0.0385 -0.0283
PRGDA -0.0035 -0.0011 -0.0011

Table 3: Smallest eigenvalue of ∇2Φ(U).

there is no noise in the synthetic data. The global minimum of
loss function value Φ(U) should be 0 which can be achieved
at point U = U∗ and y = 1/n.

Following the initialization in [Chen et al., 2022], we
randomly generalize a vector u0 from Gaussian distribution
and multiply it by a scalar to satisfy the condition ∥u0∥ ≤
λmax(M

∗) where we denote λmax(·) as the maximum eigen-
value. The initial value is set to U = [u0,0,0]. Each opti-
mization algorithm shares the same initialization. Apart from
our PRGDA algorithm, we run three baseline algorithms,
SGDA, Acc-MDA and SREDA. The code is implemented
on matlab. We choose η = 0.001, ηH = 0.1, λ = 0.01,
D̄ = r = 0.01, tthres = 20, K = 5, S2 = 40 and q = 25.

We evaluate the performance of each algorithm by two cri-
teria, loss function value of Φ(U) and the ratio of distance
to the optimum ∥UUT −M∗∥2F /∥M∗∥2F . The experimental
results of these two quantities versus the number of gradient
oracles are shown in Figure 1.

From the experimental results we can see SGDA, Acc-
MDA and SREDA cannot escape saddle points because the
loss function value is far away from the global minimum 0,
which is equivalent to local minimum in this task because of
the strict saddle property. In contrast, we can see our PRGDA
algorithm eventually converges to the global optimum U∗ and
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Figure 2: Experimental results of our hyper-representation learning of low-rank matrix sensing task. The ratio of distance ∥UUT −
M∗∥2F /∥M∗∥2F is shown against the number of gradient oracles with d = 50, d = 75, and d = 100 respectively.

achieves the best loss function value that is close to 0, which
indicates its ability to escape saddle point. Especially in the
case of d = 50, we can see clearly that our PRGDA algo-
rithm jumps out of the trap of saddle point. Besides, in our
experiment we also list the smallest eigenvalue of the Hes-
sian matrix ∇2Φ(U) for each algorithm after they have con-
verged. The results are shown in Table 3. We can see the
value λmin(∇2Φ(U)) of our method is the closest to 0 in all
cases, which also verifies the performance of our PRGDA al-
gorithm to find second-order stationary point.

7.2 Hyper-Representation Learning
We also conduct a hyper-representation learning experiment a
verify the ability of our method to reach second-order station-
ary point in bilevel optimization. Recently, many methods in
meta learning [Finn et al., 2017; Nichol et al., 2018] are de-
signed to learn hyper-representations via two steps and sep-
arated dataset. The backbone is trained to extract better fea-
ture representations which can be applied to many different
tasks. Based on these features a classifier is further learned
on specific type of training data, which eventually forms a
bilevel problem. In this experiment we also consider the ma-
trix sensing task but conduct it in the hyper-representation
learning manner.

The generation of U∗, M∗, Ai and bi are the same as Sec-
tion 7.1. We also set d = 50, d = 75 and d = 100. The
number of samples is n = 20d. We split all samples into two
dataset: a train dataset D1 with 70% data and a validation
dataset D2 with 30% data. We define variable x to be the first
r−1 columns of U and variable y to be the last column. Then
the objective function is formulated by

min
x∈Rd×(r−1)

1

2|D1|
∑
i∈D1

Li(x, y
∗(x)),

where y∗(x) = arg min
y∈Rd

1

2|D2|
∑
i∈D2

Li(x, y) (12)

Here Li(·) is defined in Eq. (10) since U is the concatenation
of x and y.

We follow the initialization in Section 7.1 to set x = [u0,0]
and y = 0. We compare our PRGDA algorithm with four
baselines, StocBiO, MRBO, VRBO and StocBiO + iNEON.
We choose η = 0.001, ηH = 0.1, λ = 0.01, D̄ = r = 0.01,
tthres = 20, K = 5, S2 = 40 and q = 25. We also use the

ration of distance to optimum, i.e. ∥UUT −M∗∥2F /∥M∗∥2F
as the metric to evaluate the performance. The experimental
results are shown in Figure 2.

From the experimental results we can see our PRGDA al-
gorithm shows the best performance to reach second-order
stationary point and approach the expected optimum. MRBO
and VRBO do not escape saddle points during the exper-
iment. In the case of d = 50, StocBiO performs better
than MRBO and VRBO because the randomness of stochastic
gradient serves as a kind of perturbation, while in variance-
reduced algorithms the gradient estimator is closer to the full
gradient. This result indicates the necessity of our method
to make variance-reduced bilevel algorithm escape saddle
points. StocBiO + iNEON also escapes saddle point prob-
ably but its convergence is slower than our method.

8 Conclusion
In this paper, we investigate the methods to achieve second-
order optimality for nonconvex minimax and bilevel opti-
mization. We propose a new algorithm PRGDA for stochas-
tic nonconvex hierarchical optimization which is the first al-
gorithm to find second-order stationary point for stochas-
tic nonconvex-strongly-concave minimax optimization. In
nonconvex-strongly-convex bilevel optimization, our method
also achieves better gradient complexity to find local mini-
mum. We prove that our method obtains the gradient com-
plexity of Õ(ϵ−3) to achieve O(ϵ,

√
ρΦϵ) second-order sta-

tionary point, which matches the best results of searching
first-order stationary point under same conditions. We also
conduct two numerical experiments to verify the performance
of our algorithm.
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