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Abstract
Reconstructing visual stimuli from EEG signals
is a crucial step in realizing brain-computer inter-
faces. In this paper, we propose a transformer-
based EEG signal encoder integrating the Dis-
crete Wavelet Transform (DWT) and the gating
mechanism. Guided by the feature alignment and
category-aware fusion losses, this encoder is used
to extract features related to visual stimuli from
EEG signals. Subsequently, with the aid of a
pre-trained diffusion model, these features are re-
constructed into visual stimuli. To verify the ef-
fectiveness of the model, we conducted EEG-to-
image generation and classification tasks using
the THINGS-EEG dataset. To address the lim-
itations of quantitative analysis at the semantic
level, we combined WordNet-based classification
and semantic similarity metrics to propose a novel
semantic-based score, emphasizing the ability of
our model to transfer neural activities into visual
representations. Experimental results show that our
model significantly improves semantic alignment
and classification accuracy, which achieves a max-
imum single-subject accuracy of 43%, outperform-
ing other state-of-the-art methods. The source code
and supplementary material is available at https://
github.com/zes0v0inn/DWT EEG Reconstruction/

1 Introduction
In recent years, the reconstruction of visual stimuli from elec-
troencephalogram (EEG) has emerged as a highly promis-
ing research area within the domain of brain-computer inter-
face (BCI), by extracting visually relevant features from EEG
and ultimately reconstructing visual stimuli [Bai et al., 2023;
Kavasidis et al., 2017]. This technology has the ability to
convert neural signals into images, thereby establishing a cru-
cial link between brain activities and the external world and
deepening our comprehension of the intricate relationship be-
tween brain activities and perception. It holds immense po-
tential, especially for individuals with severe disabilities. By
enabling them to convey their thoughts and intentions through

∗Corresponding Author

visual representations, it has the potential to revolutionize as-
sistive communication methods.

With the powerful image-generation capabilities of gen-
erative networks, such as adversarial generative networks
(GAN) [Goodfellow et al., 2014], variational auto-encoder
networks (VAE) [Kingma, 2013], and denoising diffusion
probabilistic models (DDPM) [Zhang et al., 2025; Ho et al.,
2020], which make it possible to perceive brain visual stim-
uli from EEG and reconstruct visual stimuli. However, ex-
isting related methods face substantial challenges. First, re-
constructing visual stimuli from EEG at the pixel level is dif-
ficult and unnecessary. To this end, reconstructing semanti-
cally consistent images is of significant importance in BCI,
leading to the inability to utilize traditional objective image
evaluation indicators, such as structural similarity (SSIM).
Therefore, the need arises for quantitatively evaluating the
quality of visual stimuli to be reconstructed using an objec-
tive semantic-based score. In addition, EEG are time-series
and noisy, which complicates the extraction of visually rele-
vant features from them. Moreover, the training of advanced
models, such as DreamDiffusion [Bai et al., 2023] and MinD-
vis [Chen et al., 2023], requires an excessive amount of com-
putational resources, severely restricting their widespread ap-
plication.

To process noisy time-series EEG signals efficiently, the
integration of traditional signal analysis methods, such as
the discrete wavelet transform (DWT) [Chen et al., 2017],
into deep-learning modules has been employed [Zeng et al.,
2024]. By incorporating DWT-based modules into EEG en-
coder, we can leverage both the spatial and frequency char-
acteristics of EEG, enhancing the feature-extraction process.
In addition, with the continuous evolution of deep-learning
models, the gate mechanisms in Mamba [Gu and Dao, 2023]
have been proven effective in neural networks for selectively
controlling information flow.

Motivated by the success of gated attention mechanisms in
Mamba and DWT in signal processing, in this work, we in-
tegrated a DWT module with the gated attention mechanism
within a well-designed EEG encoder, extracting meaningful
features from EEG by effectively capturing both spatial and
frequency-domain information while selectively focusing on
relevant features. To reconstruct semantically consistent im-
ages without pixel-level ground truth, a category-aware clus-
tering loss is utilized to cluster samples of the same category
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Figure 1: The overall flowchart of the proposed model. (A) EEG embedding part. (B) Downstream part. (C) Semantic evaluation part.

and separate different categories in a high-dimensional space,
thereby improving the reconstruction accuracy and zero-shot
generalization ability of the model. After the EEG feature
extraction, we employ a pre-trained diffusion-based model
to generate high-quality images. To ensure that the recon-
structed images accurately reflect the semantic meaning of
the input EEG, we incorporate an image classification model
as a performance validation step. Subsequently, we propose a
related evaluation metric of semantic-based score, enabling a
quantitative assessment of the semantic consistency between
the input EEG and the reconstructed images. The novelty of
this work is three-fold:

1. To the best of our knowledge, it is the first time to use
category-aware clustering loss to better extract the EEG
features associated with visual stimuli, with the assis-
tance of the CLIP loss [Radford et al., 2021] to align
image and EEG features.

2. We propose a novel semantic-based evaluation met-
ric using pre-trained classifiers to quantitatively assess
EEG-to-image reconstruction performance.

3. To address EEG’s noisy time-series nature, we design
a specialized encoder combining DWT and gated at-
tention, achieving strong classification performance and
supporting downstream image generation.

2 Related Work
Reconstructing visual stimuli from brain signals, such as
functional magnetic resonance imaging(fMRI) and EEG, has
achieved remarkable results in previous studies. For instance,
conditional Generative Adversarial Networks and VAEs have
been applied to encode fMRI signals and further reconstruct
the visual stimuli from the features of brain signals. Studies
such as Shen et al. [Shen et al., 2019] and Takagi et al. [Tak-
agi and Nishimoto, 2023] demonstrated that fMRI data could
be translated into semantically correct and high-quality im-
ages. In addition, EEG-based reconstruction algorithms, de-

spite the challenges of noise and lower spatial resolution,
have also exhibited promising results. Techniques integrat-
ing convolutional neural networks with GANs, as in [Song
et al., 2021; Yang et al., 2021], have enabled the genera-
tion of visual representations corresponding to real-time brain
activity. To simplify the application of BCI and make the
technology more low-cost and convenient for use, EEG is
a more practical signal entry than fMRI. Recent outstand-
ing results, such as DreamDiffusion [Bai et al., 2023] and
ATM-S [Li et al., 2024], have shown that, with the assis-
tance of the powerful image generation ability of diffusion
model, deep learning models can reconstruct visual stimuli
from EEG, capturing some semantic information embedded
in neural activity. Moreover, multi-modal approaches com-
bining EEG and fMRI have enhanced image quality and ro-
bustness by leveraging complementary features from both
modalities. These advancements emphasize the growing po-
tential of brain-signal-based image generation for applica-
tions.

3 Methods

Positional 
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Figure 2: The overall structure of the encoder with several well-
designed modules enhancing EEG embedding performance.
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3.1 Overall Architecture
Fig. 1 depicts the overall flowchart of the proposed model. In
this study, the proposed model comprises three main parts:
EEG embedding with a well-designed EEG encoder seen in
Fig. 2, the part of the downstream task (image reconstruction
and EEG classification), and the semantic evaluation. Within
the EEG embedding part, several well-designed modules are
employed, including the DWT block, gated attention mecha-
nisms, and a feature-fusion module. During network training,
to achieve optimal performance in terms of feature alignment
and category guidance, three distinct losses are combined:
the CLIP loss, the Mean Square Error (MSE) loss, and the
category-aware clustering loss. In the image reconstruction
of the downstream task branch, the approach adopted is sim-
ilar to that of the ATM-S method [Li et al., 2024].

3.2 DWT Block
To effectively capture both the temporal- and frequency- do-
main characteristics of EEG, we propose a DWT-based fea-
ture extraction module utilizing the PyTorch Wavelet pack-
age [Cotter, 2020]. In this block, the EEG embedding input
can be written as E ∈ RB×C×T , where B represents the
batch size, C denotes the number of channels and T is the
length of the signal. Using DWT module, the model can syn-
thesize both frequency and spatial features at different stages,
enabling the model to learn more complex features.

Channel-wise DWT Decomposition: Given the time-
series characteristics and high noise levels inherent in EEG, in
this study, the Daubechies-1 (db1) wavelet known as the Haar
wavelet, with a single-level decomposition is used for the
implementation of our DWT module. The rationale behind
this choice lies in the optimal localization properties of the
db1 wavelet within the time domain, demonstrating remark-
able effectiveness in capturing abrupt signal changes [Ocak,
2009]. Furthermore, single-level decomposition strikes an
appropriate balance between frequency resolution and com-
putational efficiency, which can balance the accuracy and
computational demands for EEG processing. First, we ap-
ply one-dimensional (1D) DWT decomposition to each EEG
channel independently:

[cAc
1, cD

c
1] = DWT1D(E{b,c,:})

s.t. ∀c ∈ {1, ..., C}, b ∈ {1, ..., B},
(1)

where E{b,c,:} denotes the temporal sequence for batch b and
channel c. cAc

1 ∈ RT/2 denotes the approximation coeffi-
cients of the low-frequency components. which can capture
the overall trends and low-frequency patterns of the EEG.
Concurrently, cDc

1 ∈ RT/2 represents the detail coefficients
of the high-frequency components, which retain the rapid
changes and high-frequency characteristics of the signals.

Inverse DWT Module: We employ a 1D inverse DWT
module (iDWT) to map the proposed EEG features back to
the temporal domain according to the following equation:

Freconstructed = iDWT1D([cAc
1, cD

c
1], ψ), (2)

where ψ represents the wavelet reconstruction parameters.
This reconstruction process preserves not only the learned

frequency-domain patterns but also temporal coherence. To
integrate both the original temporal features and the opti-
mized ones, we propose a feature fusion module, expressed
mathematically as:

Ffused = Conv(Wf [F ;Freconstructed] + bf ), (3)

where Wf and bf are learnable parameters. F represents the
proposed features derived from [cAc

1, cD
c
1], and Conv de-

notes the convolution operations.

3.3 Gated Attention Mechanism
To process EEG embeddings from DWT modules while
maintaining channel characteristics, we propose a gate-
enhanced multi-head attention mechanism. This approach in-
tegrates the traditional gating mechanism within the attention
of the transformer for selective feature processing. Our im-
plementation features an adaptive gating integration mecha-
nism for EEG embeddings, bridging local convolutional and
global transformer features.

Local Feature Integration: The local feature extrac-
tion process begins with channel-wise temporal convolution,
which processes each EEG channel independently, thus pre-
serving their temporal relationships and individual patterns.
Subsequently, we applied a cross-channel spatial convolu-
tion, integrating information from neighboring electrodes to
effectively capture the spatial dependencies within the EEG
structure. The integration of cross-channel features is re-
alized through a comprehensive spatial processing pipeline
that operates on wavelet-transformed signals. By applying
two-dimensional convolution operations across the channel
dimension of the wavelet coefficients, we effectively capture
the intricate spatial relationships among different EEG chan-
nels within the frequency domain. This spatial integration
process concatenates the wavelet coefficients from all chan-
nels before applying a spatial convolution kernel, enabling the
model to learn meaningful cross-channel patterns. The con-
volution output then goes through batch normalization and
non-linear activation, yielding a refined feature representation
that simultaneously maintains the channel-specific frequency
characteristics from the wavelet transform and the spatial re-
lationships between channels.

Global Frequency Domain Attention: For global feature
processing, we utilize a transformer-based encoder that em-
ploys multi-head self-attention mechanisms to capture long-
range dependencies throughout the entire sequence length
while preserving the channel-specific information structure.
The integrated spatiotemporal features are then processed
by a specialized channel-wise attention mechanism module.
By applying a dedicated attention operation to each chan-
nel’s spatiotemporal components, this module learns to se-
lectively emphasize the most relevant patterns while simul-
taneously maintaining the unique characteristics of individ-
ual EEG channels. The use of multi-head attention assigns
adaptive weights to different components based on their im-
portance, enabling the model to focus on discriminative spec-
tral features essential for downstream tasks while suppressing
less informative frequency content.

Dynamic Weighted Projection: The integration process
constructs a dynamic weighted combination model, where
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the local convolution features and the global transformer
features are balanced based on the learned channel-specific
weights. This method allows the model to automatically ad-
just the contribution ratio of different feature types accord-
ing to the characteristics of the input signal and the spe-
cific requirements of each channel. As intelligent selec-
tors, gate mechanisms excel in EEG processing by learn-
ing to balance local temporal patterns with global depen-
dencies. The combination of local patterns and global de-
pendencies has proven particularly valuable in different ap-
plications, including EEG processing [Song et al., 2022;
Lai et al., 2023], since the functional role of different chan-
nels, determined by their spatial location and measured brain
activity, often requires different processing strategies. There-
fore, the relationship between local patterns and global sig-
nal dependence can vary considerably depending on different
regions of the brain and cognitive states [Song et al., 2022;
Du et al., 2023]. The adaptive specialty of our proposed gate
mechanism ensures that the model can handle these changes
while preserving the integrity of the signal. In addition, the
combination of gating mechanisms with multi-head attention
mechanisms offers a robust framework for EEG processing,
enabling the model to concentrate on the most relevant pat-
terns while maintaining computational efficiency.

3.4 Multi-Branch Feature Extraction Module
Due to the proposed multi-branch architecture, we effec-
tively extract and fuse temporal and spatial features from
EEG via parallel processing streams, capturing both time-
domain characteristics and inter-channel relationships present
in EEG. The temporal branch focuses on extracting time-
domain characteristics from EEG by employing a series of
well-designed convolution operations based on ShallowCon-
vNet [Schirrmeister et al., 2017]. First, a temporal convo-
lution is applied across the time dimension while processing
each channel independently, thereby capturing local temporal
patterns during the task. Subsequently, the temporal features
undergo dimensionality reduction through average pooling,
and then a point-wise convolution is performed, which ad-
justs the feature representation while maintaining temporal
relationships.

The spatial branch is designed to capture inter-channel re-
lationships and spatial patterns across the EEG electrode ar-
ray. We implement this by initially performing a spatial con-
volution across the channel dimension, enabling the network
to learn local spatial patterns between neighboring electrodes.
This is followed by depth-wise separable convolutions, which
efficiently expand the receptive field while maintaining com-
putational efficiency.

The fusion mechanism employs an attention-based ap-
proach to adaptively combine temporal and spatial features.
After concatenating features from both branches, we ap-
ply a channel attention mechanism that generates dynamic
weights for each feature channel. The attention module con-
sists of channel-wise average pooling followed by two con-
volution layers with a bottleneck structure, producing atten-
tion weights through a sigmoid activation. The final stage
of our architecture integrates the attention-weighted features
through a fusion branch. A point-wise convolution combines

the weighted features, followed by batch normalization and
nonlinear activation. The output then undergoes a final adap-
tive pooling operation to ensure consistent dimensionality.

3.5 Loss Function

In our approach, we introduce a dual-loss mechanism that
integrates three complementary components: CLIP loss and
MSE loss for general feature alignment, and a category-aware
clustering loss for enhanced clustering. By employing label-
free category-aware clustering loss, we endow the model with
potential zero-shot discrimination capabilities, particularly
relevant in cases where the label space may differ between the
training and testing phases, as observed in our dataset where
the label categories of the training and testing sets are incon-
sistent. During network training, these two types of losses are
combined using different weights as hyperparameters. We
calculate the CLIP losses, including the loss between EEG
features and image features and the loss between EEG fea-
tures and text features, to ensure that the EEG features can
reflect relevant information. Subsequently, we calculate the
category-aware clustering loss for the classification results.
The CLIP loss, Lalign and the MSE loss, LMSE , between
image features, FI , and EEG features, FE , can be written as
follow:

Lalign(F
k
I , F

k
E) =

1

2
(LI→E(F

k
I , F

k
E) + LE→I(F

k
I , F

k
E)),

(4)
where k is the index of training sample.

Category-aware Clustering Loss: A key innovation of
our approach lies in implementing contrastive learning with-
out relying on absolute class labels through class-aware clus-
tering loss. We dynamically construct relationships within
each batch by examining the relative similarities among sam-
ples. Instead of depending on predefined classes, we adap-
tively create positive and negative pairs based on the data in
the current batch, enabling the model to learn feature repre-
sentations through comparison. This similarity-based cluster-
ing operation is independent of the total number of classes
in the dataset, making it particularly effective in scenarios
where class distributions may vary between training and test-
ing phases. The category-aware clustering loss can be formu-
lated as follow:

Lk
C =

J∑
i=1
i ̸=j

max(0, Sim(Qk
j , Ci)−M)−log(Sim(Qk

j , Cj)+ϵ).

(5)
In the formulas above, by element-wise multiplication, the

Sim refers to the similarity between the feature, Qk
j , which

belongs to the kth sample of the jth class, and the center of
class j, Cj . J is the amount of categories in the current batch.
ϵ is used as a constant to make sure the numerical stability
during calculating. And the constant M is used as the thresh-
old. When the dissimilarity achievesM , the loss assumes that
these two samples could be completely separated. The final
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loss function can be written as follow:

Lloss =
K∑

k=1

λ1Lalign(F
k
I , F

k
E)+λ2LMSE(F

k
I , F

k
E)+λ3Lk

C ,

(6)
where K is the number of samples in the current batch. λ1,
λ2 and λ3 are the weighting parameters to balance these three
loss functions.

3.6 Dataset
We conducted our experiments using the THINGS-EEG [Gif-
ford et al., 2022] dataset, which is a large-scale collection
of EEG recordings designed to capture neural signals to vi-
sual stimuli. The THINGS-EEG dataset was developed as
part of the THINGS initiative1, aiming at exploring the neu-
ral representation of object concepts. It comprises EEG
recorded from participants who were exposed to a diverse
set of real-world object images. These images were metic-
ulously selected from the broader THINGS dataset [Hebart et
al., 2019], which encompasses over 26,000 object concepts
spanning a wide semantic and perceptual range. In this work,
MNE python package was applied to conduct the preprocess-
ing. [Gramfort et al., 2013]. The continuous EEG data were
segmented into trials from 200ms before stimulus onset to
800ms after stimulus onset. Baseline correction was imple-
mented by subtracting the mean pre-stimulus interval for each
trial and channel. Subsequently, the data were downsampled
to 100Hz. Trials containing target stimuli were excluded
from our experiment. For our experiments, we employed
the same training and testing datasets from the THINGS-EEG
dataset as those used in previous research.

3.7 Evaluation
In our experiments, we primarily used the classification accu-
racy including Top-1 accuracy and Top-5 accuracy to evalu-
ate the capability of EEG encoder. For the reconstruction of
visual stimuli, traditional quantitative metrics, such as MSE
and SSIM, are not appropriate. This is because we only need
to reconstruct images with consistent semantics and do not
require pixel-level reconstruction recovery. Therefore, to as-
sess the semantic information of the generated images, we
creatively propose a semantic-based score as an evaluation
metric for the quality of the generated images, based on the
image classification model pre-trained on ImageNet, which,
to the best of our knowledge, is the first time to be proposed.
Specifically, we utilize the pre-trained weights of the Con-
vNext model from Meta [Liu et al., 2022] to classify the gen-
erated images. For any generated image, we adopt the fol-
lowing rules:

1. If the result of Top-1 from the ConvNext model contains
the same label, or the THINGS-EEG labels are included
in the ImageNet labels, the score of the image is set to 1.

2. If the results of Top-5 from the ConvNext model contain
the same label, the score of the image is set as the sum
of the probabilities of the classes that contain the same
label.

1https://things-initiative.org/

3. If the results of Top-5 from the ConvNext model do
not contain the exact same label, we will use Word-
Net [Miller, 1995] to obtain the label’s classes.

Then we calculate the score using the following formula:

Score =
∑

Pi ∗ Sim(label,WordNetlabel) (7)

Here, Pi represents the probability of each class obtained
from the pre-trained ConvNext model, and Sim is the Wu-
Palmer Similarity [Wu and Palmer, 1994].

Here, we carefully selected several representative methods,
as comparison methods, including ATM-S, ATM-E [Li et al.,
2024], NERV [Chen, 2024], NICE [Song et al., 2023], EIT-
ResNet [Zheng et al., 2024; He et al., 2016]. Also, in the fol-
lowing part, we compared the generated images in the same
subject, which is the subject ”sub-08” to assess whether the
generated images are able to reflect the semantic information
successfully.

3.8 Implementation Details
In this work, we well-trained the proposed model with a max-
imum of 40 epochs, a learning rate of 3×10-4, and a batch size
of 64. Early stopping was applied, and training was halted
if the top-1 classification accuracy did not improve for 10
consecutive epochs. To complement the evaluation, we also
recorded the accuracy of the top 5 classification to capture the
five most probable class predictions, which were further ap-
plied to analyze semantic consistency. In the whole training
process, we also applied pre-trained models in different parts
to reduce the computation cost and increase the generality.
First, we applied the public CLIP weights to generate image
embedding from the testing and training dataset of THINGS-
EEG. Then, we applied the pre-trained diffusion models in-
cluding SDXL-Turbo to generate images [Podell et al., 2023;
Sauer et al., 2025; Ye et al., 2023]. Finally, we used the pre-
trained ConvNext trained with ImageNet [Deng et al., 2009]
and wordNet [Miller, 1995] to calculate the semantic scores
based on the classification results.

4 Experimental Results
4.1 Visual Inspection of Image Reconstruction
To evaluate the ability of our framework to reconstruct high-
quality images from EEG, we conducted relevant image-
generation tasks on the THINGS-EEG dataset using all rel-
evant model reconstructions. Fig. 3 exhibits the representa-
tive reconstructed images from subject-08. The first column
presents the visual stimuli corresponding to the EEG signals.
In terms of the semantic quality of the generated images, sig-
nificant differences exist among the results produced by dif-
ferent methods shown in the subsequent columns. The second
column displays the images generated by our method. From
Fig. 3, we can see that When faced with the visual stimulus
of ”antelope”, both our method and ATM-S retain, to a cer-
tain extent, the key features related to ”antelope”. Although
pixel-level precise reconstruction may not be achieved, the
overall outlines and main structures are highly recognizable.
For example, the shape of the antelope can be roughly out-
lined. However, the images reconstructed by other methods
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Figure 3: Examples from subject-08: left column shows EEG visual
stimuli; subsequent columns display method reconstructions. Re-
sults demonstrate our model learns semantic features from EEG.

resemble either cows or horses. For another instance, consid-
ering the visual stimulus of ”bird” in the third row, only our
method can, to some degree, make the generated image rec-
ognizable as a bird. Other methods fail to do so. In particular,
the image reconstructed by ATM-E is not an animal-related
image at all, showing a huge semantic discrepancy.

4.2 Quantitative Semantic Analysis
From Fig. 3, it can be observed that although our method can-
not reconstruct visual stimuli at the pixel level, it is capable
of generating images with similar semantics. To quantita-
tively compare the semantic similarity of images generated
by different methods, in this work, we propose a quantitative
semantic-based score. We categorize the scores of all gener-
ated images into three types based on the mean and standard
deviation. For scores above (mean + std), the images are clas-
sified as good. For scores between (mean + std) and (mean
- std), the images are classified as intermediate. For scores
below (mean - std), the images are classified as bad. From
Fig. 4, we can see that, to some extent, the higher the score,
the closer the semantics of the reconstructed image is to the
visual stimuli corresponding to the EEG signals. By compar-
ing the magnitudes of these scores, we can, to a certain extent,
conduct a horizontal comparison of the quality of images re-
constructed by different methods, seen in Table 1.

Method Mean Standard deviation
Ours 0.383 0.182

NERV 0.376 0.198
NICE 0.364 0.167

ATM-S 0.368 0.176
ATM-E 0.326 0.154

EIT-ResNet 0.343 0.147

Table 1: Semantic scores of different models in subject-08.

4.3 Zero-shot EEG Classification
In the process of our EEG reconstruction of visual stimuli, a
powerful EEG feature extractor is required to better extract
corresponding semantic information from EEG. Evaluation

Good

Intermediate

Bad

Antelope

Grenade

Coffeemaker Dreidel Handbrake Lettuce

Orange

Crib Goose Pie

Pajamas

1.0 1.0 1.0

0.516 0.442 0.504

1.0

0.0 0.0 0.0 0.142

Model: Ours   Sub: 08   Mean: 0.382      Std:0.182

Paperweight 0.566

Figure 4: Figure shows subject-08’s semantic scores for generated
images. Each pair: left = visual stimuli, right = generated result.
Right image’s score is shown below. Classification: score > (mean
+ std) = good; score < (mean – std) = bad; others = intermediate.

of the ability of EEG feature extraction to extract relevant se-
mantic information from EEG can be used to assess the abil-
ity of each model to reconstruct EEG visual stimuli. There-
fore, we conducted a zero-shot classification task using the
THINGS-EEG testing dataset. By aligning the EEG features
with image features through the CLIP loss, we simultane-
ously optimize the EEG features via category-aware cluster-
ing loss, enabling the separation of different representations
in the high-dimensional space while clustering similar ones.
Subsequently, these features are processed by a lightweight
Multi-Layer Perceptron (MLP) classifier.

The results, as presented in Table ??, demonstrate that
our model achieves superior performance compared to other
baseline methods. To be specific, although our method does
not achieve the best Top-1 and Top-5 accuracy across all sub-
jects, overall, it demonstrates the best performance, which
can be clearly observed from the average precision. This sug-
gests that our method is more stable and effective in handling
the task in general, rather than excelling in only a few specific
cases.

4.4 Ablation Study
To explore the impact of each component on the proposed
model, several ablation studies were conducted. First, based
on our model, we removed the feature alignment loss. As
shown in Table 2, Lalign is the most crucial loss for training
our model. Without Lalign, the accuracy of EEG classifica-
tion becomes extremely low, indicating that the model can-
not fit the data under such circumstances. Furthermore, we
removed the DWT module, the local branch, and the global
branch separately to train the classification task for each sub-
ject. The accuracy of the classification task decreased signif-
icantly across all subjects. A similar phenomenon also oc-
curred in another ablation experiment: when we changed the
gated attention from the global branch to the local branch.
Regarding the other two loss functions LMSE and LC during
the training process, we found that removing either one of
them led to a slight decline in the performance of our model.

5 Discussion
EEG, as an indispensable tool in BCI, enables non-invasive
acquisition of relevant brain information. EEG can be uti-
lized to understand brain-related activities and guide clinical
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Method Sub-01 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 Sub-09 Sub-10 mean
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Ours 33.0 58.5 28.0 56.5 33.5 61.0 36.0 68.0 26.0 48.0 30.5 62.5 34.0 62.5 43.0 73.5 31.5 58.5 38.5 69.0 33.4 61.8
NERV 25.5 57 26 57 31.5 60.5 30.0 58.0 23.0 50.0 32.0 55.5 31.0 61.0 40.5 70.5 30.5 60.5 34.0 66.0 30.4 59.64
NICE 25.0 49.0 17.5 45.5 30.5 55.5 33.0 60.5 14.0 37.5 28.5 54.0 24.5 52.5 39.0 70.5 23.5 45.5 30.0 62.0 26.55 53.25

ATM-S 24.0 56.5 24.5 53.0 34.5 60.0 35.0 65.0 20.5 48.5 31.0 65.5 31.5 62.5 40.5 75.0 30.0 59.0 38.5 70.0 31.0 61.5
ATM-E 19.0 49.5 18.5 40.0 28.5 59.5 31.0 56.0 17.5 39 23.5 52.0 25.5 53.0 30.5 64.0 24.5 49.0 32.0 60.5 25.05 52.25

EIT-ResNet 16.5 30.5 11.5 26.5 13.0 38.0 14.0 32.0 8.0 24.5 15.5 39.0 16.5 40.0 16.0 39.5 12.5 26.0 14.5 43.5 13.8 34.0

Table 2: The overall accuracy for the classification task. We implemented the models from previous papers including NERV, ATM-S, ATM-E,
etc. it can be seen that our proposed model still advance in both mean Top-1 and top-5 accuracy.

Lalign LMSE LC DWT Local branch Global branch Sub-01 Sub-02 Sub-03 Sub-04 Sub-05 Sub-06 Sub-07 Sub-08 Sub-09 Sub-10 mean

Gated attention
in global branch

✗ ! ! ! ! ! 1.0 0.5 1.0 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.8
! ✗ ! ! ! ! 29.5 26.0 31.0 34.0 19.0 28.0 32.0 38.5 28.5 35.0 30.15
! ! ✗ ! ! ! 30.0 27.0 31.5 37.5 22.5 31.5 34.5 42.5 31.5 39.5 32.8
! ! ! ✗ ! ! 20.5 25.0 30.5 29.0 20.0 25.5 24.5 42.5 25.5 30.5 27.35
! ! ! ! ✗ ! 23.5 20.5 28.5 24.0 17.0 26.0 24.5 34.5 23.0 26.0 24.75
! ! ! ! ! ✗ 21.0 26.5 33.0 28.0 20.5 27.5 24.5 40.0 27.0 27.0 27.5

Gated attention
in local branch ! ! ! ! ! ! 20.5 26.5 32.0 30.5 21.0 28.5 26.5 41.5 23.0 27.5 27.75

Ours 33.0 28.0 33.5 36.0 26.0 30.5 34.0 43.0 31.5 38.5 33.4

Table 3: The results for the ablation study in classification task.

treatment and assisted living for relevant individuals. Among
them, the reconstruction of relevant visual stimuli from EEG
can make EEG more tangible, which is conducive to connect-
ing individuals with the real world.

In this work, we present a novel framework for EEG-
to-image reconstruction, which enhances the extraction of
meaningful features from EEG. To be specific, the proposed
model integrates advanced components such as the DWT
block and gated attention mechanisms, as well as a novel
mixed loss function that combines CLIP loss for feature
alignment with a label-free category-aware clustering loss,
aiming to improve classification accuracy and semantic align-
ment. Furthermore, we innovatively utilize WordNet-based
classification accuracy and semantic similarity measures and
creatively propose a semantic-based score to objectively eval-
uate the semantic information of generated images, address-
ing limitations in existing evaluation methods and providing
a scalable and quantitative way to assess the semantic consis-
tency of reconstructed images.

Compared with previous results, EIT [Zheng et al., 2024]
applied mature deep learning tools such as ResNet as the EEG
feature extractor for image reconstruction. However, despite
its advance in efficiency and computation cost, the nature of
such computer vision models may not be suitable for process-
ing complex time-series data, especially for EEG data and
the complicated downstream tasks such as high-level EEG
feature extraction and feature alignment with images. Com-
pared to NERV [Chen, 2024] and ATM-S [Li et al., 2024],
our model successfully introduced the DWT module as a
frequency-domain feature extractor. Also, the application of
category-aware clustering loss leads to further performance
improvements.

Based on our analysis, there is a strong correlation between
the classification accuracy and the semantic score of the gen-
erated images. Specifically, EEG that are correctly classified
by the model typically result in images with higher semantic

similarity scores. In contrast, EEG that are not correctly clas-
sified usually produce images with significantly lower seman-
tic similarity scores. This finding emphasizes the importance
of accurate classification in maintaining semantic fidelity dur-
ing the EEG-to-image conversion process. Challenges found
when generating images for specific categories: Some cat-
egories completely fail to generate semantically meaningful
images. We have identified several potential reasons for this
limitation: (1) Ambiguous or incorrect labels: Categories
with unclear or incorrect labels, such as ”bator4”, pose signif-
icant challenges. Even when converted into semantic vectors
through CLIP, these labels lack meaningful semantic rela-
tionships, leading to image generation failures. (2) Diffusion
model constraints: In this paper, the directly used pre-trained
diffusion model for reconstructing visual stimuli may lack
corresponding visual representations for certain categories,
limiting its ability to generate relevant images.

Despite numerous challenges, this study highlights the po-
tential of EEG-based image generation as a research frontier.
Future work could explore the use of interpretable models or
traditional EEG analysis methods to extract more robust fea-
tures, thereby enhancing the interpretability of the process.
Moreover, improving the consistency between EEG features
and semantic representations through more sophisticated ar-
chitectures or loss functions could further advance the field.
Developing customized pre-training strategies for diffusion
models to include a broader range of categories is another
promising avenue for improving image generation results.

In conclusion, our findings demonstrate the feasibility and
value of EEG-based image generation, offering insights into
the semantic encoding of neural signals and paving the way
for more interpretable and accessible brain-computer inter-
face technologies.
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