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Abstract

Deep neural networks have achieved remarkable
performance across a variety of applications. How-
ever, their decision-making processes are opaque.
In contrast, k-nearest neighbor (k-NN) provides in-
terpretable predictions by relying on similar cases,
but it lacks important capabilities of neural net-
works. The neural network k-nearest neighbor
(NN-kNN) model is designed to bridge this gap,
combining the benefits of neural networks with the
instance-based interpretability of k-NN. However,
the initial formulation of NN-kNN had limitations
including scalability issues, reliance on surface-
level features, and an excessive number of param-
eters. This paper improves NN-kNN by enhancing
its scalability, parameter efficiency, ease of integra-
tion with feature extractors, and training simplic-
ity. An evaluation of the revised architecture for
image and language classification tasks illustrates
its promise as a flexible and interpretable method.

1 Introduction

The importance of explaining Al system behavior is widely
acknowledged. The dominance of neural network models has
prompted numerous efforts to develop explanation compo-
nents that provide post-hoc explanations of neural systems
[Guidotti et al., 2018; Adadi and Berrada, 2018]. However,
Rudin et al. [2022] advocate a different path: developing in-
herently interpretable models rather than relying on post-hoc
explanations for black-box models. They argue that post-hoc
explanations often fail to accurately reflect the reasoning pro-
cess of black-box models, potentially misleading users. In
contrast, inherently interpretable models enhance trust and
can expose potential flaws in the data, which is particularly
advantageous in high-stakes applications.

The k-nearest neighbor (k-NN) algorithm is a classic in-
terpretable algorithm. It predicts the label of a query by
analyzing the k most similar instances from previously ob-
served data and combining their results, generally by straight-
forward methods such as averaging or majority vote [Cover
and Hart, 1967]. The k-NN decision-making process, di-
rectly influenced by neighboring data points, enables intu-
itive, instance-based explanations. Despite its simplicity, k-

NN has demonstrated competitive performance across diverse
datasets, often achieving accuracy comparable to more com-
plex machine learning models [Rudin, 2019]. However, its
effectiveness depends heavily on factors such as feature se-
lection, distance measures, instance weighting, and feature
weighting. This poses challenges when fine-tuning the model
for more complex datasets [Kulis, 2013; Park et al., 2004;
Weinberger and Saul, 2009; Bellet ef al., 2015]. More recent
variations of k-NN, such as Large Margin Nearest Neigh-
bor (LMNN) [Weinberger and Saul, 2009] and Neighborhood
Components Analysis (NCA) [Goldberger e al., 20041, par-
tially address these challenges by learning transformations of
the feature space to improve classification accuracy.

However, k-NN struggles with high-dimensional or large-
scale data due to the cost of exhaustive comparisons, dif-
ficulty in feature selection, and the curse of dimensional-
ity. Various efforts tackle these challenges [Jalali and Leake,
2018; Johnson et al., 2019]. In contrast, neural networks
excel at capturing abstract representations, hidden patterns,
and the relative importance of features in high-dimensional
spaces. They also leverage tensor computations and parallel
computing to handle large datasets. The contrasting strengths
and weaknesses of k-NN and network models make it appeal-
ing to develop hybrids harnessing the strengths and alleviat-
ing the weaknesses of each. For example, Li et al. [2018] pro-
pose a model in which a prototype layer stores embeddings of
learned prototypes and uses them in classification. Because
the network relies on the prototype layer for classification, its
decision can be interpreted in terms of activated prototypes.

Inspired by Li et al. [2018], Ye et al. [2024] introduced neu-
ral network based k-nearest neighbor (NN-kNN), a hybrid
model aiming to provide both the interpretability of k-NN and
the learning capabilities of neural networks. The NN-kNN ar-
chitecture reimagines the k-NN process within a neural net-
work framework, integrating feature extraction, similarity as-
sessment, and prediction into a cohesive, end-to-end trainable
model. This design enables NN-kNN to simultaneously learn
feature importance [Wettschereck et al., 19971, case weights
[Bicego and Loog, 2016], and distance metrics, enhancing its
adaptability and performance.

The initial NN-kNN provided multiple benefits, but it
also had limitations: (1) As datasets grow in size and
complexity—as for natural images or text embeddings—the
computational cost of comparing a query to every stored case



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

becomes prohibitive,

(2) Its reliance on raw features limits its ability to cap-
ture hidden patterns effectively, and (3) Its feature weighting
scheme either assigned identical weightings to all cases, or
assigned unique weightings to each case. This method could
underfit by neglecting local patterns or overfit by assigning
weights too specifically to individual instances.

This paper presents work on extending NN-kNN to address
these limitations. Our key contributions include:

1. Scalability by Case Sampling. We introduce a sam-
pling mechanism that selects a subset of cases to use dur-
ing training and inference, significantly reducing com-
putational cost.

2. Feature Extraction for High-Dimensional Data. We
integrate a feature extraction layer in NN-KNN, which
can be either pretrained or jointly trained end-to-end
with NN-kNN. This enables NN-kNN to effectively pro-
cess high-dimensional data, expanding its applicability
to domains like image classification and NLP.

3. Global-local (“Glocal”’) Feature Weighting Scheme.
We present a feature weighting mechanism that com-
bines global feature weights with case-specific coeffi-
cients to compute adaptive weights for each case. This
reduces the number of parameters while maintaining
flexibility.

4. Activation Function for Differentiable k-NN. We cre-
ated a custom differentiable activation function for k-
NN. Cases within a chosen proximity activate, while
other cases have near-zero activations.

5. Evaluation on Image and Language Benchmarks. To
validate the effectiveness of our extended NN-kNN, we
conduct experiments on natural image classification and
language classification. NN-kNN both predicts and ex-
plains its predictions using the top activated cases.

Our results support that the extended NN-kNN retains the
intuitive, case-driven explanations of traditional k-NN while
addressing critical previous limitations. By bridging the gap
between classical k-NN and neural networks and integrating
with state-of-the-art neural feature extractors, NN-kNN pro-
vides functionality for interpretable and scalable systems.

2 Related Work: Metric Learning and the
Original NN-kNN Model

A simple k-NN approach assumes that all features contribute
equally to the distance calculation and that all cases are
equally important in the domain space. Wettschereck et
al. [1997] present a more general distance calculation, and ex-
tensive research on distance metric learning has produced nu-
merous k-NN variants [Bellet et al., 2015; Kulis, 2013; Park
et al., 2004; Bicego and Loog, 2016]. Among these, Neigh-
borhood Components Analysis (NCA) [Goldberger et al.,
2004] and Large Margin Nearest Neighbor (LMNN) [Wein-
berger and Saul, 2009] are particularly notable for their abil-
ity to learn linear transformations of the feature space, en-
hancing classification accuracy.

The neural network based k-nearest neighbor (NN-kNN)
model [Ye er al., 2024] reimagines the k-NN process within a
neural network architecture. Its architecture computes feature
distances, case activations, and class activations in a sequen-
tial manner. This design enables NN-kNN to learn feature
importance, case weights, and distance metrics directly from
data in an end-to-end training process, while remaining in-
terpretable as the intuitive, instance-based reasoning of tradi-
tional k-NN. The model has shown competitive performance
with neural networks in basic classification and regression
tasks. However, the original NN-kNN model faced several
limitations, for scalability to large datasets, handling high-
dimensional data, and restricted feature-weighting options.
This paper presents an extended model addressing these is-
sues. To differentiate the old and new models, we will refer
to the original as NN-kNNg.

3 Design of the Extended NN-kNN

We extend NN-kNNy, for large-scale and high-dimensional
datasets. Each case c is associated with a default activation
strength bias,. (indicating the range of queries that activate
the case), a case_wetght (indicating the extent to which case
activates a class) and a one-hot encoded class label. Figure 1
illustrates the overall workflow of NN-kNN, as explained be-
low. Only in step 3 is the process identical to NN-kNN.

1. Sampling Cases for Comparison: A query ¢ is com-
pared with a subset of cases from each class.

2. Extracting Features: The feature extraction layer maps
input x (a query or a case) to a d-dimensional vector,
f(z) =< 1, z2,...,x4 >. For example, ResNet can be
used for image data [He ef al., 20161, and doc2vec for
text data [Le and Mikolov, 2014].

3. Calculating Feature Distances: The feature distance
layer & measures distance between each corresponding
feature j of the query ¢ and the case c as ,(g;, ¢;) (ab-
breviated as 6;). In this work, we use Euclidean dis-
tance.

4. Summing Weighted Feature Distances: Each feature
distance J; is scaled based on its importance cw; (see
Section 3.1). The weighted distances are summed to
compute the overall distance between ¢ and c.

5. Activating the Case c: Case ¢’s activation is calculated
based on a function of the difference between bias. and
the distance from ¢ (see Section 3.2).

6. Activating the Class: The case activation is multiplied
by the case weight and its one-hot encoded label to con-
tribute to the class activation. The sum of class activa-
tions is calculated for all cases, and the class with the
maximum activation is chosen as the prediction.

3.1 Global-Local Feature Weighting

In NN-kNNp, all cases either share a single global feature
weighting or each has an individual feature weighting. The
later approach tends to perform better because the model can
learn to adjust to local landscapes in the task domain [Ricci
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Figure 1: The Extended NN-kNN.

and Avesani, 1995; An er al., 2018], but at the cost of many
parameters to learn.

We introduce a global-local (glocal) feature weighting
mechanism that bridges the gap between global and individ-
ualized weightings. The glocal approach enables tuning the
amount of locality in weightings; from global to completely
local. This flexibility enables balancing trade-offs in accu-
racy, storage, and weight learning costs.

We consider cases characterized by vectors of scalar
features within a feature space of dimension d. This
scheme uses a shared set of w global feature weights
GW = {GW;,GWs,...,GW,,} where each set GW; =
{wi1, wsa, ..., w;iq} is a vector of length d. The weight w;;
represents the importance of feature j according to the global
weighting GW,. Each case c is associated with its own set
of learnable coefficients cW = {cW7y, cWs, ..., cW,, }. Intu-
itively, cW; quantifies how strongly case c is influenced by
the global weighting GW;.

The feature weights cw (different from cW) for a specific
case c are calculated as the dot product of the coefficients ci/W
and the global feature weights GW'.

Testbed System Implementation Details
In the testbed system used for our experiments,

cw = cW -leakyRe LU (GW)
= {CWl X wyj + cWa X waj + ... + cW,, X wwj}?zl

This equation computes the feature weights cw of shape
1 x d by the dot product of the case-specific coefficients clW
(1 x w) and the global weights GW (w X d). A leakyReLU
is applied here to ensure that all feature weightings in cw stay
positive or close to 0. This design maintains the k-NN prop-
erty that feature differences monotonically increase case dis-
tances. If there is a single global feature weight (w = 1),

feature weights are initially set to wy; = 1 for every j, en-
suring equal importance prior to training. If there are more
global feature weights (w # 1), the weights w;; are randomly
initialized within [0, 1].

When d > w, this design significantly reduces the parame-
ter count for each case from d to w, enhancing computational
efficiency while preserving the ability to capture local char-
acteristics of the case space.

3.2 Case Activation Function

Traditionally, k-NN uses the parameter k to specify the num-
ber of neighbors to consider. NN-kNN uses a case activation
function to distinguish between relevant and irrelevant cases.
Let each case’s bias, be initialized as B, the initial range of
activation. NN-kNN uses a special scaled sigmoid function
as the case activation function,

zj(djew;)) (D)

U*(a)za<2~a—4)7 (2)

where o (a) is the standard sigmoid function,

case_activation(c) = o* (bias. —

1
o(a) = et

The scaled sigmoid function *(a) maps the raw case ac-
tivation values from [—o0. .. bias.] to the range [0, 1]. Cases
identical to the query achieve the highest activation because
Yj(0jcw;) = 0, resulting in o*(bias;) ~ c*(B) ~ 1. Con-
versely, cases with distances exceeding bias. yield low acti-
vations, as a < 0 and 0*(a) < o(—4) ~ 0. Without scaling,
the raw activation may over-saturate a sigmoid function with
its gradient plateaued to 0, making the training process diffi-
cult.

This activation function offers significant advantages over
the traditional parameter & for the following reasons:
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1. Consistency: B provides more consistent retrieval than
k. Simply selecting the top k nearest neighbors dis-
regards the relative distances of these neighbors to the
query (distance-weighting can be applied but does not
truly address this). For example, if the query is far from
training cases, then selecting its top k nearest neighbors
may retrieve cases far away from the query, while select-
ing cases within range B will only retrieve cases nearby.

2. Case-Specific Customization: bias, is individually tai-
lored to each case c. A case with a high bias, indicates
a larger radius of activation, or the ability to activate for
a wider range of queries.

3. Trainability: Unlike a fixed parameter k, bias. can be
trained to optimize the performance of the model.

Testbed System Implementation Details

In our experiments, we initialize bias. = B as the average
unweighted distance of the k-th nearest neighbor in all cases.
Under this setting, on average, cases farther from the query’s
k-th nearest neighbor will not be activated, as their case dis-
tances will be larger than bias.. Conversely, cases within the
k-th nearest neighbor will be activated.

4 Experimental Evaluation

Computational experiments are carried out to test two main
hypotheses:

1. NN-KNN using glocal feature weighting retains accu-
racy comparable to that of NN-kNN, using either global
or individual feature weighting.

2. NN-kNN using sampling and feature extraction achieves
comparable accuracy to neural counterparts on larger
datasets, while providing instance-based explanations.

4.1 Settings and Implementation

To evaluate the impact of varying parameters, we test various
k and w until best performance is found. The default case
activation B is determined by the average distance to the k-th
nearest neighbor across all cases, and w represents the num-
ber of global feature weights. All experimental results are
summarized but only experimental results providing interest-
ing insights are shown due to space.!

For datasets with predefined train-test splits, we use the
provided partitions. For datasets without such splits, we cre-
ate a 90-10 train-test split. All models, including NN-kNN
and the baseline models, are trained until testing accuracy sta-
bilizes, defined as no improvement for 40 epochs (referred to
as the training patience). This evaluation approach is applied
consistently across all models for fair comparison. A more ro-
bust approach would train until validation accuracy plateaus
within the training patience and then measure testing accu-
racy, but this is not feasible for smaller datasets as splitting
the training set further into a validation set could significantly
reduce the size of both subsets, potentially destabilizing train-
ing and leading to unreliable results.

'All code can be found on https://github.com/Heuzi/NN-kNN

features samples classes
Iris 4 150 3
Zebra (a) 2 110 2
Zebra (b) 2 220 2
Wine 13 178 3
Breast Cancer 30 569 2
Balance 4 625 3
Digits 64 1797 10

Table 1: Dataset Characteristics

For smaller datasets, we use 10-fold cross-validation; for
larger datasets, we conduct 10 iterations on the given train-
test split. The mean and standard deviation of accuracy are re-
ported. For NN-kNN, if all training cases cannot fit into mem-
ory, we sample a subset of cases evenly across all classes.

4.2 Parameter Settings

We trained baseline models (e.g., convolutional image clas-
sifiers), with a learning rate of le=%. For NN-kNN with-
out a feature extractor on small datasets (Section 5.1), we
set the learning rate to le~2, as it provided the fastest con-
vergence and helped avoid local minima. For NN-kNN on
larger datasets, we used varying learning rates tailored to dif-
ferent components of the model: 1e~* for the feature extrac-
tor, 1e 3 for the glocal weighting parameters, and le~* for
case-related parameters such as case bias. and case_weight.
These choices were guided by experimental observations: the
glocal weighting parameters benefit from larger steps to con-
verge faster and avoid local minima; the feature extractor re-
quires fine-tuning, similar to traditional neural network clas-
sifiers; and the case-related parameters need smaller learning
rates to prevent early overfitting, which could overshadow the
training of the rest of the model.

S Experimental Results

5.1 Comparison with NN-kNNo

The first experiments for classification tasks parallel those in
the NN-kNNg study [Ye et al., 2024]. All data sets (see Ta-
ble 1) are from UCI repository [Dua and Graff, 2017] except
Zebra (a) and Zebra (b), which are explained later. Table 2
shows the classification accuracies of the models. F1 scores
are not shown as the data sets are balanced and F1 shows a
consistent pattern with accuracy scores. NN-kNN allows a
few parameter settings such as whether to allow only the top
k cases to contribute to class activation and whether all cases
share a single global weighting or each case have its own indi-
vidual weighting. For comparison, we include the previously
reported best results by NN-kNN and a standard neural net-
work classifier with 4 hidden layers using leakyReLLU activa-
tion functions.

The most notable experimental results concern the Zebra
Stripe datasets. They are two synthetic datasets, named Zebra
(a) and Zebra (b), where each sample has two attributes = and
y and one of two class labels, illustrated in Figure 2. In Zebra
(a), only the feature z is relevant; In Zebra (b), x is relevant if
x < 100 otherwise y is relevant. The classes are distributed
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w=1 w=4  k NN-kNNo, NNet

Iris 0.980 (0.031) 0.973 (0.044) 5 0966  0.987

Zebra  0.945 (0.164) 0.964 (0.073) 1 0918  0.782

(a) 0.800 (0.172) 0.982 (0.036) 5

Zebra  0.764 (0.057) 0.923(0.041) 1 0968  0.673

(b) 0.718 (0.076) 0.932 (0.047) 5

Wine  0.922 (0.075) 0.972(0.038) 1  0.994  0.836
0.838 (0.103) 0.843 (0.110) 5

g“"a“ 0.986 (0.019) 0.984 (0.018) 5  0.959  0.951

ancer

Balance 0.942 (0.025) 0.952(0.032) 5 0944  0.994

Digits  0.983 (0.008) 0.986(0.010) 5 0.988  0.983

Table 2: Comparison between NN-kNN, NN-kNNp, and a standard
neural network (“NNet”). The mean standard deviations of accura-
cies are shown in parentheses. k is used to set B as average distance
to k-th nearest neighbors. NN-kNNo uses either global weighting
or case individual weighting, whichever achieves higher accuracy.

interchangeably along the axis of the relevant feature. These
datasets may appear deceptively simple. Standard neural net-
works, k-NN, NCA, LMNN all fail to capture the essence of
the model and have poor accuracies (most < 70%), with the
exception that NCA achieved 98.1% for Zebra (a). In tests,
NN-kNN manages to learn the ideal feature weights. For ex-
ample, when using w > 2 on Zebra (b), it learns a feature
weight that ignores x and another that ignores y.

The results suggest the following key findings:

e NN-kNN generally outperforms NN-kNNy, except for
Zebra (b) and Wine. This discrepancy arises because
NN-kNNp allows individual case weighting, which can
be advantageous in scenarios where multiple local land-
scapes deviate significantly from the global trend.

* Increasing w consistently improves the performance of
NN-kNN. Additional global weightings allow the model
to adapt to more hidden patterns within the feature
space.

* The choice of £ has a significant impact on performance.
A poorly chosen initial default bias can result in either
too many or too few cases being activated, which hinders
the model’s ability to learn effectively during training.

5.2 Image Classification

To test the effectiveness of NN-kNN with a feature extrac-
tor on image tasks, we carried out experiments on CIFAR-10
[Krizhevsky, 2009] and SVHN [Netzer er al., 2011]. CIFAR-
10 contains natural images of 10 classes such as airplanes,
frogs, cats, etc., while SVHN contains images of house num-
ber digits from natural street views, also with 10 classes (one
for each digit). CIFAR-10 consists of 60,000 images of di-
mension 3x32x32 (channel x width x height). The dataset has
a preset partition of 50,000 training samples and 10,000 test-
ing samples. Similarly, SVHN contains images of the same
dimensions as CIFAR-10 and is divided into 73,257 images
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Figure 2: Deceptively simple Zebra datasets [Ye et al., 2024].

Method CIFAR-10 SVHN
Conv + NN-KNN 500 0.688 (0.006) 0.867 (0.003)
Conv + NN-KNN 2000 0.675 (0.003) 0.841 (0.008)
ConvNet 0.689 0.875
kNN 0.339 0.469
Pre-Conv + KNN 0.647 0.869
Pre-Conv + NN-KNN 0.585 0.75

Table 3: Accuracies of Different Methods on Image Classification
Tasks. “Conv” stands for convolutional layer for feature extractor.
“ConvNet” stands for standard convolutional neural network clas-
sifier. “Pre-Conv” stands for convolutional layer pretraiend from
“ConvNet” and parameters are frozen after training.

for training and 26,032 images for testing. The mean and
standard deviation of all image pixels are computed across all
images and channels in the training dataset. These statistics
are used to standardize the pixel values for both the training
and testing datasets.

For comparison, we used a convolutional neural network
(CNN) with the following architecture: two convolutional
layers, each followed by ReLU activation and max pooling.
The first convolutional layer uses 32 filters with a kernel size
of 3 and padding of 1, while the second uses 64 filters with
the same configuration. After the convolutional and pooling
layers, the feature map is flattened and passed through a fully
connected layer with 128 units and ReLU activation, followed
by a final output layer with 10 units (one for each class).

We use the layers of the CNN up to the penultimate layer as
the feature extractor for both NN-kNN and vanilla k-NN. For
NN-kNN, we experimented with the setting w = 1, £ = 20
and sampling 500 and 2000 cases for each query. We exper-
imented with two approaches for feature extractors of NN-
kNN: using a frozen pretrained CNN, or training the CNN
alongside NN-kNN from scratch. In contrast, because k-NN
cannot jointly train with the feature extractor, we use a frozen
pretrained CNN as the feature extractor for k-NN.

Classification Accuracy

The results are presented in Table 3. We observe that NN-
kNN and ConvNet have comparable accuracy. While using
a pretrained feature extractor significantly improves the per-
formance of k-NN, NN-kNN tends to overfit when using pre-
trained feature extractors. This suggests that training the fea-
ture extractor jointly with NN-kNN allows it to be better op-
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timized for instance-based reasoning, enabling NN-kNN to
fine-tune feature weights and further enhance accuracy. No-
tably, “Conv + NN-kNN” performs better than “Pre-Conv +
kNN” in CIFAR-10 but equally well in SVHN. We believe
that this is because SVHN is an easier data set and the features
extracted by pretrained “ConvNet” are sufficient for k-NN to
use for instance-based reasoning.

NN-kNN also demonstrates robustness in the presence of
misclassification. For instance, in one experiment on CIFAR-
10, NN-kNN achieves an accuracy of 67.2%. The true class
label is among the top 2 activated classes 82.02% of the time
and within the top 3 classes 89.96% of the time. This high-
lights NN-kNN’s ability to provide meaningful predictions
even when the final classification is incorrect.

Interpretability

NN-KNN provides interpretable predictions by explaining its
decisions based on the activated cases. Unlike post-hoc ex-
planations of neural network decisions by cases [Keane and
Kenny, 2019], where similar cases are retrieved after a pre-
diction is made, the activated cases in NN-kNN directly lead
to the prediction. Examples of these explanations in CIFAR-
10 are illustrated in Figure 3. We highlight the use of these
explanations in two challenging scenarios.

1. Correct Prediction with Misleading Activated Cases:
The model makes the correct prediction due to contri-
butions from activated cases of the correct class, but the
most activated cases belong to a different class. In such
instances, the activation values of the misleading cases
are often lower, reflecting reduced confidence.

2. Misclassification with Plausible Activated Cases:
When the model misclassifies a query, the most acti-
vated case often belongs to the incorrect class but shares
significant similarities with the query. This provides a
rationale for the model’s error and misclassification.

These scenarios illustrate that NN-kNN explanations pro-
vide valuable insights into its decision-making process. We
plan to conduct a formal evaluation of its interpretability in
future research.

5.3 Movie Review Sentiment Analysis

To evaluate the effectiveness of NN-kNN with a feature ex-
tractor on a language task, we conducted experiments using
the Stanford Sentiment Treebank (SST) dataset. The SST
dataset consists of sentences extracted from movie reviews,
annotated for sentiment at the phrase and sentence levels. It
includes five sentiment labels: very negative, negative, neu-
tral, positive, and very positive, commonly referred to as SST-
5. The dataset contains 8,544 samples in the training set and
2,210 in the test set. Additionally, we experimented with a
simpler version of the dataset, SST-2, which removes neutral
comments and combines the positive and very positive labels
into a single positive class, and the negative and very negative
labels into a single negative class. This reduces the problem
to a binary classification task. SST-2 contains 6290 training
samples and 1821 testing samples.

For comparison, we took an approach similar to that in Sec-
tion 5.2 by using a Bidirectional Long Short-Term Memory

Act: 0.2013

(Predicted: automobile) Act: 0.1807 Act: 0.1718

Act: 0.4043
=" “eEE—

o

(Predicted: frog) Act: 0.3859

Figure 3: Instance-based explanations by NN-kNN for CIFAR-10.
Each row displays a query image followed by three most activated
cases. Misclassifications (row #1 and #2) are often accompanied
by competing class activations, highlighting the model’s confusion
between similar classes.

(Bi-LSTM) as the baseline model. The model begins with an
embedding layer that projects each input token into an em-
bedding. These embeddings are then processed by the Bi-
LSTM, producing a 256-dimensional feature vector. Beyond
feature extraction, the architecture incorporates a dropout
layer with a rate of 0.5, followed by two fully connected lay-
ers for classification, where the intermediate layer has 64 hid-
den units.

In the following experiments, we use the layers of the Bi-
LSTM baseline model up to the dropout component, namely,
the embedding and Bi-LSTM layers, as a feature extractor
for both NN-kNN and vanilla k-NN. This ensures that both
models process inputs of consistent dimensionality. Specifi-
cally, we employ a pretrained Bi-LSTM feature extractor for
vanilla k-NN. We test two NN-kNN configurations: one us-
ing a frozen Bi-LSTM extractor, and another where both the
extractor and NN-kNN are trained jointly from scratch. In all
NN-kNN experiments, we set w = 4, k = 5, and sample 500
cases for each query.

Table 4 shows our results. In SST-5, although “Bi-LSTM”
is the best performing model, pretrained Bi-LSTM works
well with KNN. NN-kNN outperforms kNN using either a Bi-
LSTM pretrained or trained from scratch. In SST-2, “PreBi-
LSTM + kNN” unexpectedly surpasses the baseline “Bi-
LSTM”. Furthermore, “PreBi-LSTM + NN-KNN” achieves
the highest performance, surprisingly outperforming “Bi-
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Method SST-5 SST-2
Bi-LSTM 0.376 0.776
PreBi-LSTM + kNN 0.352 0.782

PreBi-LSTM + NN-kNN
Bi-LSTM + NN-kNN

0.363 (0.002)
0.368 (0.007)

0.785 (0.001)
0.763 (0.003)

Table 4: Accuracies of different methods on SST-5 and SST-2
datasets. “Bi-LSTM?” is the baseline Bi-LSTM classifier. “PreBi-
LSTM” stands for Bi-LSTM pretrained from “Bi-LSTM” and pa-
rameters are frozen after training. “Bi-LSTM + NN-KNN* has a
Bi-LSTM feature extractor trained along NN-kNN.

Query 1: A taut, intelligent psychological drama .
A poignant and gently humorous parable that
loves its characters and communicates some- 2 10.2551
thing rather beautiful about human nature .

A dark , quirky road movie that constantly

defies expectation

Query 2: <unk>when I get this much <unk>, I like
<unk>to go with it .

.<unk>John McKay is never able to pull 1101710
it back on course .

A very capable <unk>. 0.1544
Query 3: I loved looking at this movie 1 (predicted: 1)
I loved this film . 2 10.4730

I think it was <unk>who said , ’ I think , therefore -110.1676

I know better than to rush to the theatre for this one . ’ '

2 (predicted: 2)

2 10.2331

—_

(predicted: 0)

Table 5: Instance-based Explanation by NN-kNN for SST-5. <unk>
stands for unknown token ignored by feature extraction. Each query
is followed by the top two activated cases. Labels are integers in
[—2,2]. The query’s true label and predicted class are shown in the
right column. Each activated case’s true label and its activation are
shown beside the case.

LSTM + NN-kNN.” However, the differences in performance
across models in SST-5 and SST-2 are relatively small. We
hypothesize that Bi-LSTM extracts meaningful features that
work particularly well with k-NN, leaving limited room for
NN-kNN to provide improvement when trained jointly.

Some sample explanations provided by NN-kNN on SST-5
are shown in Table 5. Some explanations are intuitive and ob-
vious, for example, query #3 “I loved looking at this movie”
is very similar to its top activated case “I loved this film” with
a high activation. Some explanations are less so, for example,
query #2 is activating cases of multiple classes, all with lower
activations. This reflects the model’s confusion on query #2,
which is indeed difficult to classify even for humans.

5.4 Discussion of Experimental Results

In summary, NN-kNN demonstrates accuracy comparable to
its neural network counterparts across various datasets, while
providing meaningful, instance-based explanations for its
predictions. By using subsets of samples in training and infer-
ence, NN-kNN effectively combines general pattern knowl-
edge (weights and bias) and instances (cases), and scales to
larger datasets without sacrificing accuracy.

Even when NN-kNN misclassifies, the model’s confusion
is evident through competing case activations from diverse
classes. For high-dimensional datasets, NN-kKNN can ef-
fectively leverage feature extractors, whether pre-trained or

jointly trained from scratch with NN-kNN. However, NN-
kNN carries a risk of overfitting when paired with a pre-
trained feature extractor, often underperforming compared to
a vanilla k-NN using the same extractor. This occurs be-
cause pre-trained extractors are not optimized for instance-
based reasoning, and in our experiments, NN-kNN operates
on a sampled subset of 500 cases per query rather than using
all cases as in vanilla k-NN. Notably, this risk is mitigated
when the feature extractor is trained jointly with NN-KkNN
from scratch, ensuring better alignment with instance-based
reasoning objectives. That harmonization of neural and sym-
bolic reasoning is in spirit similar to Leake and Ye [2021].

Choice of &

We experimented with various values of k£ and report only the
best-performing settings identified through empirical trials.
Ideally, k£ should yield a majority of same-class activations,
with a few from other classes to facilitate learning from bor-
derline cases. If k is too small, only samples from the same
class are activated, resulting in minimal classification errors
for the model to learn from. Conversely, if k is too large, too
many cases are activated, leading to conflicting gradient di-
rections as errors arise from samples across diverse classes.
A guideline is to choose k so that generally cases share the
same labels with most—but not all—of their top %k neighbors.

Number of Global Feature Weights w

We experimented with higher values of w on both image and
language datasets but found no significant difference com-
pared to w = 1. This contrasts with the results shown in
Table 2, where increasing w often led to performance im-
provements. The key distinction lies in the dimensionality
of the features extracted in these experiments. For larger
datasets, such as CIFAR-10, the feature extractors produce
high-dimensional feature representations (e.g., 128 dimen-
sions), reducing the necessity of higher w. In scenarios in-
volving low-dimensional features, w plays a critical role by
distributing information across multiple feature weightings,
compensating for the limited feature space where individual
features might encode multiple hidden patterns. However,
for models operating on high-dimensional feature spaces, the
luxury of abundant feature dimensions diminishes the utility
of w, as the extracted features are already sufficiently expres-
sive to capture complex patterns.

6 Conclusion

With its flexibility, scalability, and interpretability, NN-kNN
is a promising architecture for interpretable machine learning.
Our experiments illustrate that NN-kNN can be combined ef-
fectively with feature extractors using neural methods such as
convolutional layers and LSTMs, providing good accuracy.
Because an important benefit of kNN is its simple incremen-
tal learning, a future research direction is to develop an in-
cremental learning version of NN-kNN. We hypothesize that
similar cases follow consistent local weighting patterns, and,
consequently, that a new case can be assigned its neighboring
cases’ glocal feature weighting. This would enable NN-kNN
to incorporate a new case by adding it directly to the case
layer, without retraining network parameters.
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