
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

From General Relation Patterns to Task-Specific Decision-Making in Continual
Multi-Agent Coordination

Chang Yao1,2 , Youfang Lin1,2 , Shoucheng Song1,2 , Hao Wu1,2 , Yuqing Ma3

Sheng Han1,2 and Kai Lv1,2∗

1School of Computer Science & Technology, Beijing Jiaotong University, Beijing, China
2Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, Beijing, China

3Institute of Artificial Intelligence, Beihang University, Beijing, China
{yaochang,yflin,insis songsc,wuhao ,shhan,lvkai}@bjtu.edu.cn, mayuqing@buaa.edu.cn

Abstract
Continual Multi-Agent Reinforcement Learning
(Co-MARL) requires agents to address catastrophic
forgetting issues while learning new coordination
policies with the dynamics team. In this paper, we
delve into the core of Co-MARL, namely Relation
Patterns, which refer to agents’ general understand-
ing of interactions. In addition to generality, rela-
tion patterns exhibit task-specificity when mapped
to different action spaces. To this end, we propose
a novel method called General Relation Patterns-
Guided Task-specific Decision-Maker (RPG). In
RPG, agents extract relation patterns from dynamic
observation spaces using a relation capturer. These
task-agnostic relation patterns are then mapped to
different action spaces via a task-specific decision-
maker generated by a conditional hypernetwork. To
combat forgetting, we further introduce regulariza-
tion items on both the relation capturer and the con-
ditional hypernetwork. Results on SMAC and LBF
demonstrate that RPG effectively prevents catas-
trophic forgetting when learning new tasks and
achieves zero-shot generalization to unseen tasks.

1 Introduction
Collaborative Multi-Agent Reinforcement Learning (MARL)
[Oroojlooy and Hajinezhad, 2023] focuses on how multiple
agents can coordinate to achieve global goals. Traditional
research mainly concentrates on enhancing agents’ cooper-
ation abilities in stable environments [Rashid et al., 2020b;
Yu et al., 2022]. However, in the real world, agents often
face constant changes in diverse tasks [Kiran et al., 2021;
Yu et al., 2021; Zhang et al., 2024; Wang et al., 2024a;
Wang et al., 2024b]. Particularly, in continual coordina-
tion scenarios, agents may lose the ability to perform well in
previously learned tasks when adapting to new ones, a phe-
nomenon known as catastrophic forgetting [Robins, 1995] in
Continual Learning (CL).

CL seeks to exploit both the shared and the specific proper-
ties across different tasks. The properties reflect the essence

∗Corresponding author: Kai Lv.

Figure 1: (a) Clustering visualization of relation patterns; (b)
Agent’s action selection in the similarity relation patterns. The pur-
ple background represents the action space unique to the 8m vs 9m.

of continual learning across various domains. For instance,
in the class-incremental learning domain, models should un-
derstand the overlap or complementarity between new and
old classes in feature space, leveraging learned knowledge to
adapt to new tasks [Ji et al., 2023]. In the multimodal CL do-
main, models learn sample-specific and invariant features to
construct representations that are broadly adaptable, to pre-
vent catastrophic forgetting [Zhang et al., 2023]. Compared
to class-incremental and multimodal CL, the challenges in
Continual Multi-Agent Reinforcement Learning(Co-MARL)
are more complex due to the uncertain scale of entities. Thus,
it is also crucial to figure out the essence of Co-MARL. In
this paper, we argue that the essence of continual multi-agent
coordination lies in Relation Patterns between tasks.

A relation represents the influence of an observable en-
tity on an agent’s decision-making. Specifically, the relation
between the agent and each entity is determined by the com-
bination of the entity’s importance to the agent and the en-
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tity’s features. In this paper, a relation pattern is formed
by integrating the relations of multiple entities. Through
experiments, we show that common relation patterns exist
across distinct tasks. In Figure 1(a), we apply t-SNE [Van der
Maaten and Hinton, 2008] to analyze relation patterns in two
cooperative tasks. The red and blue triangles representing the
two tasks are tightly clustered, indicating strong similarity in
the relation patterns between the two tasks. As the entity scale
increases from task 5m vs 6m to task 8m vs 9m in SMAC
[Samvelyan et al., 2019], some blue triangles form additional
isolated clusters. This reflects that in a more complex obser-
vation space, agents can form more relation patterns.

Although the clustered relation patterns exhibit similarity
across different tasks, the value of similar relation patterns
on decision-making can vary significantly depending on the
specific task context. For example, in the 8m vs 9m, agents
can win a game by capturing various “focus-fire” patterns
(e.g., 4-on-2 or 3-on-2). However, in the 5m vs 6m, the same
“focus-fire” patterns may lead to a loss when applying the
same policies. This indicates that identical relation patterns
result in different returns across tasks. We validate this prefer-
ence difference in Figure 1(b), where the agents demonstrate
noticeable differences in their decision-making preferences
(Q-value distribution) across two action spaces.

To capture and exploit these general relation patterns,
we propose RPG(General Relation Patterns-Guided Task-
specific Decision-Maker). 1) In capturing the relation pat-
terns, we design a scalable relation capturer that allows agents
to measure interactions with other entities from their first-
person perspective, forming general relation patterns. We
further add an anti-forgetting regularization to retain key re-
lation patterns across tasks with varying entity numbers. 2)
In exploiting the relation patterns, a task-specific decision-
maker is introduced, enabling the agent to respond to dy-
namic threats and adapt to new collaborative teams. We use
a conditioned hypernetwork to generate decision-makers for
each task, mapping similar relation patterns to diverse action
spaces for flexible adaptation. To ensure the stability of each
decision-maker, we add a hypernetwork loss term that pre-
vents forgetting prior cooperation while enabling fast adapta-
tion to new teams. The contributions are as follows:

• We capture the essence of Co-MARL via relation pat-
terns, linking dynamic observation and action spaces.

• We introduce a scalable Relation Capturer that helps
agents extract relation patterns, preventing catastrophic
forgetting and enhancing cross-task collaboration.

• We inject plasticity into decision-makers through the hy-
pernetwork, enabling flexible decisions based on rela-
tion patterns in dynamic environments.

• RPG outperforms existing baselines in continual tasks,
excelling on benchmarks like SMAC[Samvelyan et al.,
2019] and LBF[Papoudakis et al., 2020].

2 Related Work
2.1 Continual Learning in RL and MARL
Continual Reinforcement Learning (CRL) aims to enable
agents to learn sequential tasks while avoiding catastrophic

forgetting. Early approaches [Rolnick et al., 2019; Chaudhry
et al., 2019] alleviate forgetting by reusing past experiences
through replay buffers. Regularization-based methods [Kirk-
patrick et al., 2017; Aljundi et al., 2018] mitigate forgetting
by constraining parameter updates to ensure stable learning.
Another class of methods tackles the stability-plasticity trade-
off by dynamically adjusting model architectures, such as em-
ploying new networks [Kim et al., 2023] or multi-head struc-
tures [Kessler et al., 2022]. However, while these methods
have shown progress in single-agent tasks, achieving effective
continual learning in multi-agent tasks remains a significant
challenge.

In Co-MARL, the complex interactions between agents
make continual learning significantly more challenging.
Agents must coordinate in diverse teams, requiring them to
acquire new knowledge while retaining the ability to address
previous tasks. To address these challenges, MALT [Shi et
al., 2021] employs progressive neural networks to facilitate
knowledge transfer across tasks, while MACPro [Yuan et al.,
2024] leverages a shared feature extractor and dynamically
expands policy heads to effectively prevent catastrophic for-
getting. LL-Hanabi [Nekoei et al., 2021] provides a bench-
mark for testing continual learning in multi-agent settings.
MARR [Yang et al., 2024] adopts a reset strategy to avoid
the loss of network plasticity caused by high replay rates.
However, these methods fail to thoroughly analyze the funda-
mental bottlenecks of Co-MARL. In this paper, our approach
tackles the core challenges of Co-MARL, providing a stable
and efficient solution to address catastrophic forgetting.

2.2 Hypernetworks in MARL
Hypernetworks have demonstrated strong performance in
meta-reinforcement learning and continual learning [Beck
et al., 2023; Chandra et al., 2023; Ehret et al., 2021]. In
MARL, QMIX [Rashid et al., 2020b] introduces hypernet-
works into the mixing network to enable effective credit as-
signment, while MAVEN [Mahajan et al., 2019] is the first
to leverage hypernetworks to generate decision-layer parame-
ters, facilitating efficient exploration for agents. HPN [Jianye
et al., 2022] employs hypernetworks to achieve permutation
equivariance and invariance, enabling it to handle observa-
tions with varying dimensions. Concord [Guan et al., 2024]
pioneers the use of hypernetworks for continual AI-human
collaboration by generating agent parameters to adapt to di-
verse teammate strategies, though it incurs significant com-
putational overhead and overlooks the challenge of varying
agent numbers in continual tasks. In this work, we utilize hy-
pernetworks to generate decision parameters for agents, pro-
viding the capability to learn new tasks and achieve stable
continual coordination.

3 Problem Formalization
In a sequence of continual multi-agent coordination tasks, all
agents can only access partial local observations. We model
this setting as a Continual Decentralized Partially Observ-
able Markov Decision Process (Co-Dec-POMDP) [Oliehoek
et al., 2016]. The Co-Dec-POMDP for each task is formal-
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ized as a tuple:

Zc = ⟨c,Nc,Mc,Sc,Oc,Ac,Rc,Pc, γ⟩,
where, in task c, Mc denotes the set of all entities in the envi-
ronment, and Nc ⊆ Mc represents the set of agents. At each
time step t, the global state st ∈ Sc represents the complete
state of the environment. Each agent i ∈ Nc receives a local
observation oit ∈ Oc and selects an action ait ∈ Ac. The joint
action at = {ait}

|Nc|
i=1 is then executed, and the environment

transitions to the next state st+1 according to the state tran-
sition function Pc(st+1 | st,at), while generating a shared
reward rt ∈ Rc. The objective of the multi-agent system is
to maximize the global value function for the current task:
Qtot(s,a) = Est,at [

∑∞
t=0 γ

tr(st,at)], where γ ∈ [0, 1] is
the discount factor, and π represents the joint policy.

In a Co-Dec-POMDP, when a new task c + 1 arrives, the
entity composition changes from Mc to Mc+1, resulting in
corresponding dimensional changes in S , O, and A. Within
our continual learning framework, agents are designed to han-
dle these dynamically changing spaces, with the objective of
maximizing the global reward in the current task while main-
taining the performance of the current agent network across
all previously encountered tasks.

4 Method
We believe the core of Co-MARL lies in the relation patterns
that manifest distinct properties across different spaces, i.e.,
observation and action spaces. On the one hand, general re-
lation patterns emerge across tasks with varying numbers of
entities, facilitated by the decomposition and combination of
the observation space in an entity-wise manner. On the other
hand, even similar relation patterns may yield different val-
ues when mapped to distinct action spaces. To address this,
we propose a General Relation Patterns-guided Task-specific
Decision-Maker (RPG) framework. First, to capture and pre-
serve the general agent-to-entity relations from the dynamic
observation space, we design a scalable relation capturer with
stability. Next, we inject plasticity into the decision-maker
using a hypernetwork, enabling it to map the general relation
patterns to task-specific action spaces.

4.1 Scalable Relation Capturer with Stability
In sequential Co-MARL tasks, extracting general relation
patterns and maintaining their stability is crucial. To this end,
we develop a scalable relation capturer to dynamically cap-
ture the interaction relationships between entities. The scal-
able relation capturer has two components: attention-based
relation patterns and return-aware anti-forgetting.
Attention-Based Relation Patterns. To extract relation
patterns at the entity level, we model the observation with
non-fixed dimensions as a combination of multiple entity fea-
tures. Consider a multi-agent system with m entities. Given
the agent’s observation ot,i at time step t, we decompose ot,i
into the agent’s own features ose

t,i, n− 1 teammate entity fea-
tures ote

t,i, and m− n other entity features ooe
t,i.

Since the relation patterns are independent of the posi-
tion of entities in the sequence, a permutation-invariant cross-
attention mechanism can be used to capture general relation

patterns. Specifically, as shown in Figure 2(a), we treat ose
t,i

as the query, while ote
t,i or ooe

t,i serve as the keys and values,
respectively. We then calculate the attention scores for team-
mate entities and other entities, corresponding to collabora-
tive partners and potential threats or targets, respectively.

αte
t,i = Softmax(

qK⊤
te√
dx

), αoe
t,i = Softmax(

qK⊤
oe√
dx

), (1)

where α·
t,i represents the attention level of agent i towards

teammates and other entities , and
√
dx is the scaling coeffi-

cient. Additionally, we use α·
t,i to perform a weighted sum of

values, thereby obtaining the relation pattern from the agent’s
first-person perspective to teammates and others, as shown
below:

zte
t,i = αte

t,iVte, z
oe
t,i = αoe

t,iVoe. (2)
The relation pattern z·t,i is formed by concatenating the

outputs from two cross-attention modules. Furthermore, to
establish closer relation patterns with more relevant entities,
inspired by MAIC [Yuan et al., 2022] and CoDe [Song et al.,
2025], we introduce a regularization term to sparsify the at-
tention scores:

Latt =
1

T

T∑
t=1

H(α·
t) = − 1

T

T∑
t=1

∑
i

(
α·
t,i logα

·
t,i

)
. (3)

By minimizing the entropy of the attention scores α·
i, we

encourage the agent to focus on several key entities.
Finally, to capture the agent’s information, we encode its

own features ose
t,i as zse

t,i, which is then concatenated with the
relation pattern to form zt,i = [zse

t,i, z
te
t,i, z

oe
t,i]. It is then fed

into the GRU along with the previous hidden state to generate
the historical relation pattern ht,i = GRU(zt,i, ht−1,i), which
serves as the output of the scalable relation capturer.
Return-Aware Anti-Forgetting. Although we can extract
common relation patterns across different tasks, excessive pa-
rameter updates of the capturer can lead to the forgetting of
past relation patterns. Therefore, applying varying degrees of
constraints to the different parameters ensures the stability of
the capturer. Inspired by Taylor Pruning [Molchanov et al.,
2019], under the i.i.d. assumption of parameters, we measure
the importance of a parameter θi by the squared difference in
the TD loss when θi is set to zero:

LTD = E
[
(Qtot(s, a)− (r + γmax

a′
Qtot(s

′,a′)))2
]
, (4)

I(θj) = (LTD − LTD(θj = 0))2. (5)
Directly computing the parameter importance using Equa-

tion (5) is computationally expensive. Therefore, we approx-
imate the importance of θcj for the c-th task using a Taylor
expansion. The second-order Taylor expansion is as follows:

I(θcj) =

((
∂LTD

∂θcj

)
θcj +

1

2

(
∂2LTD

∂(θcj)
2

)
(θcj)

2

)2

. (6)

We typically retain only the quadratic term in Equation (6).
The final average importance of θc is then given by:

I(θcj) =
1

N

N∑
n′=1

((
∂Lc

TD

∂θcj

)
θcj

)2

/I(θc)max, (7)
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Figure 2: An overview of the RPG framework. In the c-th task, the observations are input into the (a) Scalable Relation Capturer, which
captures the historical relational patterns. These captured patterns are then fed into the (b) Hyper Decision-Maker, where the hypernetworks
generate the decision-makers that map the relation patterns to local Q-values.

where N denotes the number of samples from the previous
buffer, and all parameter importance values of ϕrc are nor-
malized by dividing by the maximum I(θc)max. Specifically,
for the importance matrices I(θ1), I(θ2), . . . , I(θc−1) of the
past c− 1 tasks, the parameter regularization item can be ex-
pressed as the sum of the regularization losses for the relation
capturers of each task:

Lrc =
λrc

2

c−1∑
c′=1

|ϕrc|∑
j=1

I(θc
′

j )(θ
∗
j − θc

′

j )
2, (8)

where λrc represents the regularization strength for the rela-
tion capturer parameters ϕrc. The learning process can be sta-
bilized by penalizing inconsistencies in the parameters, which
helps the agent retain key relation patterns and avoid catas-
trophic forgetting.

In addition, overly conservative regularization can prevent
the agent from extracting all possible relation patterns in more
complex tasks. During the early stages of learning a new task,
the team’s return reflects its ability to solve the current prob-
lem. Therefore, we use the team’s normalized cumulative re-
turn over the first N episodes as the discount factor for Lrc:

γp =
1

N

N∑
n′=1

Gn′

norm, (9)

where Gn′

norm denotes the raw cumulative return of the n′-th
episode. A larger γp indicates that the current policy is well-
suited to the current task, while a smaller γp suggests relaxing

the constraints in the new observation space to learn more
potential coordination forms.

4.2 Hyper-Decision-Maker with Plasticity
Another key challenge in Co-MARL is that general relation
patterns exhibit varying values across continual tasks. Agents
must learn a new decision-making policy to adapt to chang-
ing action spaces. Therefore, we introduce a task-conditioned
hypernetwork, which aims to generate task-specific decision-
makers that can make rapid behavioral adjustments based on
the captured relation patterns.

Using a traditional MLP as the policy layer may lead to a
loss of plasticity in the agent. Instead, we utilize a hypernet-
work to generate the decision-maker, which further maps the
historical relation pattern to the action space. When learn-
ing the first task, we use a randomly initialized, Gaussian-
distributed, learnable task embedding e1 as the input to the
hypernetwork ϕh.

The hypernetwork generates an ego-decision-maker (right)
and an interaction-decision-maker (left), as shown in Figure
2(b), corresponding to fixed ego actions and variable inter-
action actions, respectively. For ego actions, we use the hy-
pernetwork ϕego

h to generate the ego-decision-maker f ego
ϕh

(e1),
and then map the historical relation pattern ht,i to a fixed-
dimension Qt,i(aego|ot,i). For interactive actions, directly
mapping ht,i to variable-dimension Qt,i(aint|ot,i) is not feasi-
ble. Therefore, we design an entity-wise interaction decision-
maker that focuses on entity interactions. By concatenating
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the historical relation pattern ht,i with the features of m − n
other entities eoe

t,i, we map them to each interaction entity’s
Qt,i(aint(·)|ot,i). Finally, we concatenate the state-action val-
ues from both parts to obtain the complete local state-action
Qt,i(a|ot,i).

In addition, the hypernetwork itself faces the issue of catas-
trophic forgetting across tasks. We introduce an additional
regularization term for the hypernetworks:

Lhy =
λhy

c− 1

c−1∑
c′=1

∥∥∥fϕh
(ec′)− fϕ̃h

(ec′)
∥∥∥2
2
, (10)

where ϕ̃h refers to the hypernetworks obtained after the c−1-
th task. By minimizing the above loss term, we encourage
the hyper-decision-maker to learn new behaviors while pre-
serving the decision-maker specific to previous tasks. Fur-
thermore, to ensure a smooth task transition, we initialize the
task embedding ec for the new task as follows:

ec = αinitec−1 + (1− αinit)gc, (11)
where αinit controls the degree of retention of the previous
task’s embedding, and gc is the embedding initialized from
a Gaussian distribution. This soft initialization method al-
lows the agent to inherit knowledge from previous tasks and
smoothly transition to the new task.

4.3 Overall Algorithm
In this section, we provide an overall description of RPG and
present the pseudocode of our algorithm in the Appendix.

In the training phase of each task, we train the overall agent
network and mixing network using the loss terms in Equa-
tion (3) and (4). Additionally, We integrate a multi-head at-
tention module into the mixing network to accommodate the
varying state spaces across tasks. This design facilitates the
agent’s ability to learn collaborative behaviors from a global
perspective. A detailed explanation of the mixing network is
provided in the Appendix.

Furthermore, during the training phase of the c-th (c > 1)
task, to prevent catastrophic forgetting, we introduce regu-
larization loss terms for the relation capturer and decision-
maker. The final overall loss function is as follows:

Lc
tot = LTD + αattLatt + 1c>1γpLrc + 1c>1Lhy, (12)

where αatt is a coefficient used to balance the various loss
terms. Notably, 1c>1 is an indicator function that takes the
value 0 in the first task (c = 1) and 1 otherwise. Additionally,
as tasks are trained sequentially, we evaluate the current agent
network on the prior c − 1 tasks to assess the anti-forgetting
effect of RPG.

5 Experiments
To validate the effectiveness of RPG, we design compre-
hensive experiments to address the following questions: 1)
Does our method outperform other baselines in learning new
knowledge while preventing catastrophic forgetting? 2) How
does each component of our approach impact continual learn-
ing performance? 3) Does the relation pattern extracted by
RPG facilitate better multi-agent coordination compared to
other baselines? 4) Does the general relation pattern captured
by RPG contribute to zero-shot generalization?

5.1 Experimental Setups
Benchmarks. The experiments in this study are conducted
using the Level-Based Foraging (LBF) [Papoudakis et al.,
2020] and the StarCraft Multi-Agent Challenge (SMAC)
[Samvelyan et al., 2019] benchmarks. The former involves
multiple agents collaborating in a 2D grid to collect scattered
food items, where the sum of the agents’ levels must exceed
the food’s level to successfully collect it and receive a reward.
The latter is a complex real-time strategy game that requires
multiple agents to cooperate to achieve objectives, such as
destroying enemy units or protecting allied ones. SMAC pro-
vides a dynamic state space, heterogeneous unit types, and
diverse map settings, effectively evaluating the agents’ abili-
ties in both cooperation and competition.

Baselines. To evaluate whether RGP performs well on these
benchmark tasks as they continuously appear, we apply it to
a popular value-based method, QMIX [Rashid et al., 2020b].
Additionally, we use MACPro [Yuan et al., 2024], EWC
[Kirkpatrick et al., 2017], MAS [Aljundi et al., 2018], Re-
play, L2, and Finetuning as baselines, where MACPro is the
latest method in Co-MARL.

Furthermore, to validate the role of relation patterns in
multi-agent cooperation, we combine the relation capturer
with QMIX and compare it with common value-based and
policy-based methods. Specifically, in SMAC, we use meth-
ods such as VDN [Sunehag et al., 2017], QMIX [Rashid et
al., 2020b], WQMIX [Rashid et al., 2020a], QTRAN [Son
et al., 2019], ResQ [Shen et al., 2022], HPN [Jianye et al.,
2022], and FtQMIX [Hu et al., 2023] as baselines. Ad-
ditionally, we explore policy-based methods like MAA2C,
COMA [Foerster et al., 2018], MADDPG [Lowe et al.,
2017], MAPPO [Yu et al., 2022], and IPPO [De Witt et al.,
2020] in LBF.

5.2 Continual-tasks Performance and Ablation
CL Performance Comparison. In Figure 3, we present a
comprehensive result of the continual learning experiments
conducted in SMAC, highlighting the superior performance
of RPG. RPG outperforms other methods in both mitigating
catastrophic forgetting and learning new knowledge. Specif-
ically, the gray background indicates the current task and the
training procedure synchronously tests all previous tasks us-
ing the current agent parameters. The results show that meth-
ods such as EWC, Replay, and MAS experience a perfor-
mance drop after learning the first task, and fail to achieve op-
timal performance when learning new tasks, exhibiting weak
capabilities in mitigating catastrophic forgetting and acquir-
ing new knowledge. This indicates that directly applying CL
methods to MARL settings is not feasible. Finetuning and L2
represent the upper bounds for plasticity and stability, respec-
tively. However, Finetuning exhibits the worst catastrophic
forgetting performance as it rapidly forgets knowledge after
each task is learned, while L2 regularization, due to its ex-
cessive constraints, prevents the agent from adapting to task
changes.

The Co-MARL method MACPro, while performing well
among the baselines, is inferior to RPG in both single-task
performance and plasticity. RPG adapts to 8m vs 9m training

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0 0.50M 1.00M 1.50M 2.00M 2.50M
0

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

5m_vs_6m

0 0.50M 1.00M 1.50M 2.00M 2.50M
0

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

12m

0 0.50M 1.00M 1.50M 2.00M 2.50M
0

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

5m

0 0.50M 1.00M 1.50M 2.00M 2.50M
0

20

40

60

80

100

Te
st

 W
in

 R
at

e 
%

8m_vs_9m

MACPro EWC MAS Replay L2 Finetuning RPG(Ours)

Figure 3: The complete continual learning results in StarCraft II. The tasks appear in the order of {5m vs 6m, 12m, 5m, 8m vs 9m}. The
gray background indicates that the task is in the training phase, and the blank areas represent tasks that have not yet been encountered. The
curves after the gray background represent the performance of the agent trained later when tested on that task. Each curve represents the
average win rate across 3 random seeds.

Methods 5m vs 6m 12m 5m 8m vs 9m

RPG 0.875 1.00 1.00 0.91
w/o Lrc 0.86 1.00 1.00 0.95
w/o Lhy 0.84 1.00 1.00 0.875

w/o Lrc,Lhy 0.865 1.00 1.00 0.86
RPG(EWC) 0.875 1.00 1.00 0.93
RPG(MLP) 0.84 1.00 1.00 0.59

Table 1: Ablation analysis of plasticity performance. “w/o L” indi-
cates the removal of L from the RPG, and “(·)” denotes the use of ·
as a replacement.

faster than MACPro. Moreover, RPG’s agent parameter size
(112K) is smaller than MACPro’s (377K), and MACPro’s dy-
namic policy head further increases the parameter size. Over-
all, RPG demonstrates comparable performance to L2 in ant-
forgetting and is more adaptable to new tasks. In addition, we
compare RPG with several mentioned baselines on the con-
tinual tasks of LBF, as detailed in the Appendix.

Ablation Study. In this section, we investigate the impact
of different components in RPG through an ablation study
conducted on SMAC. First, we remove the loss term Lrc from
the scalable relation capturer to obtain w/o Lrc, in order to
study its effect on preventing catastrophic forgetting. Next,
we replace Lrc with EWC in RPG (denoted as RPG(EWC))
and apply it to the relation capturer to validate the effective-
ness of our parameter importance estimation method. Then,
in w/o Lhy, we eliminate the hypernetwork regularization loss
term Lhy to investigate whether a free hypernetwork could
still facilitate continual learning. Additionally, we introduce
RPG(MLP), which replaces the decision-maker generated by
the hypernetwork with an MLP for decision-making. Finally,
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Figure 4: Ablation analysis of anti-forgetting performance. The 4
different colored backgrounds correspond to the training processes
of {5m vs 6m, 12m, 5m, and 8m vs 9m.} Each curve represents the
agent’s average win rate on 5m vs 6m at distinct testing stages.

we remove both Lrc and Lhy from RPG, and we refer to this
setup as w/o Lrc,Lhy.

Continual learning aims to balance stability and plasticity,
requiring joint analysis of Table 1 and Figure 4 for a com-
prehensive assessment. In Figure 4, we test the algorithm
on 5m vs 6m at four stages during training to evaluate its
forgetting resistance. Table 1 shows the algorithm’s perfor-
mance at different stages of task completion. We find that
w/o Lrc, lacking regularization, improves plasticity, but its
performance rapidly degrades when the second task begins.
This occurs because relaxing the relation capture constraints
enhances the agent’s learning capacity but compromises its
memory retention. Similarly, RPG(EWC) shows a similar
performance drop, confirming the reliability of our param-
eter importance estimation. Removing Lhy allows w/o Lhy
to continue learning new tasks, but its forgetting resistance
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Figure 5: Algorithms Performance in 4 super-hard SMAC tasks.

Tasks RPG EWC MAS

3m 86.5± 8.3 47.7± 13.9 91.6± 8.5
8m 100 95.3± 5.4 99.6± 1.5

10m 100 87.3± 7.9 99.6± 1.5
10m vs 11m 90.3± 7.9 89.8± 6.6 63.1± 15.3

15m 96.3± 4.9 73.2± 10.6 76.9± 16.6

Table 2: Zero-shot results. Bold indicates the best performance.

declines, highlighting the need for a constrained hypernet-
work. Notably, while RPG(MLP) maintains coordination on
5m vs 6m, it loses some plasticity, emphasizing the necessity
of task-specific decision-makers. This is because the MLP
cannot isolate the decision-makers of different tasks. Finally,
w/o Lrc,Lhy loses the ability to resist forgetting.

5.3 Single-task Performance

In this section, we conduct comparative experiments to val-
idate the coordination performance of our method in single
tasks. Figure 5 and 6 show the comparison of RPG with base-
lines in SMAC and LBF.

In several super-hard maps of SMAC, RPG achieves the
best performance, demonstrating that agents dynamically se-
lecting interaction relationships with different teammates or
opponents based on their own states is more conducive to
achieving better coordination. In the LBF, particularly in
maps with more entities and larger areas, RPG outperforms
other baselines. This advantage is attributed to the ability of
the relation pattern capturer to quickly identify key interactive
entities in large-scale tasks, enabling efficient collaboration.
These results indicate that the relation pattern is not only ef-
fective in complex, continual multi-agent cooperation tasks
but also exhibits superior performance in more challenging
single-task scenarios.

As shown in Figure 7, we conduct an ablation study on the
sparse attention mechanism using w/o Latt to analyze its im-
pact on the generation of relational patterns by agents. The re-
sults indicate that removing sparse attention slightly reduces
the performance of RPG, confirming that interacting with a
few key entities facilitates better collaboration among agents.
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Figure 6: Algorithms Performance in 4 LBF tasks.
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Figure 7: Ablation results of the sparse attention loss term.

5.4 Zero-shot Performance
In addition to learning sequential tasks, agents should also
learn to leverage prior coordination experience to handle un-
seen tasks. To end this, we compare RPG with EWC and
MAS to assess its zero-shot generalization capability in tack-
ling novel tasks. Specifically, in the SMAC scenarios, agents
trained on continual tasks {5m vs 6m, 12m, 5m, 8m vs 9m}
are tested on 5 additional unseen tasks to validate the general-
ization performance. As shown in Table 2, compared to other
baselines, RPG demonstrates superior generalization perfor-
mance in 4 out of the 5 tasks. However, RPG’s generalization
ability on 3m does not match that of MAS. This indicates
that in simple tasks with few agents, complex relation pat-
terns may instead hinder simple cooperation. This highlights
the ability of RPG to extract and retain generalizable relation
patterns, enabling robust generalization to new tasks.

6 Conclusion
This paper focuses on the problem of continual coordination
in MARL. To address this issue, we analyze the essence of
continual multi-agent coordination—relation patterns—and
propose a novel framework, RPG. RPG extracts general re-
lation patterns from dynamic observation spaces and maps
them to varying action spaces. Results demonstrate that RPG
consistently outperforms baselines across various scenarios.
However, RPG focuses solely on homogeneous multi-agent
collaborative tasks and currently lacks the capability for per-
petual knowledge acquisition. In future work, we aim to ad-
dress these challenges. We hope RPG inspires further interest
in continual multi-agent coordination research.
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mani, and Patrick Pérez. Deep reinforcement learning for
autonomous driving: A survey. IEEE Transactions on In-
telligent Transportation Systems, 23(6):4909–4926, 2021.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–
3526, 2017.

[Lowe et al., 2017] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean
Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive envi-
ronments. Advances in neural information processing sys-
tems, 30, 2017.

[Mahajan et al., 2019] Anuj Mahajan, Tabish Rashid,
Mikayel Samvelyan, and Shimon Whiteson. Maven:
Multi-agent variational exploration. Advances in neural
information processing systems, 32, 2019.

[Molchanov et al., 2019] Pavlo Molchanov, Arun Mallya,
Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance
estimation for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11264–11272, 2019.

[Nekoei et al., 2021] Hadi Nekoei, Akilesh Badri-
naaraayanan, Aaron Courville, and Sarath Chandar.
Continuous coordination as a realistic scenario for life-
long learning. In International Conference on Machine
Learning, pages 8016–8024. PMLR, 2021.

[Oliehoek et al., 2016] Frans A Oliehoek, Christopher Am-
ato, et al. A concise introduction to decentralized
POMDPs, volume 1. Springer, 2016.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Oroojlooy and Hajinezhad, 2023] Afshin Oroojlooy and
Davood Hajinezhad. A review of cooperative multi-agent
deep reinforcement learning. Applied Intelligence,
53(11):13677–13722, 2023.

[Papoudakis et al., 2020] Georgios Papoudakis, Filippos
Christianos, Lukas Schäfer, and Stefano V Albrecht.
Benchmarking multi-agent deep reinforcement learn-
ing algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

[Rashid et al., 2020a] Tabish Rashid, Gregory Farquhar, Bei
Peng, and Shimon Whiteson. Weighted qmix: Expand-
ing monotonic value function factorisation for deep multi-
agent reinforcement learning. Advances in neural infor-
mation processing systems, 33:10199–10210, 2020.

[Rashid et al., 2020b] Tabish Rashid, Mikayel Samvelyan,
Christian Schroeder De Witt, Gregory Farquhar, Jakob Fo-
erster, and Shimon Whiteson. Monotonic value function
factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(178):1–51,
2020.

[Robins, 1995] Anthony Robins. Catastrophic forgetting,
rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[Rolnick et al., 2019] David Rolnick, Arun Ahuja, Jonathan
Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. Advances in neural
information processing systems, 32, 2019.

[Samvelyan et al., 2019] Mikayel Samvelyan, Tabish
Rashid, Christian Schroeder De Witt, Gregory Farquhar,
Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung,
Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043, 2019.

[Shen et al., 2022] Siqi Shen, Mengwei Qiu, Jun Liu, Wei-
quan Liu, Yongquan Fu, Xinwang Liu, and Cheng
Wang. Resq: A residual q function-based approach
for multi-agent reinforcement learning value factoriza-
tion. Advances in Neural Information Processing Systems,
35:5471–5483, 2022.

[Shi et al., 2021] Haobin Shi, Jingchen Li, Jiahui Mao, and
Kao-Shing Hwang. Lateral transfer learning for multia-
gent reinforcement learning. IEEE Transactions on Cy-
bernetics, 53(3):1699–1711, 2021.

[Son et al., 2019] Kyunghwan Son, Daewoo Kim, Wan Ju
Kang, David Earl Hostallero, and Yung Yi. Qtran: Learn-
ing to factorize with transformation for cooperative multi-
agent reinforcement learning. In International conference
on machine learning, pages 5887–5896. PMLR, 2019.

[Song et al., 2025] Shoucheng Song, Youfang Lin, Sheng
Han, Chang Yao, Hao Wu, Shuo Wang, and Kai Lv. Code:
Communication delay-tolerant multi-agent collaboration
via dual alignment of intent and timeliness. In AAAI-25,
Sponsored by the Association for the Advancement of Ar-
tificial Intelligence, pages 23304–23312, 2025.

[Sunehag et al., 2017] Peter Sunehag, Guy Lever, Audrunas
Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z
Leibo, Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[Wang et al., 2024a] Shuo Wang, Zhihao Wu, Xiaobo Hu,
Jinwen Wang, Youfang Lin, and Kai Lv. What effects
the generalization in visual reinforcement learning: pol-
icy consistency with truncated return prediction. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 38, pages 5590–5598, 2024.

[Wang et al., 2024b] Shuo Wang, Zhihao Wu, Jinwen Wang,
Xiaobo Hu, Youfang Lin, and Kai Lv. How to learn
domain-invariant representations for visual reinforcement
learning: an information-theoretical perspective. In Pro-
ceedings of the Thirty-Third International Joint Confer-
ence on Artificial Intelligence, pages 1389–1397, 2024.

[Yang et al., 2024] Yaodong Yang, Guangyong Chen, HAO
Jianye, and Pheng-Ann Heng. Sample-efficient multiagent
reinforcement learning with reset replay. In Forty-first In-
ternational Conference on Machine Learning, 2024.

[Yu et al., 2021] Tian Yu, Jing Huang, and Qing Chang.
Optimizing task scheduling in human-robot collaboration
with deep multi-agent reinforcement learning. Journal of
Manufacturing Systems, 60:487–499, 2021.

[Yu et al., 2022] Chao Yu, Akash Velu, Eugene Vinitsky, Ji-
axuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent
games. Advances in Neural Information Processing Sys-
tems, 35:24611–24624, 2022.

[Yuan et al., 2022] Lei Yuan, Jianhao Wang, Fuxiang Zhang,
Chenghe Wang, Zongzhang Zhang, Yang Yu, and
Chongjie Zhang. Multi-agent incentive communication
via decentralized teammate modeling. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 9466–9474, 2022.

[Yuan et al., 2024] Lei Yuan, Lihe Li, Ziqian Zhang, Fuxi-
ang Zhang, Cong Guan, and Yang Yu. Multiagent con-
tinual coordination via progressive task contextualization.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2024.

[Zhang et al., 2023] Xi Zhang, Feifei Zhang, and Chang-
sheng Xu. Vqacl: A novel visual question answering con-
tinual learning setting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 19102–19112, 2023.

[Zhang et al., 2024] Hengrui Zhang, Youfang Lin, Shuo
Shen, Sheng Han, and Kai Lv. Enhancing off-policy con-
strained reinforcement learning through adaptive ensem-
ble c estimation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 21770–21778,
2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


