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Abstract
Graph Transformers (GTs) have emerged as power-
ful tools for handling graph-structured data through
global attention mechanisms. While GTs can ef-
fectively capture long-range dependencies, they in-
troduce difficulties in optimization due to their
complex, non-differentiable operators, which can-
not be directly handled by standard gradient-based
optimizers (such as Adam or AdamW). To in-
vestigate the above issues, this work adopts the
line of Zeroth-Order Optimization (ZOO) tech-
nique. However, direct integration of ZOO in-
curs considerable challenges due to the sharp loss
landscape and steep gradients within the GT pa-
rameter space. Under the above observations,
we propose a Sharpness-aware Zeroth-order Opti-
mizer (SZO) that combines Sharpness-Aware Mini-
mization (SAM) technique facilitating convergence
within a flatter neighborhood, and leverages par-
allel computing for efficient gradient estimation.
Theoretically, we provide a comprehensive analysis
of the optimizer from both convergence and gener-
alization perspectives. Empirically, we conduct ex-
tensive experiments on various classical GTs across
a wide range of benchmark datasets, which under-
score the superior performance of SZO over the
state-of-the-art optimizers.

1 Introduction
Graph Transformers (GTs) represent a significant advance-
ment in machine learning, introducing an emerging class of
network architectures purposefully designed to handle graph-
structured data with considerable efficiency and flexibility
[Dwivedi and Bresson, 2020; Liu et al., 2024a]. In con-
trast to conventional graph neural networks (GNNs), GTs
have demonstrated a strong capacity to address key issues
such as over-smoothing and over-squashing [Topping et al.,
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Figure 1: Illustration of our motivation and unveiling the power of
SZO in graph transformers.

2021]. The incorporation of transformer-based architectures
into graph models has proven to be highly adaptable and pow-
erful. Notably, this approach has yielded remarkable em-
pirical results in domains as varied as drug discovery [Liu
et al., 2022a], where intricate molecular interactions must
be accurately modeled, and molecular structure prediction
[Rong et al., 2020], which demands precise representation
of large, interconnected systems. The adaptability, robust-
ness, and improved representational power of GTs drive on-
going research and offer significant potential for advancing
various machine learning applications [Liu et al., 2024b;
Chang et al., 2025].

Motivation. Despite extensive efforts to develop advanced
optimizers for Transformer-based architectures, a fundamen-
tal challenge arises from the presence of certain complex op-
erators within GTs, such as shortest-path distance computa-
tions, which are inherently non-differentiable. These opera-
tors preclude the straightforward application of conventional
gradient-based optimization techniques (e.g., ADAM) [Ying
et al., 2021]. In response to this challenge, Zeroth-Order
Optimization (ZOO) has emerged as a promising alternative,
providing a means of gradient estimation without direct dif-
ferentiation. Such approaches have recently gained promi-
nence in addressing optimization challenges in large-scale
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Transformer-based language models [Zhang et al., 2024].
However, the naive integration of ZOO methods in GTs faces
substantial challenges in inferior and non-robustness, particu-
larly as model complexity and dimensionality increase [Kun-
stner et al., 2023]. These challenges arise from the steep
gradients in the parameter space of GTs and the sharp loss
landscape encountered during ZOO training [He et al., 2022],
where convergence to sharp local minima can significantly
impair generalization [Foret et al., 2020] and overall perfor-
mance. Furthermore, we conduct a demonstration experiment
which illustrates the poor performance of vanilla ZOO (see
Figure 2). Consequently, novel strategies are in urgent need
to leverage ZOO principles in GTs. To address the challenges
associated with the loss landscape in ZOO, we consider in-
corporating Sharpness-Aware Minimization (SAM) [Foret et
al., 2020], which aims to find local minima with a flatter
neighborhood and enhance the robustness of the optimizer.
In technique, SAM updates the model parameters using two
gradients (one from the neighborhood and one from the per-
turbed parameters), minimizing the average loss over the per-
turbed parameters, thereby enhancing generalization by re-
ducing sensitivity to small variations in the parameter space.

In this work, we propose a Sharpness-aware Zeroth-order
Optimizer (SZO) for graph transformers which basically in-
corporates SAM technique into the ZOO training process.
By regulating the curvature of the loss landscape, SAM ef-
fectively steers the optimization process toward flatter min-
ima, which in turn promotes improved generalization perfor-
mance and heightened resilience against adversarial pertur-
bations. Besides, we introduce a novel parallelized variant of
the Randomized/Coordinate-wise Gradient Estimator which
can reduce the computational burden. For the whole opti-
mization framework, we present a thorough theoretical anal-
ysis from both the convergence properties and generalization
guarantees. Empirically, we conduct extensive experiments
involving a wide range of publicly available datasets and
evaluate performance across various representative graph-
oriented tasks. The results consistently demonstrate the effec-
tiveness and versatility of the proposed methods, emphasizing
their potential to drive advancements in the state-of-the-art in
graph transformer optimization.

Our contributions are summarized as follows:

(1) Sharpness-aware Zeroth-order Optimization. We
are the first to investigate the training performance of zeroth-
order optimization for graph transformers and propose a
sharpness-aware zeroth-order optimization (SZO) to enhance
the robustness and generalization capabilities of the model.

(2) Comprehensive Theoretical Analysis. Our analysis
provides an in-depth theoretical examination, addressing as-
pects of both generalization and convergence. We prove the
convergence of this combined training approach and demon-
strate that the generalization bound of SZO is confined to a
neighborhood-wise loss.

(3) Experimental Evaluation. We evaluate SZO on var-
ious classical graph transformers and a wide range of public
benchmark datasets. Extensive experimental results demon-
strate the effectiveness in achieving superior performance

compared to several modern optimizers and SAM variants.1

2 Mathematical Background
Notation. Given a training dataset S ≜

⋃n
i=1{(xi, yi)}

drawn i.i.d. from distribution D = X × Y , we aim to learn a
graph transformer model that generalizes well. In particular,
consider a family of models parameterized by θ ∈ Θ ⊆ Rd.
Given a per-data-point loss function l : Θ × X × Y → R+,
we define the in-sample (empirical) training loss LS(θ) ≜
Lin(θ) = 1

n

∑n
i=1 l(w, xi, yi) and the out-of-sample (theo-

retical) loss LD(θ) ≜ Lout(θ) = E(x,y)∼D[l(θ, x, y)]. Hav-
ing observed only S, the goal of training is to learn model
parameters θ with lower loss LD(θ). For graph-level task,
the input training data includes graphs {G(i)}Ni=1 (each graph
G(i) = (X(i), A(i))) and associated labels {y(i)}Ni=1.

2.1 Graph Transformer
In this section, we present our focused framework, Graph
Transformers (GTs). GTs enable each node in a graph to at-
tend to all other nodes through a global attention mechanism.
The architecture of GTs consists of two primary components:
a self-attention module and a subsequent feed-forward neu-
ral network (FFN). In self-attention module, the input feature
matrix X ∈ RN×d is originally projected into three spaces:
query matrix Q ∈ Rd×dq , key matrix K ∈ Rd×dk and value
matrix V ∈ Rd×dv (where dq = dk):

Q = XWQ ∈ RN×dk ,

K = XWK ∈ RN×dk ,

V = XWV ∈ RN×dv .

Then we can compute the self-attention score as:

Attention(X) = softmax
(
QKT /

√
dv

)
V ∈ RN×dv . (1)

The output of the self-attention module is followed by a skip-
connection and a feed-forward network (FFN), which jointly
compose a Transformer block:

X ′′ = FFN(X ′) := ReLU(X ′W1)W2 +X ′,

X ′ = Attention(X),

where W1 and W2 denote the parameters in FFN.

2.2 Zeroth-order Optimization
Zeroth-order optimization (ZOO) has gained significant at-
tention due to its applicability in scenarios where the gradient
of the objective function is not readily available or difficult
to compute. In this section, we fisrt introduce two classi-
cal gradient estimators which are commonly employed to ap-
proximate the gradient of a target function. The first one,
known as the Coordinate-wise Gradient Estimator (CGE),
evaluates the partial derivatives of the function with respect
to each separate coordinate. More formally, consider a dif-
ferentiable function f : Rn → R, and let θ ∈ Rn be the
point where we aim to approximate the gradient ∇f(θ). The

1https://github.com/liu-yang-maker/SZO
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CGE method approximates each partial derivative ∂f
∂θi

by per-
turbing θ along the i-th coordinate direction. Specifically, it
computes gi(θ) ≈ f(θ+ϵei)−f(θ)

ϵ , where ϵ > 0 is a small
constant and ei represents the i-th standard basis vector in
Rn. By performing this operation for each coordinate i of θ,
we obtain an approximation of the gradient ∇f(θ). The for-
mal CGE update procedure is thus defined by evaluating the
above finite difference estimates for all coordinates and then
assembling them into an approximate gradient vector as:

θt+1 = θt − η · 1
d

d∑
i=1

[
ℓ(θt + ϵei)− ℓ(θt)

ϵ
ei

]
, (CGE)

where ei denotes the standard basis vector. Another zeroth-
order gradient estimation approach is the Randomized Gradi-
ent Estimator (RGE), which offers a more flexible alternative
to coordinate-wise perturbations by sampling random direc-
tions in the parameter space as:

θt+1 = θt − η · 1
q

q∑
i=1

[
ℓ(θt + ϵui)− ℓ(θt)

ϵ
ui

]
, (RGE)

where ui represents a random direction vector, generally
sampled from the standard Gaussian distribution N (0, I).
The parameter q denotes the number of function queries,
while ϵ > 0 signifies a small perturbation step-size, also re-
ferred to as the smoothing parameter.

2.3 Sharpness-aware Minimization
The sharpness of the loss landscape in GTs under ZOO [Wang
et al., 2024] necessitates the introduction of an alternative op-
timization technique. To address this issue, we aim to flat the
neighborhood of local minima, thereby enabling the devel-
opment of a more robust and effective model. In this work,
Sharpness-Aware Minimization (SAM) is utilized as a pro-
posed solution [Foret et al., 2020].
SAM Problem. Inspired by bounding generalization abil-
ity in terms of neighborhood-wise training loss, [Foret et al.,
2020] proposed Sharpness-Aware Minimization (SAM) prob-
lem as follows:

min
θ

LSAM
S (θ) + λ∥θ∥22, (2)

where LSAM
S (θ) ≜ max∥ϵ∥p≤ρ LS(θ+ ϵ), ρ ≥ 0 is a hyper-

parameter and p ∈ [1,∞].
Minimize LSAM

S (θ). An efficient approximation of its
gradient has been determined in as (details in Appendix)

∇θL
SAM
S (θ) ≈ ∇θLS(θ)

∣∣
θ+ϵ̂(θ)

.

For each update step t, we seek to find the best update
∆ ∈ Rd for θt+1 = θt − η∆, where η ∈ R+ denotes the
learning rate. Then, we aim to solve the following optimiza-
tion problem respect to ∆:

min
∆

L(θ +∆) s.t. KL (f(x|θ)∥f(x|θ +∆)) ≤ δ, (3)

where δ represents the maximum step size and f refers to the
original parametric model under consideration.

3 Proposed Approach
In this section, we describe SZO in details. First we give an
overview procedure for SZO. We then describe how to design
in technical view from the original version.

3.1 Proposed Optimization Procedure: SZO
Building on the SAM framework and the optimization chal-
lenges outlined earlier (see Eq.2 and Eq.3), we propose the
Sharpness-aware Zeroth-order Optimization (SZO) scheme
(here we take CGE as an example):

(I). ϵt = 1
d

∑d
i=1

[
ℓ(θt+ϵei)−ℓ(θt)

ϵ ei

]
,

(II). ϵ̂t = ρ · ϵt
∥ϵt∥2

,θϵ
t ≜ θt + ϵ̂t,

(III). ∆̂t =
1
d

∑d
i=1

[
ℓ(θϵ

t+ϵei)−ℓ(θϵ
t )

ϵ ei

]
,

(IV). θt+1 = θt − η · ∆̂t,

(4)

where ρ is the radius of the gradient stepping ball and η is
the step size. A similar scheme with RGE can be derived by
replacing the calculation of ϵt and ∆̂t above.

The training procedure of the SZO algorithm is outlined in
Algorithm 1. The algorithm begins by initializing the model
parameters θ (line 1). For each epoch t from 1 to MaxIter
(line 2), a batch of graphs {(x1, y1), . . . , (xb, yb)} is sam-
pled from the training dataset Dtrain (line 3). In the First Dif-
ferentiation Step, the approximate gradient ϵt is computed
using a coordinate-wise (or randomized) gradient estimator,
achieved by perturbing each coordinate independently (line
4). The perturbed model parameters θϵ

t are then calculated
(line 5). In the Second Differentiation Step, an additional
gradient approximation ∆̂t is computed (line 7). At the end
of each epoch, the model parameters are updated by apply-
ing the computed gradient approximation via gradient descent
(line 11).

3.2 Optimization Design
Given the huge complexity and parameter dimensions of
graph transformers, traditional ZOO methods face efficiency
bottlenecks. We implement algorithm acceleration using for-
ward parallelization [Chen et al., 2023]. Forward paral-
lelization decouples parameter perturbations and leverages
distributed computation, significantly reducing training time
while maintaining performance. This acceleration is essen-
tial to meet the practical demands of large-scale graph data
processing.
Decoupling Parameter Perturbations. For each coordi-
nate in ZOO Perturbation, we select the active parameter to
conduct the corresponding independent forward pass to allow
for parallel computation. A demo procedure of parameters
divided by θQ, θK , θV (refer to WQ,WK ,WV ) can be de-
scribed as

ϵ = ϵQ + ϵK + ϵV , ϵI =
∑
i∈SI

[
ℓ(θI + ϵei)− ℓ(θI)

ϵ
ei

]
,

(5)

where I ∈ {Q,K,V } and SI denote the active parameters
assigned to module I . In this case, only |SI | forward passes
are taken in each case.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Distributed and Sparse Implementation. The computa-
tion is distributed across multiple processes (or GPUs). Each
process is assigned a subset of the parameters to perturb and
compute the corresponding forward passes. By distributing
the parameter perturbations and forward passes across multi-
ple machines, the training process is significantly accelerated.
This approach avoids the limitations of traditional data par-
allelization, such as the potential for performance loss with
large batch sizes. Furthermore, we use a top-K operator be-
fore each variable matrix in attention as Y = (X⊙M) ·WT ,
where M ∈ {0, 1}N×D denotes Topk(|X|) which is the mask
tensor that indicates the top-K activations in the input tensor
X with absolute values and ⊙ is the Hadamard product. This
enhances the efficiency of SZO by ensuring high computa-
tional efficiency while maintaining performance.

3.3 SAM-based Design
We employ the Sharpness-Aware Minimization scheme
(SAM, see Section 2.3) [Foret et al., 2020; Wang et al., 2024]
for zeroth-order optimization.

SAM scheme. We introduce a SAM scheme in our method
for better generalization [Wang et al., 2024]. As discussed
in Section 2.3, we perform the gradient estimation operation
twice, regardless of whether using CGE, RGE, or a combi-
nation of both. This training scheme improves the model’s
generalization by facilitating a flatter loss landscape.

Perturbation size scheduler. ϵi+1 = ϵ0 · γepoch/λ where
the hyperparameter λ determines the update frequency of ϵ,

specifying the number of epochs per update, while γ regulates
the scale of modifications in ϵ.

3.4 Theoretical Analysis
The training pipeline of SZO is illustrated in Algorithm 1. In
this section, we provide a justification for the convergence
and generalization ability of SZO to ensure a reliable training
process. Note that the theorems only depend on the vanilla
setting and ignore the sparsity improvement.

Convergence Justification
Theorem 3.1. Considering an α-strongly convex and β-
smooth loss function ℓ, if we run SZO optimizer starting at θ0
with perturbation radius ϵ > 0 and any learning rate η < 2

β

to minimize ℓ, we have:
ℓ(θt)− ℓ(θ⋆) ≤(1− αη(2− ηβ))t(ℓ(θ0)− ℓ(θ⋆)

+
ηβ4ϵ

2α(2− ηβ)
, ∀t.

Generalization Justification
The original SAM [Foret et al., 2020] approach was inspired
by the established connection between the sharpness of the
loss landscape and the model’s generalization capabilities. To
further elucidate this motivation, the following analogous the-
orem demonstrates how generalization ability can be bounded
by neighborhood-wise training loss:
Theorem 3.2 (informal). For any ϵ > 0 and any distribution
D, with probability 1 − δ over the choice of the training set
S ∼ D, we have

ℓD(θ) ≤ max
i=1,...,d

ℓS(θ + ϵei) + h

(
∥θ∥22
ϵ2

)
where h : R+ → R+ is a strictly increasing function under
some technical conditions on ℓD and we assumed ℓD(θ) ≤
Eϵ∼N (0,δ′)[ℓD(θ + ϵei)].
Remark 1. Theorem 3.1 establishes a solid foundation for
the reliability and effectiveness of the proposed SZO method.
The convergence results demonstrate that SZO achieves guar-
anteed progress under both strongly convex and smooth
loss functions, ensuring stable optimization with appropriate
learning rates. The generalization analysis (see Theorem 3.2)
highlights the role of the SAM framework in achieving flatter
minima, which contributes to better robustness and improved
generalization capabilities. Together, these theoretical results
validate the efficiency of SZO for optimizing complex graph
transformer models.

Dataset #Tasks Task Type #Molecule
BBBP 1 Graph Classification 2,039
Tox21 12 Graph Classification 7,831
Sider 27 Graph Classification 1,427
Clintox 2 Graph Classification 1,478
BACE 1 Graph Classification 1,522
ESOL 1 Graph Regression 1,128
Lipophilicity 1 Graph Regression 4,198
QM7 1 Graph Regression 7,165
QM8 23 Graph Regression 21,786

Table 1: Statistics of datasets.
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Models Graph Classification (ROC-AUC ↑)

BBBP Tox21 Sider ClinTox BACE

GCN 0.690±0.041 0.819±0.031 0.623±0.022 0.807±0.044 0.725±0.027

MPNN 0.901±0.032 0.834±0.014 0.634±0.017 0.881±0.037 0.791±0.019

DMPNN 0.912±0.037 0.845±0.012 0.646±0.020 0.897±0.042 0.809±0.022

CMPNN 0.925±0.017 0.837±0.016 0.640±0.018 0.918±0.016 0.826±0.020

SPMM 0.733±0.023 - 0.647±0.023 0.914±0.045 0.830±0.010

PretrainGNN 0.687±0.022 0.781±0.020 0.627±0.029 0.726±0.018 0.845±0.019

Uni-Mol 0.729±0.027 0.796±0.029 0.659±0.018 0.919±0.012 0.857±0.017

MolXPT 0.805±0.050 0.771±0.044 0.717±0.049 0.953±0.002 0.884±0.011

GROVER 0.917±0.028 0.822±0.019 0.649±0.035 0.853±0.043 0.871±0.022

+SAM 0.926±0.022 0.840±0.035 0.660±0.043 0.872±0.044 0.886±0.019

+GraphSAM 0.928±0.016 0.846±0.012 0.665
✿✿✿✿±0.038 0.866±0.051 0.882±0.039

+SZO 0.929±0.018 0.848±0.040 0.707±0.035 0.874±0.050 0.885
✿✿✿✿±0.019

CoMPT 0.948±0.025 0.828±0.008 0.621±0.013 0.914±0.034 0.863±0.019

+SAM 0.962±0.033 0.839±0.006 0.643±0.009 0.927±0.025 0.876±0.012

+GraphSAM 0.961
✿✿✿✿±0.012 0.841±0.004 0.645±0.013 0.937

✿✿✿✿±0.008 0.880±0.029

+SZO 0.964±0.020 0.843
✿✿✿✿±0.006 0.649±0.010 0.940±0.012 0.888±0.044

Table 2: Graph Classification (ROC-AUC) Results. We use boldface to denote the best result, underline to denote the second best result, and
✿✿✿✿
wavy

✿✿✿
line to denote the third best result. Baseline results are from original papers and “-” indicates missing data in original papers.

4 Experiment
4.1 Experimental Setup
Dataset. Following established settings in molecular graph
tasks, we utilize nine public benchmark datasets: BBBP,
Tox21, Sider, ClinTox and BACE for classification, and
ESOL, Lipophilicity, QM7 and QM8 for regression. We as-
sess all models using a random split methodology as rec-
ommended by MoleculeNet [Wu et al., 2018], dividing the
datasets into training, validation, and testing sets with an
80%/10%/10% ratio. In Table 1, we summarize the statistics
of the molecular graph datasets utilized in graph classification
and graph regression tasks. Details see Appendix.
Baseline. We evaluate the effectiveness of SZO on two
graph transformer models including GROVER and CoMPT
[Rong et al., 2020; Chen et al., 2021] with different modern
optimizers [Wang et al., 2024]. Also, we add several compet-
itive GNN-based models as baselines.

• GROVER [Rong et al., 2020], which stands for Graph
Representation frOm self-superVised mEssage passing
tRansformer, is a novel framework designed to address
the challenges in molecular representation learning. It
leverages self-supervised tasks at the node, edge, and
graph levels to learn rich structural and semantic infor-
mation from unlabelled molecular data. GROVER inte-
grates Message Passing Networks into a Transformer-
style architecture, enhancing its capability to encode
complex molecular information.

• CoMPT [Chen et al., 2021]. The Communicative Mes-
sage Passing Transformer (CoMPT) is a neural net-
work designed to improve molecular graph representa-
tion. It enhances traditional Graph Neural Networks by
strengthening interactions between nodes and edges us-
ing Transformer architecture. CoMPT includes a mes-

sage diffusion mechanism to manage graph connectivity
and prevent information overload, capturing both local
and global structure.

Implementations. The implementations of the backbone
models and their respective hyperparameter configurations
are sourced from publicly available repositories as detailed in
[Rong et al., 2020] and [Chen et al., 2021]. Both GROVER
and CoMPT employ Adam as the base optimizer without em-
ploying any pre-training strategies. In our experiments, we
solely adjust the hyperparameters introduced by SZO.

We implemented several optimizers (i.e. SGD, ADAM
and SZO) on molecular graph data using two widely-adopted
graph transformer backbones: GROVER [Rong et al., 2020]
and CoMPT [Chen et al., 2021]. A comprehensive compar-
ison was conducted against several baseline models includ-
ing GCN [Kipf and Welling, 2016], MPNN [Gilmer et al.,
2017], DMPNN [Yang et al., 2019] CMPNN [Song et al.,
2020], SPMM [Chang and Ye, 2024], PretrainGNN [Hu et
al., 2020], and MolXPT [Liu et al., 2023b].

SAM and its Variants. Recent advancements in
Sharpness-Aware Minimization (SAM) have introduced
several efficient variants. The original SAM [Foret et al.,
2020] prevents sharp minima convergence but doubles
computational costs. LookSAM [Liu et al., 2022b] improves
efficiency by intermittently computing gradients but neglects
gradient magnitude, limiting its generalizability. AE-SAM
[Jiang et al., 2023] uses squared gradient norms to skip
updates, though its performance varies across domains. RST
[Zhao et al., 2022] employs Bernoulli trials for stochastic up-
dates, yielding suboptimal results. GraphSAM [Wang et al.,
2024] enhances efficiency for molecular graph transformers
by reusing prior gradients, maintaining strong generalization.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Te
st

 R
O

C
-A

U
C

GROVER-BBBP GROVER-Tox21 GROVER-Sider GROVER-ClinTox CoMPT-BBBP CoMPT-Tox21 CoMPT-Sider CoMPT-ClinTox
Model - Dataset

Figure 2: Testing ROC-AUC of graph transformers on graph classification benchmark datasets with SZO and other competitive optimizers.
We emphasize the use of two optimizers, ZO and SZO, with bold box.

4.2 Performance on Graph Classification Task
We employed SZO on GROVER and CoMPT for an extensive
evaluation against baseline methods across various datasets.
The comparative results are presented in Table 2. It demon-
strates that the impact of integrating SZO with GROVER
and CoMPT models on graph classification tasks across six
datasets (BBBP, Tox21, Sider, ClinTox, BACE). The SZO-
enhanced versions of both models consistently outperform
their baseline counterparts, achieving some of the highest
ROC-AUC scores, particularly on BBBP, Tox21, and ClinTox
datasets. Notable improvements include GROVER with SZO
reaching 0.929 in BBBP and CoMPT with SZO achieving
0.940 in ClinTox. This highlights the effectiveness of SZO
in boosting model performance.

4.3 Performance on Graph Regression Task
Table 3 displays the performance of various models on graph
regression tasks, evaluated using RMSE and MAE across four
datasets (ESOL, Lipophilicity, QM7, QM8). The integration
of SZOwith GROVER and CoMPT models generally leads to
improved results. For instance, CoMPT with SZO achieves
the lowest RMSE in ESOL (0.505) and the best MAE in
QM8 (0.0139). Similarly, GROVER with SZO shows sig-
nificant improvements, notably achieving the best RMSE in
Lipophilicity (0.588). These results highlight the effective-
ness of SZO in enhancing model accuracy for graph regres-
sion tasks.

4.4 Additional Verification
Ablation Study. The performance results of the ZO and
SZO optimizer across four datasets are presented in Figure 2.
It is evident that the ZO optimizer alone yields subpar out-
comes, demonstrating a lack of effectiveness in achieving op-
timal performance on the datasets. However, when SAM
is integrated into the optimization process, there is a sub-
stantial enhancement in performance. The addition of SAM
helps to address the limitations of the ZO optimizer, signifi-
cantly boosting the model’s accuracy and stability across all
datasets, thus showcasing the considerable benefits of com-
bining SAM with the ZO optimization approach.

Different Optimizers. Table 4 shows the performance of
GROVER and CoMPT models with various optimizers across
different datasets for both graph classification (ROC-AUC)

Models (RMSE ↓) (MAE ↓)

ESOL Lip. QM7 QM8

GCN 0.970±0.071 1.313±0.149 131.1 0.0236
MPNN 0.702±0.042 1.242±0.249 94.5 0.0218
DMPNN 0.665±0.060 1.159±0.207 103.5 0.0190
CMPNN 0.582±0.055 0.633±0.029 81.9 0.0171
SPMM 0.810±0.066 0.706±0.223 - -
PretrainGNN - 0.739±0.118 113.2 0.0200
Uni-Mol 0.788±0.012 0.603±0.017 41.8 0.0156

GROVER 0.639±0.087 0.671±0.047 78.9 0.0203
+SAM 0.619±0.089 0.662±0.052 76.4 0.0189
+GraphSAM 0.625±0.083 0.654±0.056 75.8 0.0185
+SZO 0.598±0.087 0.588±0.119 73.3 0.0181

CoMPT 0.562±0.071 0.618±0.012 66.1 0.0159
+SAM 0.517

✿✿✿✿±0.025 0.611±0.015 64.3 0.0145
✿✿✿✿✿

+GraphSAM 0.511±0.018 0.608
✿✿✿✿±0.007 64.1

✿✿✿
0.0141

+SZO 0.505±0.033 0.609±0.66 62.2 0.0139

Table 3: Graph Regression (RMSE & MAE) Results. We use bold-
face to denote the best result, underline to denote the second best
result, and

✿✿✿✿
wavy

✿✿✿
line to denote the third best result. Baseline results

are sourced from the original papers, and “-” indicates missing re-
sults in the original papers.

and graph regression (RMSE). For GROVER, the RSZO op-
timizer consistently achieves high scores, such as 0.929 in
BBBP and 0.598 in ESOL. Similarly, for CoMPT, RSZO
yields excellent results, including 0.964 in BBBP and 0.505
in ESOL. Figure 2 visualizes the total ROC-AUC scores for
these models and datasets, clearly indicating that RSZO (pur-
ple) and SZO (pink) optimizers lead to superior performance,
particularly in the datasets of BBBP, ClinTox, and Tox21.
This demonstrates the effectiveness of SZO in optimizing
model performance across various tasks.

5 Related works
Graph Transformer. The remarkable achievements of
Transformers [Vaswani et al., 2017] in natural language pro-
cessing (NLP), and more recently in computer vision [Han et
al., 2021] and biological information [Bai et al., 2023; Niu et
al., 2022; Wu et al., 2022], have generated substantial interest
in adapting Transformers for graph data analysis. One of the
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Optimizers
Tasks Graph Classification ( ROC-AUC ↑ ) Graph Regression ( RMSE ↓ )

GROVER+ BBBP Tox21 Sider ClinTox ESOL Lipophilicity

ADAM 0.917±0.028 0.822±0.019 0.649±0.035 0.853±0.043 0.639±0.045 0.671±0.077

SAM 0.926
✿✿✿✿±0.022 0.840

✿✿✿✿±0.035 0.660
✿✿✿✿±0.043 0.872±0.044 0.619±0.022 0.662±0.039

SAM-One 0.900±0.019 0.801±0.009 0.610±0.018 0.818±0.043 0.671±0.017 0.715±0.045

SAM-k 0.892±0.032 0.815±0.020 0.631±0.062 0.836±0.033 0.650±0.033 0.698±0.018

LookSAM 0.889±0.031 0.829±0.019 0.653±0.008 0.847±0.048 0.633±0.030 0.680±0.038

AE-SAM 0.899±0.027 0.834±0.028 0.649±0.023 0.858±0.035 0.631±0.013 0.674±0.077

RST 0.911±0.022 0.818±0.017 0.625±0.009 0.845±0.044 0.638±0.028 0.690±0.019

GraphSAM 0.928±0.016 0.846±0.012 0.665±0.038 0.866±0.051 0.625
✿✿✿✿±0.026 0.654±0.044

CSZO 0.927±0.022 0.848±0.040 0.662±0.024 0.870
✿✿✿✿±0.035 0.627±0.103 0.660

✿✿✿✿±0.060

RSZO 0.929±0.018 0.846±0.032 0.707±0.035 0.874±0.050 0.598±0.087 0.588±0.119

CoMPT+ BBBP Tox21 Sider ClinTox ESOL Lipophilicity

ADAM 0.948±0.025 0.828±0.008 0.621±0.013 0.914±0.034 0.562±0.026 0.618±0.015

SAM 0.962±0.033 0.839±0.006 0.643±0.009 0.927±0.025 0.517±0.071 0.611
✿✿✿✿±0.126

SAM-One 0.933±0.025 0.788±0.012 0.595±0.030 0.879±0.032 0.601±0.088 0.638±0.073

SAM-k 0.959±0.045 0.819±0.073 0.610±0.034 0.895±0.047 0.575±0.043 0.630±0.030

LookSAM 0.955±0.034 0.825±0.071 0.625±0.024 0.916±0.022 0.543±0.019 0.621±0.041

AE-SAM 0.955±0.022 0.833±0.075 0.631±0.050 0.909±0.024 0.527±0.043 0.615±0.020

RST 0.960±0.008 0.815±0.033 0.615±0.027 0.890±0.043 0.588±0.014 0.633±0.044

GraphSAM 0.961
✿✿✿✿±0.012 0.841±0.004 0.645±0.013 0.937

✿✿✿✿±0.008 0.511
✿✿✿✿±0.044 0.608±0.030

CSZO 0.961
✿✿✿✿±0.024 0.843±0.006 0.644

✿✿✿✿±0.09 0.940±0.012 0.505±0.033 0.616±0.014

RSZO 0.964±0.020 0.840
✿✿✿✿±0.008 0.649±0.010 0.939±0.019 0.510±0.013 0.609±0.66

Table 4: Additional Results with Different Optimizers. We use boldface to denote the best result, underline to denote the second best result,
and

✿✿✿✿
wavy

✿✿✿
line to denote the third best result.

widely recognized benefits of graph Transformers compared
to message-passing neural networks (MPNNs) is their ca-
pacity to capture long-range interactions, effectively address-
ing challenges such as over-smoothing and over-squashing.
The introduction of the fully-connected Graph Transformer
[Dwivedi and Bresson, 2020] utilized the eigenvectors of the
graph Laplacian for node positional encoding (PE). Subse-
quent research has introduced numerous PE methods to ad-
vance Graph Transformers. These include the invariant ag-
gregation of Laplacian eigenvectors in SAN [Ranzato et al.,
2021], pair-wise graph distances in Graphormer [Ying et al.,
2021] and more. Future research on Graph Transformers in-
cludes integrating MPNNs, improving substructure encoding,
and optimizing for directed graphs.

Zeroth-order Optimization. A subclass of gradient-free
optimization known as zeroth-order (ZO) optimization [Liu
et al., 2020; Chen et al., 2023; Liu et al., 2023a] is used
in many machine learning domains such as large language
model. It is employed to handle optimization problems simi-
lar to gradient-based techniques. However, it only uses func-
tion values and does not require a gradient. The potential uses
of ZO optimization are showcased, including but not limited
to the assessment of the resilience of deep learning models
[Chen et al., 2017; Wang et al., 2020] and the production of
justifications from implicit systems, as well as the effective
management of sensors in real-time scenarios.

SAM Optimization. Sharpness-Aware Minimization
(SAM) has demonstrated significant effectiveness across
diverse domains, including image classification [Foret et al.,
2020; Kwon et al., 2021; Du et al., 2022; Wang et al., 2024;
Ilbert et al., 2024] and natural language processing [Bahri et
al., 2021]. [Foret et al., 2020] proposed SAM during training
to improve standard generalization. In particular, LookSAM
[Liu et al., 2022b] improves computational efficiency by
eliminating the requirement to compute the updating gradi-
ent. [Du et al., 2022] proposed SAF, an innovative trajectory
loss designed to mitigate sudden decreases in loss at sharp
local minima during weight updates, thereby reducing
the associated time loss. Additionally, the lack of SAM
research in the graph domain necessitates the development of
GraphSAM [Wang et al., 2024], designed to preserve SAM’s
generalization abilities while simultaneously improving
computational efficiency.

6 Conclusion
In this work, our exploration into Sharpness-aware Zeroth-
order Optimization (SZO) for graph transformers has revealed
significant advancements in model performance and robust-
ness. By integrating SAM and parallelized gradient estima-
tion techniques, SZO has demonstrated robust generalization
capabilities without sharp loss landscape and better perfor-
mance across various GT models. This study underscores the
potential of SZO to transform optimization practices in graph-
based neural networks.
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