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Abstract
Accurate molecular property prediction is a critical
challenge with wide-ranging applications in chem-
istry, materials science, and drug discovery. Molec-
ular representation methods, including fingerprints
and graph neural networks (GNNs), achieve state-
of-the-art results by effectively deriving features
from molecular structures. However, these meth-
ods often overlook decades of accumulated seman-
tic and contextual knowledge. Recent advance-
ments in large language models (LLMs) demon-
strate remarkable reasoning abilities and prior
knowledge across scientific domains, leading us to
hypothesize that LLMs can generate rich molecular
representations when guided to reason in multiple
perspectives. To address these gaps, we propose
M2LLM, a multi-view framework that integrates
three perspectives: the molecular structure view,
the molecular task view, and the molecular rules
view. These views are fused dynamically to adapt
to task requirements, and experiments demonstrate
that M2LLM achieves state-of-the-art performance
on multiple benchmarks across classification and
regression tasks. Moreover, we demonstrate that
representation derived from LLM achieves excep-
tional performance by leveraging two core func-
tionalities: the generation of molecular embeddings
through their encoding capabilities and the curation
of molecular features through advanced reasoning
processes.

1 Introduction
Molecular property prediction is vital in cheminformat-
ics [Yang et al., 2019] and drug discovery [Drews, 2000], en-
abling the estimation of key characteristics like blood-brain
barrier permeability, solubility, and toxicity. Traditional ap-
proaches rely heavily on predefined molecular descriptors,
such as Extended-Connectivity Fingerprints (ECFPs) [Rogers
and Hahn, 2010], derived from SMILES(Simplified Molec-
ular Input Line Entry System) [Weininger, 1988]. While

† Corresponding author.

a. Traditional Method

ECFP4

C1=CC=C(C=C1)CCNN

SMILES

Vector with 
Fixed

Features

Graph
Encoder

C1=CC=C(C=C1)CCNN Text
Encoder

Molecular Graph

SMILES

b. Standard Deep Learning

Features are 
Data-driven

Lack of 
contextual 

relationships

Rule-based reasoning for 
flexible feature vectors.

LLM

c. Our method with LLM

SMILESStructure & Task view
Representation

from
Multi-view

Figure 1: (a) Traditional Method: Converts SMILES into fixed
ECFP4 vectors. (b) Standard Deep Learning: Graph encoders learn
patterns from data, while text encoders for SMILES-only input lack
contextual relationships. (c) M2LLM: Generating multi-view rep-
resentations by leveraging two core capabilities of LLMs: encoding
contextual relationships and rule-based reasoning for molecular fea-
ture generation.

these methods are efficient, their fixed feature sets limit their
ability to capture the complex relationships needed for spe-
cific chemical tasks. Graph Neural Networks (GNNs) have
demonstrated strong capabilities across a wide range of do-
mains [Bu et al., 2024; Yu et al., 2024; Wang et al., 2024a;
Wang et al., 2024b] and have also shown effectiveness in cap-
turing structural and physicochemical patterns from molec-
ular graphs [Koh et al., 2024; Yu et al., 2025; Du et al.,
2024]. However, they rely heavily on dataset-driven learning,
which limits their ability to generalize across diverse chem-
ical tasks. Similarly, recent studies [Sadeghi et al., 2024;
Shirasuna et al., 2024] leverage text encoder [Medsker et
al., 2001] or Transformer-based language model [Kenton and
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Toutanova, 2019] using SMILES representations, which fo-
cus solely on string patterns and lack the ability to capture
contextual relationships or molecular semantics.

To address these limitations, large language models
(LLMs) offer a transformative approach to molecular repre-
sentation by leveraging semantic and contextual knowledge
from diverse pretraining corpora, including scientific liter-
ature and domain-specific datasets [Zheng et al., 2024c].
In addition, LLMs demonstrate emergent abilities such as
contextual reasoning, relational understanding, and the abil-
ity to extrapolate patterns, making them uniquely suited for
tasks that require deep semantic understanding [Kojima et
al., 2022; Zheng et al., 2025]. These capabilities far sur-
pass those of earlier language models or text encoders. While
those methods demonstrate the utility of LLMs in capturing
molecular representations, they are inherently constrained by
their exclusive reliance on SMILES as input. As a result,
the potential of LLMs to enhance molecular representation
by leveraging their pretrained scientific knowledge and emer-
gent abilities remains underexplored.

In this work, we propose M2LLM, a novel multi-view
molecular representation learning framework that addresses
these gaps by fully exploiting the power of LLMs. The frame-
work is organized into two key modules: Molecular Embed-
ding Generation and Molecular Feature Curation, each con-
tributing distinct yet complementary perspectives on molecu-
lar data. The molecular embedding generation module lever-
ages the semantic embedding ability of LLMs to represent
molecular information from multiple views. This module in-
cludes the molecular structure view, which encodes structural
information from SMILES sequences to capture structure-
specific insights. This structure view can be further extended
to incorporate additional insights, broadening the scope and
enriching the molecular representation. Additionally, the
molecular task view contextualizes molecules within specific
prediction tasks to provide task-relevant guidance. Together,
these views harness the LLM’s pretrained semantic knowl-
edge to generate comprehensive embeddings.

The molecular feature curation module, on the other hand,
utilizes the reasoning ability of LLMs to derive interpretable
features. This module introduces the molecular rules view,
which generates rule-based features informed by scientific
knowledge and observed data patterns, facilitating a deeper
understanding of molecular properties. To unify these rep-
resentations, M2LLM employs a dynamic fusion mecha-
nism that adaptively combines the contributions of each view
based on the requirements of the task and the characteris-
tics of individual molecules. The fused representation is then
used for downstream prediction tasks, with a multi-layer per-
ceptron (MLP) designed for both classification and regres-
sion. Through extensive experiments, we demonstrate that
M2LLM achieves state-of-the-art performance across multi-
ple molecular property prediction benchmarks, highlighting
the potential of LLMs to redefine molecular representation
learning.

Our contributions of this work are as follows: (1) We pro-
pose M2LLM, a novel multi-view molecular representation
learning framework that integrates diverse molecular perspec-
tives through molecular structure view, molecular task view,

and molecular rules view. These views are fused dynamically
to create a unified representation tailored to each prediction
task. (2) We explore the potential of representations derived
from LLMs using M2LLM for molecular property predic-
tion, demonstrating that LLMs can achieve high performance
by leveraging their dual capabilities: molecular embedding
generation through their encoding abilities and molecular fea-
ture curation through their reasoning capabilities, address-
ing a significant gap in current research. (3) We show that
M2LLM achieves state-of-the-art performance across mul-
tiple molecular property prediction benchmarks, demonstrat-
ing its adaptability, scalability, and effectiveness in advancing
the use of LLMs for molecular representation learning.

2 Related Work
Several molecular representation methods have been devel-
oped, including molecular graph, ECFPs, and string line an-
notations such as SMILES. With the advancement of AI, ma-
chine learning models are now extensively used for property
prediction through traditional and deep learning approaches.

In the conventional approach, traditional machine learn-
ing models, such as random forests [Breiman, 2001], rely on
computed molecular fingerprints to predict properties by cap-
turing relationships between molecular substructures [Jeon
and Kim, 2019], though these predefined fingerprints may
not fully capture complex molecular structural patterns and
interactions. On the other hand, GNNs have been widely ap-
plied across domains [Zheng et al., 2024a; Wu et al., 2024;
Zhang et al., 2025; Zhang et al., 2019], they have also been
effectively used to model molecular graphs [You et al., 2020;
Wang et al., 2022; Xia et al., 2022], capturing hierarchi-
cal structural information and uncovering complex molecu-
lar patterns. However, these approaches often fail to integrate
broader contextual, and may overlook knowledge already dis-
covered in scientific literature and encoded within LLMs.

LLMs like GPT-4 [OpenAI et al., 2023] and Galac-
tica [Taylor et al., 2022], trained on diverse scientific and
chemical datasets, capture semantic and contextual relation-
ships beyond traditional text encoders’ syntactic patterns.
Moreover, LLMs exhibit emergent abilities such as reason-
ing [Kojima et al., 2022], relational understanding [Mirza et
al., 2024], and pattern recognition [Zheng et al., 2025], mak-
ing them powerful tools for extracting insights from molec-
ular text representations. Mirza et al. [2024] indicate that
even a 7B-parameter LLM can achieve average human scores,
while advanced models like GPT-4 can surpass the highest
human scores in chemical reasoning.

Previous studies [Wang et al., 2019; Fabian et al., 2020;
Ross et al., 2022] have explored encoding SMILES using
LLMs as molecular embeddings, demonstrating their effec-
tiveness in capturing meaningful representations and perfor-
mance in downstream property prediction tasks [Sadeghi et
al., 2024]. Researchers [Luo et al., 2024; Zheng et al., 2024b;
Rollins et al., 2024] have also investigated combining text en-
coders with GNNs to leverage both contextual and structural
information. However, these methods remain limited by their
reliance on SMILES as the sole input, failing to fully exploit
the semantic depth of LLMs.
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Input Molecule

LLM Encoder

Molecular Embedding Generation

Molecular Feature Curation

Semantic 
Representation

LLMs recognize data patterns and 
generate rules based on sampled 
molecular data

LLMs generate task related rules 
based on pre-trained knowledge Feature-based 

Representation
 Rule-to-Feature 
Code Translator

Molecular Rules View

Molecular Structure View
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3D 
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Figure 2: The M2LLM Molecular Representation Learning Framework. The framework integrates three molecular views to create
comprehensive and adaptable representations. Embedding generation includes two views: the molecular structure view and the molecular
task view, both processed using LLMs to produce semantic representations. Feature curation provides one view: the molecular rules view,
where rules are generated using LLMs based on pretrained knowledge and recognized data patterns, and translated into features via a rule-
to-feature translator to produce feature-based representation. These diverse representations are fused in a multi-view fusion module, with
trainable weights (α) balancing each component, enabling accurate predictions through a MLP prediction.

3 Multi-view Molecular Representation
Learning with Large Language Models

In this section, we introduce M2LLM, a novel multi-view
framework designed to leverage LLMs for molecular repre-
sentation learning. As illustrated in Figure 2, the framework
consists of two main components: Embedding Generation
and Feature Curation, which collectively provide three dis-
tinct views of molecular information. These views are fused
in a Multi-View Fusion Module, generating a unified repre-
sentation optimized for downstream prediction tasks.

3.1 Molecular Embedding Generation
The Molecular Embedding Generation component leverages
LLMs to encode sequence inputs, providing two views: the
Molecular Structure View and the Molecular Task View.

Molecular Structure View
The molecular structure view uses LLMs to generate embed-
dings that capture key physical and chemical properties of
molecules. LLMs have demonstrated strong capabilities in
encoding semantic and contextual knowledge. These mod-
els generate outputs sequentially, relying on previous input
tokens to reason about the current context. Instead of di-
rectly providing SMILES as input, we frame specific ques-
tions about the molecule alongside its SMILES representa-
tion. This approach gives the LLM additional contextual in-
formation, allowing it to “think about” the molecule in re-
lation to the queried property, resulting in richer and more
meaningful representations. To achieve this, we define three
example insights as questions targeting various structural as-
pects of the molecule, which can be adapted or replaced as
needed.

Structure Insight 1: How does the molecule’s 3D shape
change in different environments, and what are the ef-
fects of these changes?
Structure Insight 2: What are the key intermolecular
forces that govern the behavior of this molecule in var-
ious contexts?
Sructure Insight 3: How does the molecule contribute to
the overall chemical equilibrium in its different environ-
ments?

Let si denote the SMILES for molecule i, and qj denote
one of the three structure insight questions. The structural
embedding zstruct

ij for molecule i with question qj is computed
as:

zstruct
ij = f struct

Encode([qj ; si]) (1)
where fEncode(·) is the LLM encoder used to process the input,
[qj ;xi] represents the concatenation of the question qj and the
SMILES si. The embeddings generated for the three ques-
tions are then concatenated to form the final structure view
representation:

zstruct
i = [zstruct

i1 ; zstruct
i2 ; zstruct

i3 ] (2)
Molecular structure view not only enriches the molecular

structure representation but also provides a flexible frame-
work for generating diverse and comprehensive embeddings.
By incorporating structural views, M2LLM focuses solely on
analyzing molecular information without being tied to spe-
cific tasks or datasets. This design allows the LLM to en-
code the input in a way that leverages the semantic knowl-
edge learned during the pretraining process, capturing more
contextual and meaningful information than using SMILES
alone. Additionally, the modular nature of the structural
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view facilitates straightforward extensions by introducing
new questions to create additional views.

Molecular Task View
The molecular task view encodes task-specific information by
framing molecular analysis as a natural language processing
problem, inspired by the pre-training process of the Galactica
model [Taylor et al., 2022] that has demonstrated the ability
to process and reason about molecular representations effec-
tively when supplemented with contextual information, such
as questions or prompts. To leverage this capability, the task
view combines a molecule’s SMILES representation with a
task-specific question, guiding the LLM to generate a task-
aware representation by retrieving and processing semantic
information encoded during pretraining. For example, con-
sider the task of predicting blood-brain barrier penetration for
a given molecule. The input to the LLM would take the fol-
lowing form:

Here is a SMILES formula: [START I SMILES]C1=
CC=C(C=C1)C(=O)O[END I SMILES]

Question: Will the chemical compound penetrate the
blood-brain barrier?

Unlike the molecular structure view, which focuses on gen-
eral analysis of molecular properties, the task view explicitly
tailors its input to the prediction problem at hand. The gener-
ated embedding ztask

i incorporates both the SMILES sequence
si and the task-specific question t, and is computed as fol-
lows:

ztask
i = f task

Encode([t; si]) (3)

3.2 Molecular Feature Curation
The Molecular Feature Curation component introduces an ad-
ditional view of molecular representation through the Molec-
ular Rules View. This view captures domain-specific knowl-
edge and patterns by leveraging LLMs to generate rules based
on pretrained knowledge and data-driven insights. These
rules are then transformed into features using a Rule-to-
Feature Code Translator, providing a numerical representa-
tion that complements the semantic representations generated
by Molecular Embedding Generation module.

Molecular Rules View
The Molecular Rules View captures both pretrained knowl-
edge from scientific literature and patterns derived from
molecular datasets. The generated rules are transformed into
numerical features, creating a representation that comple-
ments the semantic representations.

Scientific Rule Generation with LLMs: LLM has built-
in knowledge and an understanding of various tasks from its
pre-training. To make use of this, we assign the LLM a spe-
cific persona, such as an experienced chemist, and instruct it
to generate rules based on its extensive exposure to scientific
literature. These rules are generated independently of any
specific molecule and are instead tailored to the requirements
of a given task. By leveraging its pretraining on vast scientific

datasets, the LLM produces rules that reflect well-established
principles and patterns relevant to the task at hand. Let t rep-
resent the specific task, the generated rules, Rsci, for task t
can be expressed as Rsci(t) = f sci

Reason(t), where f sci
Reason(·)

leverages the LLM’s pretrained reasoning capabilities to de-
rive rules. The example below demonstrates how the LLM
generates scientifically grounded rules for predicting blood-
brain barrier penetration in Scientific Rule Generation phase.

Persona: Assume you are an experienced Chemist.
Please come up with 20 rules that are important to
predict if a molecule can penetrate the blood-brain
barrier.

LLM Answer Example:
Rule 1: Molecular weight < 500 Da
Rule 2: LogP value between 1 and 3
Rule 3: Presence of aromatic rings
...

Data Pattern Rule Observation with LLMs: Beyond
their extensive knowledge base, LLMs exhibit strong abil-
ities in identifying patterns and relationships [Zheng et al.,
2025], making them well-suited for recognizing task-relevant
trends within molecular data. In this phase, several ran-
domly selected subsets of SMILES strings in the training
data {si}mi=1 ∈ Strain with their corresponding label yi are
then provided to the LLM. By analyzing these subsets, ad-
ditional rules Rdata based on observed patterns and relation-
ships within the molecular structures for the specific task
t: Rdata(t) =

⋃K
k=1 f

data
Reason({si, yi}mi=1, t)k, where K is the

number of subsets analyzed, m is the number of molecule
in each subset, and f data

Reason(·) leverages the LLM’s emergent
reasoning capabilities to identify patterns and generate rules.
The following example illustrates how the LLM generates
task-specific rules by analyzing randomly selected one sub-
set of molecular training data paired with their corresponding
labels.

Persona: Assume you are a very experienced Chemist.
In the following data, with label 1, it means the smiles
string is BBBP. With label 0, it means the smiles string
is not BBBP. Please infer step-by-step to come up with
3 rules that directly relate the properties/structures of a
molecule to predict if it can be BBBP.
[SMILES strings along with corresponding labels]

LLM Answer Example:
Rule 1: The presence of a benzene ring in the molecule
is essential for predicting whether it can be BBBP.
Rule 2: The presence of a carbonyl group (-C=O) in the
molecule is also important for predicting whether it can
be BBBP.
Rule 3: Number of Hydrogen Bond Donors (HBD)

Feature-based Representation
The combined set of rules, R(t) = Rsci(t)

⋃
Rdata(t),

is transformed into numerical features through a Rule-
to-Feature Code Translator, which maps the rules,
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{r1, r2, . . . , rn} ∈ R(t), into a feature vector for each
SMILES string s. This translation process leverages LLMs
to transform text-based rules into code-based features and
can be defined as:

fi(s) =

{
1, if ri is satisfied by s

0, otherwise,
(4)

or alternatively as a numerical function fi(s) ∈ Rn if the
rule outputs a continuous value (e.g., molecular weight). The
LLM is tasked with translating these rules into executable
functions fi(·), which are applied to the input s to extract
a set of molecular features. This process generates a feature
vector zrule

i for a molecule s, where each feature corresponds
to a rule:

zrule
i = [f1(s), f2(s), . . . , fn(s)] (5)

3.3 Multi-view Representation Fusion
The M2LLM framework then integrates three views into
a unified representation through a fusion mechanism. The
fused representation is subsequently passed through a predic-
tion module, which adapts to the requirements of either clas-
sification or regression tasks.

For a given molecule si, let zstruct
i , ztask

i , and zrule
i denote

the representations obtained from the structure view, task
view, and rules view, respectively. To combine these repre-
sentations into a single, comprehensive vector, our proposed
framework employs a weighted sum mechanism. Each view’s
contribution is modulated by a set of learnable weights αstruct

i ,
αtask
i , and αrule

i , which are specific to each molecule. The
fused representation zfused

i is then computed as a weighted
sum of the individual view representations:

zfused
i = αstruct

i zstruct
i + αtask

i ztask
i + αrule

i zrule
i (6)

where weights satisfy: αstruct
i + αtask

i + αrule
i = 1,

αstruct
i , αtask

i , αrule
i ≥ 0. The fused representation zfused

i is then
used as input to a multi-layer perceptron (MLP), which per-
forms the final prediction. This process is mathematically
defined as:

ŷi = fMLP(z
fused
i ) (7)

where ŷi is the predicted output for molecule si, and fMLP(·)
represents the function of the multi-layer perceptron.

The framework is trained to optimize the weights αstruct
i ,

αtask
i , and αrule

i , and the MLP parameters using task-specific
loss functions. For classification tasks, the cross-entropy loss
is minimized:

Lcls = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (8)

For regression tasks, the root mean squared error (RMSE)
loss is used:

Lregression =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (9)

where N denotes the number of molecules, yi represents the
binary ground truth label or the true value, and ŷi is the pre-
dicted probability or the predicted value.

4 Experiment
4.1 Experimental Setup
Dataset Our framework is evaluated on 8 datasets span-
ning 34 tasks from MoleculeNet [Wu et al., 2018], including
physiology-related tasks like BBBP [Martins et al., 2012],
ClinTox [Gayvert et al., 2016], and 27 SIDER tasks [Kuhn
et al., 2016] for adverse drug reaction prediction. Addition-
ally, we evaluate classification tasks from BACE [Subrama-
nian et al., 2016] and HIV [Wu et al., 2018], as well as regres-
sion tasks from ESOL [Delaney, 2004], FreeSolv [Mobley
and Guthrie, 2014], and Lipophilicity [Wu et al., 2018]. We
use the scaffold splitting method recommended by Molecu-
leNet [Wu et al., 2018], which assigns molecules with distinct
structural scaffolds to separate training, validation, and test
sets. This method, unlike random splitting, ensures structural
dissimilarity between sets, creating a more challenging eval-
uation scenario. Detailed dataset descriptions are provided in
Appendix A.1.
Baselines For the traditional model, we use Random For-
est [Breiman, 2001] with ECFP4 [Rogers and Hahn, 2010]
as the input feature set. For deep learning models, as shown
in Table 1, we select the most representative GNNs pretrain-
ing baselines and transformer-based architecture. To ensure a
fair comparison, We rerun all baseline models with the same
random seed across 10 iterations.
Backbone Model Our framework is built on an LLM-based
multi-view architecture, utilizing a state-of-the-art LLM as
its backbone. Specifically, for the molecular structural and
task views, we use Galactica models (6.7B and 30B pa-
rameters) [Taylor et al., 2022], LLaMa-3.1 models (8B and
8B-instruct) [Dubey et al., 2024], and OpenAI’s closed-
source text embedding models (small and large configura-
tions) [OpenAI, 2024]. For the molecular rules view, rule
generation is performed using the Galactica models, leverag-
ing their extensive pretraining on scientific literature to pro-
duce high-quality task-specific rules.

4.2 Performance on Classification Tasks
We evaluate M2LLM on five classification datasets with 31
subtasks, as shown in Table 1. We report the mean and stan-
dard deviation from 10 random seeds using the evaluation
metric, receiver operating characteristic-area under the curve
(ROC-AUC) (%), where higher scores indicate better perfor-
mance. One result for the same LLM backbone architecture is
presented for the comparison with other state-of-the-art base-
lines. Full results for different backbone architectures are
provided in the Appendix A.2.

As shown in Table 1, our framework demonstrates supe-
rior performance, surpassing existing baselines with signifi-
cant improvements. Notably, our framework exhibits excep-
tional performance on the Clintox dataset, achieving a near-
perfect accuracy of 99.5% and 99.4%, this result significantly
outperforms all other models. Moreover, on the BBBP, HIV,
and SIDER datset, our framework variants achieve the best
and second-best results, outperforming all GNN-based and
Transformer-based baselines. This result further enhances
the credibility of LLM-based approaches in molecular prop-
erty prediction tasks. Full results on 27 tasks for the SIDER
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Model
Dataset Backbone

Type BBBP(1) ↑ BACE(1) ↑ ClinTox(1) ↑ HIV(1) ↑ SIDER(27) ↑ Average Average
Rank

B
as

el
in

es

RF + ECFP4 RF 67.6 ± 1.0 85.0 ± 1.2 69.4 ± 3.1 77.1 ± 0.7 62.6 ± 2.5 72.3 ± 1.7 7

AttrMask [Hu et al., 2019] GNN 65.2 ± 1.4 77.8 ± 1.8 73.5 ± 4.3 75.3 ± 1.5 55.7 ± 4.0 69.5 ± 2.6 10
GraphCL [You et al., 2020] GNN 67.8 ± 2.4 74.6 ± 2.1 77.5 ± 3.4 75.1 ± 0.7 53.1 ± 4.3 69.6 ± 2.6 9

GraphMVP [Liu et al., 2022] GNN 70.8 ± 0.5 79.3 ± 1.5 79.1 ± 2.8 76.0 ± 0.1 59.6 ± 3.9 73.0 ± 1.8 6
3D-infomax [Stärk et al., 2022] GNN 69.1 ± 1.2 78.6 ± 1.9 62.7 ± 3.3 76.1 ± 1.3 60.7 ± 3.1 69.4 ± 2.2 11

MolCLR [Wang et al., 2022] GNN 73.1 ± 1.6 81.5 ± 1.6 91.6 ± 2.7 77.3 ± 1.3 60.0 ± 2.9 76.7 ± 2.0 5
MoleBert [Xia et al., 2022] GNN 71.9 ± 1.6 80.8 ± 1.4 78.9 ± 3.0 78.2 ± 0.8 51.4 ± 5.0 72.2 ± 2.4 8
Uni-Mol [Zhou et al., 2023] Transformer 71.5 ± 1.4 84.4 ± 2.1 87.8 ± 2.6 78.3 ± 1.3 62.3 ± 5.6 76.9 ± 2.6 4

GROVER [Rong et al., 2020] Transformer 65.1 ± 2.5 81.1 ± 2.3 74.0 ± 11.8 57.7 ± 4.3 56.8 ± 5.1 67.0 ± 5.2 12

O
ur

s M2LLM(LLaMa-3.1) LLM 77.0 ± 1.0 77.8 ± 2.9 99.1 ± 0.4 77.2 ± 0.9 62.7 ± 0.4 78.8 ± 1.1 3
M2LLM(Galactica) LLM 74.9 ± 0.74 80.0 ± 2.7 99.4 ± 0.1 77.5 ± 0.7 62.8 ± 0.4 79.0 ± 0.9 2
M2LLM(OpenAI) LLM 75.5 ± 1.3 78.2 ± 0.9 99.5 ± 0.1 79.5 ± 0.7 63.7 ± 0.3 79.3 ± 0.7 1

Table 1: Results on molecular property classification tasks with scaffold split. Mean and standard deviation of ROC-AUC (%) from 10
random seeds are reported, with higher values indicate better performance. The top-2 performances on each dataset are shown in bold, with
bold being the best result, and bold being the second best result.

Dataset can be found in Appendix A.3. In the case of the
BACE dataset, M2LLM achieves 80.0%, which, while com-
petitive, remains below the highest baseline result of 85.0%
achieved by the RF model. The potential reasons may be the
BACE dataset assigns binary labels for molecular inhibitors
of human β-secretase 1 (BACE-1), based on an arbitrary
threshold of quantitative potency values (IC50) set at 7 [Wu
et al., 2018]. However, potency values can vary significantly
depending on the assay settings [Landrum and Riniker, 2024],
lower potency values can still indicate strong inhibition of
BACE-1 [Harding et al., 2024]. We hypothesize that this ar-
bitrary threshold and label ambiguity hinder LLMs’ ability to
reason effectively.

4.3 Performance on Regression Tasks
We evaluate M2LLM on three regression tasks, as shown in
Table 2. We report the RMSE for regression, where lower
values signify better result. Results presented in Table 2
demonstrate the superior performance of our proposed frame-
work compared to all baselines across three datasets. Specifi-
cally, M2LLM demonstrates strong performance, achieving
an RMSE of 2.01 on FreeSolv dataset, reducing the error
by 15.5% compared to the best baseline value of 2.38. Fur-
thermore, on ESOL dataset, it achieves an RMSE of 0.44,
a remarkable 56.9% reduction in error compared to the best
baseline value of 1.02. Additionally, on the Lipophilicity
dataset, it achieves state-of-the-art results with an RMSE of
0.66, while our other variants demonstrate competitive per-
formance against baseline models.

4.4 Multi-view Component Contribution Analysis
In this section, we analyze the contribution of each view com-
ponent to the final decision, as illustrated in Figure 3, based
on three classification datasets and three regression tasks.
Interestingly, the molecular structure view component con-
tributes more significantly to the classification tasks, whereas
the molecular rule view component and molecular task view
component play a larger role in the regression tasks. This
suggests that classification tasks may benefit from a detailed

Model
Dataset ESOL(1) ↓ FreeSolv(1) ↓ Lipophilicity(1) ↓

RF + ECFP4 1.34 ± 0.01 4.36 ± 0.04 0.90 ± 0.00

AttrMask 1.11 ± 0.05 2.92 ± 0.03 0.73 ± 0.00
GraphCL 1.31 ± 0.07 3.60 ± 0.32 0.78 ± 0.02

GraphMVP 1.06 ± 0.02 2.95 ± 0.19 0.69 ± 0.01
3D-infomax 0.89 ± 0.04 2.83 ± 0.10 0.70 ± 0.02

MolCLR 1.31 ± 0.03 2.73 ± 0.08 0.74 ± 0.02
MoleBert 1.02 ± 0.03 3.08 ± 0.05 0.68 ± 0.02
Uni-Mol 1.55 ± 0.26 3.94 ± 0.50 1.19 ± 0.07

GROVER 1.13 ± 0.08 2.38 ± 0.40 0.91 ± 0.09

M2LLM(LLaMa-3.1) 0.44 ± 0.01 2.01 ± 0.37 0.73 ± 0.03
M2LLM(Galactica) 0.53 ± 0.25 2.39 ± 1.39 0.66 ± 0.02
M2LLM(OpenAI) 0.48 ± 0.02 2.35 ± 0.63 0.77 ± 0.01

Table 2: Results on Molecular Property Regression tasks with Scaf-
fold Split. Mean and standard deviation of the Root Mean Square
Error (RMSE) metric from 10 random seeds are reported, with lower
scores indicating better performance. Average statistics of target la-
bels are -3.46 for ESOL, -6.33 for FreeSolv, and 2.20 for Lipophilic-
ity.

representation of molecular structures, as these tasks often
rely on recognizing specific structural features critical for dis-
tinguishing between categories. On the other hand, regres-
sion tasks, which predict continuous values such as molec-
ular properties, appear to benefit more from the molecular
rule and task views, which capture broader context and rela-
tionships. This demonstrates that our framework effectively
automates the learning of appropriate weights for each com-
ponent, dynamically optimizing the contribution of each view
for individual molecules based on the task requirements.

From the LLM architecture perspective, we find that LLMs
with the same architecture tend to exhibit similar component
contributions across different datasets to the final predictions.
However, on the ESOL and FreeSolv datasets, even though
the LLMs heavily rely on one or two components, Galactica-
6.7B and 30B demonstrate different behavior, despite having
the same architectural design, these models exhibit different
component contributions for their final decisions. This pat-
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Figure 3: Multi-view Component Contribution Analysis. The con-
tributions of the Molecular Structure View, Molecular Rules View,
and Molecular Task View to the final score are calculated by averag-
ing component weights for each SMILES representation across 10
random seeds.

tern highlights the flexibility and adaptability of our proposed
multi-view representation learning framework.

Furthermore, the results for the ClinTox dataset, as re-
ported in Table 1, demonstrate that we achieve near-perfect
scores across all backbone settings. However, this component
analysis reveals intriguing insights into how different model
architectures rely on various components to make their pre-
dictions. The OpenAI models heavily depend on the molecu-
lar structure view, indicating that their decision-making pro-
cess is primarily driven by structural understanding and ex-
tensive pre-trained knowledge. In contrast, the Galactica
models rely more on task-specific components, likely because
our task-specific thinking process is closely aligned with their
pre-training dataset and methodology. The LLaMa-3.1 mod-
els demonstrate a relatively balanced utilization of all three
components to make accurate predictions.

4.5 Effectiveness of Multi-view Representation
To better understand the performance gains afforded by our
proposed multi-view representation, we first evaluate a base-
line configuration using the SMILES-only representation.
Specifically, only the SMILES string of a molecule is fed into
the best-performing LLM model. This approach relies solely
on the LLM’s general understanding of a molecule and does
not prompt the model to reason through the contextual diver-
sity provided by a multi-view approach.

As shown in Figure 4, our proposed method consistently
improved the scores across all six datasets. On the FreeSolv
regression dataset, where a lower RMSE indicates better per-

formance, we achieved a substantial reduction in prediction
error, decreasing it from 4.29 to 2.01, representing a 53.3%
improvement. This improvement underscores the effective-
ness of our framework, particularly in molecular property re-
gression tasks. Similarly, for other regression and classifi-
cation tasks, such as ESOL and BBBP, our method demon-
strated a measurable improvement compared to the SMILES-
only baseline. This trend is also consistently observed for all
other LLM backbone models as illustrated in Appendix A.4.
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Figure 4: Comparison of the performance between M2LLM and
the SMILES-only representation across 10 random seeds on six
datasets.

In the case of the ClinTox dataset, the SMILES-only base-
line achieves nearly perfect results, with our framework of-
fering a marginal improvement. This suggests that in tasks
where the LLM already possesses sufficient understanding
of the molecular domain through SMILES-based encoding
alone, the additional views provide less pronounced benefits.
This observation, nonetheless, further reinforces the strength
of LLMs as text encoders for molecular property prediction.

Overall, these results highlight the key contribution of
M2LLM: the integration of complementary molecular views
consistently enhances predictive performance compared to
a single-view SMILES-only approach. By dynamically in-
corporating diverse representations, M2LLM captures richer
molecular features and demonstrates superior adaptability
across tasks of varying complexity, firmly establishing itself
as a state-of-the-art framework for molecular property predic-
tion.

5 Conclusion
In this paper, we introduce M2LLM, a multi-view learning
framework that harnesses the capabilities of LLMs to gen-
erate rich molecular representations, enabling state-of-the-
art performance in molecular property prediction. By uti-
lizing the strong reasoning capabilities, extensive pre-trained
knowledge, and powerful encoding abilities of LLMs, the
framework delivers exceptional results across several bench-
mark tasks. Unlike methods that rely solely on SMILES as
input, M2LLM dynamically integrates multiple views to cap-
ture complex molecular features, enabling the learned repre-
sentations to generalize effectively across diverse classifica-
tion and regression tasks. These results underscore the trans-
formative potential of M2LLM in advancing molecular prop-
erty prediction, offering a scalable and versatile solution for a
wide range of applications in molecular science and beyond.
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