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Abstract
Single-cell RNA sequencing (scRNA-seq) reveals
cell heterogeneity, with cell clustering playing
a key role in identifying cell types and marker
genes. Recent advances, especially graph neu-
ral networks (GNNs)-based methods, have signifi-
cantly improved clustering performance. However,
the analysis of scRNA-seq data remains challeng-
ing due to noise, sparsity, and high dimensional-
ity. Compounding these challenges, GNNs often
suffer from over-smoothing, limiting their ability
to capture complex biological information. In re-
sponse, we propose scSiameseClu, a novel Siamese
Clustering framework for interpreting single-cell
RNA-seq data, comprising of 3 key steps: (1) Dual
Augmentation Module, which applies biologically
informed perturbations to the gene expression ma-
trix and cell graph relationships to enhance repre-
sentation robustness; (2) Siamese Fusion Module,
which combines cross-correlation refinement and
adaptive information fusion to capture complex cel-
lular relationships while mitigating over-smoothing;
and (3) Optimal Transport Clustering, which uti-
lizes Sinkhorn distance to efficiently align clus-
ter assignments with predefined proportions while
maintaining balance. Comprehensive evaluations
on seven real-world datasets demonstrate that sc-
SiameseClu outperforms state-of-the-art methods
in single-cell clustering, cell type annotation, and
cell type classification, providing a powerful tool
for scRNA-seq data interpretation.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) technology repre-
sents a significant advancement in bioinformatics, enabling

*Corresponding authors.
†Code and datasets are all available at the link: https://github.com/

XPgogogo/scSiameseClu.

(a) scNAME (b) scGNN

Figure 1: Similarity distributions of cell embeddings learned by
scNAME and scGNN on dataset Human liver cells.

the capture of comprehensive genetic information from in-
dividual cells [Shapiro et al., 2013]. Cell clustering, a key
step in single-cell RNA sequencing analysis, groups cells by
their gene expression patterns to uncover the complex char-
acteristics of distinct cell populations and provide insights
into their biological functions and interactions [Kiselev et al.,
2019]. Moreover, clustering gene expression patterns further
contributes to various downstream tasks, such as marker gene
identification and cell type annotation [Haghverdi et al., 2016].
Cluster analysis of scRNA-seq data has been a vibrant research
area over the past decade.

In recent years, advanced computational methods have been
increasingly explored to address the challenges of analyzing
high-dimensional and sparse scRNA-seq data. Classical clus-
tering methods, such as K-means, are straightforward and
computationally efficient but struggle to capture the complex,
nonlinear relationships in scRNA-seq data. Meanwhile, re-
cent research has focused on applying deep learning frame-
works for learning representations of scRNA-seq data and
classifying samples into distinct clusters. A commonly used
method is self-supervised learning methods, which uncover
effective representations of scRNA-seq data by reconstructing
the original input data [Eraslan et al., 2019; Lopez et al., 2018;
Tian et al., 2019]. However, these methods primarily focus
on extracting features from individual cells, overlooking the
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complex relationships between cells that are essential for un-
derstanding cellular diversity. Benefiting from the power-
ful utilization of graph information, graph neural networks
(GNNs) have been applied to analyze scRNA-seq data by mod-
eling cells as nodes and their interactions as edges, effectively
capturing both gene expressions and cell graphs to comprehen-
sively represent cellular heterogeneity [Wang et al., 2021b;
Gan et al., 2022; Zhan et al., 2023].

Though good performance has been achieved, previous
GNN-based works still face limitations when tackling the fol-
lowing challenges: (1) Deficient exploration on intercellular
information: when applying GNN-based models to single-
cell data, the graph construction process often overlooks the
sparsity and noise inherent in scRNA-seq data, frequently
leading to reduced model robustness. Most current meth-
ods rely on simple topologies, like cosine similarity, to build
cell graphs from gene expression matrices [Gan et al., 2022;
Wang et al., 2021c], but do not handle the sparsity and noise
inherent in scRNA-seq data. This leads to fragile graph repre-
sentations, weakening GNNs’ ability to capture cellular inter-
actions and limiting clustering performance and insights into
cellular dynamics. (2) Insufficient prevention of representa-
tion collapse in cell embeddings: GNNs-based models for
scRNA-seq data frequently encounter representation collapse,
where embeddings of biologically distinct cells become overly
similar in latent space. This issue arises from the inability of
current methods to preserve the diversity of cell representa-
tions in sparse and noisy scRNA-seq data. As shown in Fig.1,
both the deep learning-based scNAME [Wan et al., 2022] and
the GNN-based scGNN [Wang et al., 2021b] exhibit vary-
ing degrees of representation collapse. The problem is more
pronounced in scGNN, where the cosine similarity between
almost all cell embeddings exceeds 0.5, indicating a severe
loss of diversity in cell embeddings. Such collapse dimin-
ishes the discriminative power of embeddings, blurring cluster
boundaries and limiting the ability to distinguish different cell
populations, ultimately degrading the effectiveness of GNN
models in clustering tasks [Zbontar et al., 2021].

To tackle the aforementioned challenge, we propose sc-
SiameseClu, a Siamese Clustering framework for interpret-
ing single-cell RNA sequencing data. scSiameseClu is de-
signed to capture and refine complex intercellular information
while learning discriminative and robust representations across
both gene and cellular features. scSiameseClu leverages three
key components: dual augmentation module to enrich data,
siamese fusion module to preserve critical information and
reduce redundancy, and optimal transport clustering to align
cluster distributions. It effectively explores intricate informa-
tion, mitigates representation collapse, and achieves clearer
cell population separation, excelling in scRNA-seq clustering
and other biological tasks.

Our framework offers the following contributions:

• We present scSiameseClu, a novel Siamese-based clus-
tering framework tailored for scRNA-seq data that cap-
tures intricate information from gene expression and cell
graphs to learn discriminative and robust cell embeddings,
improving clustering outcomes and downstream tasks.

• We introduce key components: (i) dual augmentation

with distinct noise on gene expression and cell graphs
to mitigate dropout effects and improve robustness; (ii)
siamese fusion for cross-correlation and adaptive infor-
mation fusion to enhance robustness; and (iii) optimal
transport clustering to align distributions.

• Experimental results on seven datasets demonstrate
that scSiameseClu outperforms state-of-the-art (SOTA)
methods in clustering and other biological tasks.

2 Related Work
Deep Clustering for scRNA-seq. In scRNA-seq data analy-
sis, early clustering algorithms like Phenograph [Levine et al.,
2015], MAGIC [Van Dijk et al., 2018], and Seurat [Wang et
al., 2025] utilize k-nearest neighbor (KNN) graphs to model
cell relationships, while SIMLR [Wang et al., 2018] and
MPSSC [Park and Zhao, 2018] employ multiple kernel func-
tions to derive robust similarity measures from different data
representations. These methods, however, often struggle with
high-dimensional data and complex nonlinear features, mak-
ing them susceptible to noise. Deep learning approaches have
since become prominent. DCA [Eraslan et al., 2019] employs
a Zero-Inflated Negative Binomial (ZINB) autoencoder to
model scRNA-seq data distributions, capturing nonlinear gene
dependencies. SCVI [Lopez et al., 2018] and SCVIS [Ding
et al., 2018], which rely on autoencoders for dimensionality
reduction, often face over-regularization due to their Gaussian
distribution assumption. Additionally, scDeepCluster [Tian et
al., 2019] combines ZINB-based autoencoders with deep em-
bedding clustering to optimize feature learning and clustering.
Most approaches ignore inter-gene and inter-cell correlations,
focusing solely on individual cell expression profiles.
Graph Clustering for scRNA-seq. Recently, graph-based
clustering methods have gained considerable attention for their
effectiveness [Tu et al., 2021; Liu et al., 2022; Ning et al.,
2025]. Methods like scGAE [Luo et al., 2021] and graph-
sc [Ciortan and Defrance, 2022] utilize graph autoencoders
to embed scRNA-seq data while preserving topological struc-
tures. scGAC [Cheng and Ma, 2022] constructs cell graphs and
employs a self-optimization approach for simultaneous rep-
resentation learning and clustering. Notably, scGNN [Wang
et al., 2021b] uses GNNs and multi-modal autoencoders to
aggregate cell-cell relationships and model gene expression
patterns, while scDSC [Gan et al., 2022] combines a ZINB
model-based autoencoder with GNN modules using a mutually
supervised strategy. These methods often struggle with repre-
sentation collapse, severely limiting their ability to accurately
model cell relationships.

3 Methodology
This section introduces the proposed scSiameseClu, including
the highlighted dual augmentation module, siamese fusion
module, optimal transport clustering. More details are pro-
vided in the supplementary material, e.g., gene expression
autoencoders (GEAs) and cell graph autoencoders (CGAs).

3.1 Problem Formulation
Given a single-cell expression matrix X ∈ RN×D, where
xij (1 ≤ i ≤ N, 1 ≤ j ≤ D) shows the expression of the j-
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Figure 2: Overview architecture of scSiameseClu. It contains three components: (i) a data-augmented module, (ii) a Siamese fusion module,
and (iii) an optimal transport clustering strategy for self-supervision learning.

th gene in the i-th cell. We construct an undirected graph
GC = (V, E) using KNN based on the gene expression matrix,
where V = {v1, v2, · · · , vN} is the set of N nodes, E is the
set of edges. Each node corresponds to a single cell, and
edges indicate similarity between cells, quantified with the
Pearson Correlation Coefficient [Ding et al., 2022; Lu et al.,
2022]. The KNN graph is defined with the preprocessed data
matrix X̄, as specified in Section 4.1, and adjacency matrix
A = (aij)N×N , where aij = 1 if vi and vj are connected,
and aij = 0, otherwise. The associated degree matrix is D =
diag(d1, d2, · · · , dN ) ∈ RN×N , where di =

∑
(vi,vj)∈E aij

represents the degree of node vi. To account for self-loops
and normalize the adjacency matrix, we compute Ã ∈ RN×N

as D−1(A+ I), where I ∈ RN×N is the identity matrix. Our
goal is to partition the graph GC into C categories by assigning
each node vi ∈ V to one of the C categories based on E and
gene expression features.

3.2 Framework Overview
We propose scSiameseClu, an enhanced graph autoencoder-
based siamese clustering framework for interpreting scRNA-
seq data. We aim to improve the performance of scRNA-seq
clustering and related downstream tasks by learning more ac-
curate and distinctive cell embeddings. As Fig. 2 shows, our
framework consists of three components: (i) a dual augmen-
tation module that enhances the gene expression matrix and
the cell graph relationships; (ii) a siamese fusion module to
map the augmented data into a lower-dimensional latent space,
generating cell embeddings; and (iii) an optimal transport clus-
tering strategy for self-supervision learning, which refines the
latent representations and generates clustering assignments.

3.3 Dual Augmentation Module
To enhance robustness against noise and generalization across
diverse datasets, biologically plausible augmentations are in-
troduced at both gene and cell levels. These augmentations
capture the variation in scRNA-seq, helping the model extract
biologically meaningful representations.

Gene Expression Augmentation. To enhance robustness at
the gene level, biologically plausible augmentations are in-
troduced by adding controlled noise to the gene expression
profiles. Specifically, Gaussian noise is applied to simulate nat-
ural variability in gene expression. Let ⊙ denote the Hadamard
product [Horn, 1990], and N ∈ RN×D represent a random
noise matrix drawn from a Gaussian distribution N (1, 0.1).
The augmented gene expression matrix X̃ is computed as:

X̃ = X̄⊙N, (1)

as illustrated in Fig. 2, two augmented gene expression matri-
ces, X̃1 and X̃2, were generated using Gaussian distributions
with distinct parameters.
Cell Graph Augmentation. Cell graph augmentation aims to
improve model robustness and enhance representation learn-
ing by introducing perturbations to the cell graph, specifically
through edge perturbation and graph diffusion [Wang et al.,
2024]. These two strategies provide distinct, yet complemen-
tary, perspectives on the cell graph, enabling the model to
capture diverse interactions between cells.
(i) Edge perturbation. We employ an edge removal strategy to
refine the cell graph while preserving the most meaningful and
biologically relevant relationships. Removing weaker edges
reduces graph noise and improves model robustness. In con-
trast, edge addition is avoided to prevent spurious connections
that may distort the graph and compromise its biological va-
lidity. Specifically, a mask matrix M ∈ RN×N is constructed
based on the pairwise cosine similarity matrix computed in
the latent space. The 10% of edges with the lowest similarity
values are identified and removed using this mask. Finally,
the adjacency matrix Ar ∈ RN×N is normalized for proper
scaling, calculated as:

Ar = D− 1
2 ((A⊙M) + I)D− 1

2 . (2)

(ii) Graph diffusion. We use a graph diffusion strategy to
refine the cell graph by enhancing meaningful relationships
between cells [Hassani and Khasahmadi, 2020]. Specifically,
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the normalized adjacency matrix is transformed into a diffu-
sion adjacency matrix using the Personalized PageRank (PPR)
algorithm [Page et al., 1998]. The teleport probability con-
trols information propagation across the graph, helping to
emphasize biologically meaningful relationships. The diffu-
sion adjacency matrix Ad would be computed as:

Ad = α
(
I− (1− α)

(
D− 1

2 (A+ I)D− 1
2

))−1

, (3)

Thus, we define two distinct adjacency matrices, Ar and Ad,
from edge perturbation and graph diffusion, respectively.

3.4 Siamese Fusion Module
We propose the Siamese Fusion Module (SFM), a novel frame-
work that integrates cross-correlation refinement and adaptive
information fusion to learn discriminative and robust sam-
ple representations and avoid the over-smoothing issue of
GNN-based methods [Ning et al., 2022]. By minimizing the
deviation of cross-correlation matrices from the ideal iden-
tity matrix across cells and genes and adaptive information
fusion, SFM effectively reduces redundancy while preserv-
ing critical information [Zbontar et al., 2021; Tu et al., 2021;
Liu et al., 2022]. This enhances the cell representations and
avoids representation collapse, enabling more accurate cell
population separation and improving clustering performance.
Cross-Correlation Refinement. The cross-correlation re-
finement process is designed to effectively encode and in-
tegrate the augmented data from genes and cells, ensuring
the information from different augmentations is unified. We
construct two gene expression autoencoders (GEAs) to pro-
cess the augmented gene expression matrices X̃1 and X̃2,
generating gene expression embeddings ZG1 ∈ RN×d and
ZG2 ∈ RN×d, where d represents the latent embedding dimen-
sionality. Similarly, we construct two cell graph autoencoders
(CGAs) to process the augmented cell graph matrices X̃1,A

r

and X̃2,A
d, producing cell graph embeddings ZC1 ∈ RN×d

and ZC2 ∈ RN×d.
Cell Correlation Refinement. Cell correlation refinement
(CCR) optimizes cell relationships across different augmented
views by aligning corresponding embeddings and reduc-
ing redundant correlations. We can calculate the refined

cell correlation matrix by RC1
ij =

(ZG1
i )(ZG2

j )
T

∥ZG1
i ∥∥ZG2

j ∥ ,R
C2
ij =

(ZC1
i )(ZC2

j )
T

∥ZC1
i ∥∥ZC2

j ∥ , ∀i, j ∈ [1, N ].

To ensure the cell correlation matrix RC1,RC2 aligns with
an identity matrix IC ∈ RN×N , we minimize loss:

LCor1 =
1

N2

∑(
RC1 − IC

)2

+
1

N2

∑(
RC2 − IC

)2

(4)

By ensuring the diagonal elements of RC1,RC2 are equal to 1
and the off-diagonal elements are equal to 0, we can guarantee
the alignment of embeddings for each view and minimize the
consistency of embeddings for different cells across different
views. This helps scSiameseClu reduce redundant information
and learn more discriminative representations.

Latent Correlation Refinement. Similarly, latent correlation
refinement (LCR) optimizes relationships between latent em-
beddings across different augmented views by aligning cor-
responding embeddings. First, we project gene expression
embeddings ZG1 and ZG2 into Z̃G1 and Z̃G2 ∈ Rd×K with
using a readout function R(·) : Rd×N → Rd×K , formu-
lated as Z̃G1 = R

((
ZG1

)T)
, Z̃G1 = R

((
ZG2

)T)
. Like-

wise, we can project cell graph embeddings ZC1 and ZC2 into
Z̃C1 = R

((
ZC1

)T)
and Z̃C2 = R

((
ZC2

)T)
.

Then we can calculate the refine latent correlation matrix

by RL1
ij =

(Z̃G1
i )(Z̃G2

j )
T

∥Z̃G1
i ∥∥Z̃G2

j ∥ ,R
L2
ij =

(Z̃C1
i )(Z̃C2

j )
T

∥Z̃C1
i ∥∥Z̃C2

j ∥ , ∀i, j ∈ [1, d],

which denotes the correlation between the embeddings learned
from enhanced gene expression matrix.

To ensure the latent correlation matrix RL1,RL2 aligns
with an identity matrix IL ∈ Rd×d, we minimize the loss:

LCor2 =
1

d2

∑(
RL1 − IL

)2

+
1

d2

∑(
RL2 − IL

)2

(5)

Adaptive Information Fusion. To enhance clustering perfor-
mance, we propose an adaptive information fusion mechanism
that integrates cell relationships through embedding aggrega-
tion, self-correlation learning, and dynamic recombination.
We first aggregate the embeddings achieved with GEA and
CGA with a linear combination operation:

ZA =
(
ZG1 + ZG2 + ZC1 + ZC2

)
/4, (6)

Then, we apply a graph convolution-like operation (i.e.,
message passing) to process the combined information, en-
hancing the initial fused embedding ZA ∈ RN×d. Specifically,
we enhance ZA by propagating cell graph Ã, i.e., ZE = ÃZA.
To capture the relationships among cell graphs in the enhanced
embedding space, we compute a normalized self-correlation
matrix RS ∈ RN×N . Each element of RS is defined as

RS
ij =

exp

((
ZE(ZE)

T
)
ij

)
∑N

k=1 exp((ZE(ZE)T)
ik
)

. The self-correlation matrix

RS encodes the relative similarity between cells, providing
a mechanism to model relationships in the embedding space.
Thus, we can recombine the embedding matrix ZE to dynami-
cally adjust the embedding representations. Specifically, the re-
combined embedding matrix ZR is computed as ZR = RSZE .
Each cell integrates information from others through learned
relationships, enhancing embeddings for clustering.

To preserve the initial fused embedding information while
incorporating the recombined embeddings, we adopt a skip
connection to fuse ZE and ZR. The final clustering-oriented
latent embeddings Z ∈ RN×d are computed as:

Z = ZE + βZR, (7)

where β is a learnable scale parameter, initialized to 0 and
updated during training. This fusion mechanism effectively
filters out redundant information and preserves discriminative
features in the latent space, enabling the network to learn
robust and meaningful representations that enhance clustering
performance while avoiding representation collapse.
Propagated Regularization. The reconstruction loss, LREC

minimizes the joint mean square error (MSE) of reconstruction
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loss of gene expression and cell graph matrix. To further
enhance representation quality, we introduce a propagation
regularization. Drawing inspiration from [Liu et al., 2022],
formulated as follows:

LR = JSD(Z, ÃZ), (8)

where JSD (·) refers the Jensen-Shannon divergence [Fu-
glede and Topsoe, 2004]. Utilizing Eq. 8, the network can
capture long-range dependencies even with a shallow network
architecture, thereby reducing over-smoothing as the propa-
gated information deepens within the framework. Finally, the
overall objective of the SFM module can be computed by:

LSFM = LCor1 + LCor2 + LREC + γLR, (9)

where γ is a trade-off parameter balancing the contribution of
the propagation regularization.

3.5 Optimal Transport Clustering
We utilize a self-supervised method to perform unsupervised
clustering of scRNA-seq data [Xie et al., 2016], which learn
directly from the data without requiring labeled inputs. Specif-
ically, we employ Student’s t-distribution [Van der Maaten
and Hinton, 2008] as a kernel function to measure the sim-
ilarity qij between each cell embedding hi and the cluster
center cj . By assigning higher weights to closer points, this
method effectively captures the non-linear relationships in
scRNA-seq data. The assignment distribution is represented
as a matrix Q = [qij ], where each element indicates the prob-
ability or similarity between sample i and cluster center j.
To further refine clustering, we compute a target distribution
matrix P = [pij ], which sharpens the soft assignments in Q
by emphasizing high-confidence samples. This sharpening
process improves cluster separation and ensures well-defined
clusters. The clustering process is optimized by minimizing
the divergence between Q and P , iteratively refining results to
group similar cells and separate dissimilar ones. In the target
distribution P , each assignment in Q is squared and normal-
ized to enhance assignment confidence [Bo et al., 2020].

To avoid degenerate solutions that would allocate all data
points to a single label, we establish constraints that synchro-
nize the label distribution with the mixing proportions. This
ensures that each cell contributes equally to the loss calcula-
tion, improving clustering accuracy and preserving a balanced
effect during learning process. We construct the target proba-
bility matrix P using the following optimal transport strategy
to ensure this alignment and enhance the robustness of our
clustering outcomes:

min
P

− P ∗ (logQ)

s.t.P ∈ RN×C
+ , P 1C = 1N and PT1N = Nπ.

(10)

In this context, we regard the target distribution P as the trans-
port plan matrix derived from optimal transport theory, while
−logQ serves as the cost matrix. We impose the constraint
PT1N = Nπ, where π indicates the proportion of cells as-
signed to each cluster, estimated from intermediate clustering
results. Thus, we can ensure that the resulting cluster distribu-
tion aligns with the defined mixing proportions. Given the sub-
stantial computational expense associated with direct optimiza-
tion techniques, we utilize the Sinkhorn distance [Sinkhorn,

1967] to facilitate quicker optimization through an entropic
constraint. The optimization problem, which includes a La-
grange multiplier for the entropy constraint is formulated as:

min
P

− P ∗ (logQ)− 1

λ
H(P )

s.t.P ∈ RN×C
+ , P 1C = 1N and PT1N = Nπ,

(11)

where H is the entropy function measuring uncertainty in the
distribution, and λ is the smoothness parameter that maintains
cluster balance. The transport plan P is guaranteed to exist
and be unique, with the solution efficiently obtained through
Sinkhorn’s method [Sinkhorn, 1967] as follows:

P̂ (t) = diag
(
u(t)

)
Qλ diag

(
v(t)

)
(12)

at each iteration t, u(t) is updated as 1N/(Qλv(t−1)) and v
is calculated as Nπ/(Q

λu(t)). We begin with the initial value
set as v(0) = 1N . Upon convergence, the optimal transport
plan matrix P̂ is obtained.

During training, P̂ is fixed and Q is aligned with P̂ . This
alignment is crucial for evaluating model performance, allow-
ing us to define the clustering loss function as follows:

LOTC = KL(P̂∥Q) =
∑
i

∑
j

p̂ij log
p̂ij
qij

(13)

3.6 Joint Optimization
The Zero-Inflated Negative Binomial (ZINB) loss LZINB is
commonly used to handle the sparsity and overdispersion of
scRNA-seq data by modeling excess zeros and variability,
ensuring accurate data reconstruction [Eraslan et al., 2019].
Thus, in the proposed method, the overall optimization objec-
tive consists of three parts: the SFM loss, the OTC loss, and
the ZINB loss, which are formulated as:

L = LSFM + ρLZINB + σLOTC , (14)

where the hyperparameters ρ and σ balance the components,
facilitating effective embedding learning and clustering.

4 Experiments
In this section, we first validate our method through exten-
sive experiments, demonstrating its superior performance in
scRNA-seq clustering. We then show that the embeddings
generated by our method effectively mitigate the embedding
collapse issue in graph-based models. We also evaluate its
utility in downstream tasks, like cell type annotation.

4.1 Experimental Setup
Dataset Preprocessing. We evaluated scSiameseClu on seven
real scRNA-seq datasets. First, genes expressed in fewer than
three cells were filtered out, followed by normalization, log-
transformed (logTPM), and selection of highly variable genes
based on predefined mean and dispersion thresholds. Finally,
the preprocessed data were used as input.
Baseline Methods. To verify the superior performance of
the proposed approach, we compare it against nine competing
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Dataset Metric pcaReduce SUSSC DEC scDeepCluster scDCC scNAME scDSC scGNN scCDCG OURS

Shekhar mouse retina cells
ACC 21.27 ± 0.14 25.04 ± 0.73 24.55 ± 2.29 47.26 ± 3.34 74.14 ± 2.31 79.84 ± 2.77 67.54 ± 4.08 78.56 ± 3.95 76.04 ± 1.85 89.16 ± 3.52
NMI 25.54 ± 0.05 43.35 ± 0.36 40.32 ± 3.50 80.45 ± 1.28 81.20 ± 0.68 75.19 ± 11.89 62.46 ± 14.53 79.89 ± 5.28 76.71 ± 1.47 82.72 ± 1.22
ARI 10.01 ± 0.03 19.69 ± 0.52 17.96 ± 3.59 52.66 ± 5.77 62.44 ± 4.50 81.66 ± 7.05 54.53 ± 8.34 77.58 ± 9.59 60.65 ± 6.47 88.93 ± 2.15

Macosko mouse retina cells
ACC 16.40 ± 0.33 30.34 ± 0.40 33.32 ± 2.97 54.45 ± 3.03 63.31 ± 11.09 78.97 ± 7.76 72.16 ± 0.77 62.80 ± 2.26 69.78 ± 0.70 87.13 ± 2.15
NMI 23.35 ± 0.19 50.72 ± 0.13 52.20 ± 2.14 76.83 ± 2.09 79.13 ± 0.94 82.64 ± 1.44 67.04 ± 0.49 68.25 ± 3.36 68.71 ± 2.52 86.62 ± 2.31
ARI 11.44 ± 0.79 18.89 ± 0.53 27.55 ± 6.65 40.90 ± 1.44 52.38 ± 2.78 84.72 ± 0.17 61.55 ± 0.82 74.01 ± 2.25 58.99 ± 2.69 90.92 ± 3.74

QS mouse lung cells
ACC 33.70 ± 0.21 40.82 ± 0.10 38.07 ± 1.40 47.16 ± 3.35 48.29 ± 5.51 69.84 ± 2.77 67.54 ± 4.08 69.46 ± 1.88 70.58 ± 0.87 87.16 ± 1.52
NMI 16.10 ± 0.54 43.08 ± 0.01 37.27 ± 3.76 70.18 ± 2.24 50.40 ± 7.24 71.41 ± 5.40 69.48 ± 7.11 64.20 ± 2.10 70.13 ± 1.92 86.07 ± 1.04
ARI 11.68 ± 0.25 28.07 ± 0.04 23.08 ± 3.75 41.37 ± 4.07 42.76 ± 10.05 45.50 ± 3.20 76.76 ± 7.24 75.90 ± 0.97 80.67 ± 0.78 84. 49 ± 3.44

CITE-CMBC
ACC 28.15 ± 0.07 47.19 ± 0.02 41.88 ± 5.35 67.59 ± 4.40 69.04 ± 3.46 60.22 ± 5.87 68.79 ± 0.87 66.71 ± 1.65 71.75 ± 1.8 74.70 ± 0.51
NMI 28.28 ± 0.19 60.14 ± 0.04 46.87 ± 9.23 73.16 ± 1.29 72.83 ± 1.31 48.98 ± 7.06 64.21 ± 3.25 61.70 ± 3.21 68.57 ± 1.7 68.71 ± 0.75
ARI 5.09 ± 0.04 32.84 ± 4.51 23.55 ± 10.25 51.21 ± 3.40 52.42 ± 2.60 66.06 ± 3.37 52.51 ± 2.15 66.25 ± 1.75 61.06 ± 1.4 67.56 ± 1.17

Human liver cells
ACC 35.04 ± 0.14 47.96 ± 0.06 46.32 ± 6.76 61.32 ± 8.61 72.90 ± 4.02 74.55 ± 5.30 70.90 ± 2.23 72.33 ± 3.4 75.34 ± 1.7 88.33 ± 1.74
NMI 32.43 ± 0.33 67.17 ± 0.00 52.24 ± 3.44 78.09 ± 2.50 78.81 ± 1.50 77.42 ± 12.00 71.63 ± 2.75 73.56 ± 2.7 79.34 ± 2.6 88.82 ± 1.24
ARI 10.24 ± 1.42 35.27 ± 0.00 31.04 ± 10.90 58.28 ± 10.61 70.47 ± 1.93 79.91 ± 2.93 75.34 ± 3.56 76.01 ± 2.6 81.26 ± 2.7 91.90 ± 0.48

Human kidney cells
ACC 41.38 ± 0.24 44.18 ± 0.22 38.91 ± 2.71 59.81 ± 4.69 67.89 ± 6.22 73.71 ± 3.90 75.32 ± 2.81 77.73 ± 1.41 79.55 ± 0.29 86.08 ± 0.89
NMI 24.31 ± 0.13 37.35 ± 0.02 28.78 ± 5.10 63.67 ± 3.70 66.53 ± 4.91 61.39 ± 4.70 69.41 ± 2.12 73.79 ± 1.07 67.98 ± 2.62 80.86 ± 0.96
ARI 24.56 ± 0.29 30.78 ± 0.02 19.97 ± 5.06 47.53 ± 5.44 50.37 ± 7.22 68.39 ± 2.41 67.74 ± 4.52 72.29 ± 1.59 64.91 ± 0.88 74.23 ± 2.07

Human pancreas cells
ACC 51.17 ± 0.66 76.29 ± 0.02 72.22 ± 5.51 74.70 ± 2.69 86.65 ± 5.76 89.63 ± 5.83 79.42 ± 1.34 79.32 ± 3.96 92.65 ± 1.9 94.95 ± 0.15
NMI 57.71 ± 0.67 82.31 ± 0.13 76.29 ± 2.73 79.32 ± 0.32 83.81 ± 2.94 86.70 ± 7.79 75.89 ± 0.61 78.76 ± 5.60 85.81 ± 1.0 86.19 ± 0.34
ARI 37.00 ± 0.45 64.24 ± 0.01 61.76 ± 5.55 64.59 ± 2.49 79.83 ± 10.79 84.93 ± 3.13 75.42 ± 1.22 78.81 ± 3.17 91.37 ± 1.21 91.59 ± 0.35

Table 1: Clustering performance across seven datasets (mean ± standard deviation), with best results in bold and runner-up results in underline.

(a) scDeepCluster (b) scNAME (c) scGNN (d) scCDCG (e) scSiameseClu

Figure 3: Visualization of scSiameseClu and four typical baselines on human liver cells in 2D t-SNE projection. Each point represents a cell,
while each color represents a predicted cell type.

(a) Similarity distribution
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(b) Similarity heatmap

Figure 4: Distribution plot and heat map of cell similarities in latent
space learned by scSiameseClu on the Human liver cells dataset.

SOTA clustering methods. Among them, pcaReduce [Žu-
rauskienė and Yau, 2016] and SUSSC [Wang et al., 2021a]
represent early traditional clustering techniques. Additionally,
we consider four deep neural network-based clustering meth-
ods, DEC [Xie et al., 2016], scDeepCluster [Tian et al., 2019],
scDCC [Tian et al., 2021], and scNAME [Wan et al., 2022],
which train an autoencoder to obtain representations followed
by clustering. scDSC [Gan et al., 2022], scGNN [Wang et
al., 2021b], and scCDCG [Xu et al., 2024] are representative
GNN-based clustering methods that incorporate both node
attributes and structural information for latent representation.
Implementation Details. We implemented scSiameseClu in
Python 3.7 using PyTorch, with DCRN [Liu et al., 2022]
as the backbone. Each experiment was repeated 10 times,

reporting the mean and variance. Detailed parameter settings
are provided in the supplementary material.
Evaluation Metrics. To illustrate the effectiveness of our
approach, we evaluate clustering performance through three
widely recognized metrics: Accuracy (ACC), Normalized
Mutual Information (NMI) [Strehl and Ghosh, 2002], and
Adjusted Rand Index (ARI) [Vinh et al., 2009].

4.2 Overall Performance
Quantitative Analysis. Tab. 1 compares the clustering perfor-
mance of our method with nine competitive baselines across
seven benchmark datasets. Based on the results, we can ob-
serve that: 1) scSiameseClu significantly outperforms tradi-
tional single-cell clustering methods, demonstrating its supe-
rior ability to handle scRNA-seq data. 2) Compared to deep
learning-based methods, which rely solely on node informa-
tion for clustering, scSiameseClu achieves consistently better
results, highlighting its ability to leverage both gene and cell
information effectively. 3) While GNN-based methods incor-
porate cell graph information, they suffer from redundant em-
beddings and representation collapse. In contrast, scSiamese-
Clu learns more discriminative representations of scRNA-seq
data, thereby enhancing clustering performance. Overall, scSi-
ameseClu outperforms the competing methods on three met-
rics across all datasets. On average, scSiameseClu achieves a
significant average improvement of 8.41% in ACC, 5.89% in
NMI, 4.34% in ARI than the second-best method.
Qualitative Analysis. To evaluate clustering performance,
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(a) scDeepCluster
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(b) scNAME
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(c) scGNN
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(d) scCDCG
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(e) scSiameseClu

Figure 5: Cell type annotation: overlap of top 50 DEGs in clusters versus gold standard cell types (similarity = overlapping DEGs/50).

⓪ pancreatic A cell
① pancreatic acinar cell
② pancreatic D cell

③ pancreatic stellate cell
④ pancreatic PP cell

⑤ type B pancreatic cell
⑥ Pancreatic ductal cell

⑦ endothelial cell
⑧ pancreatic epsilon cell

⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧
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Figure 6: Top 3 DEGs per cell type annotated by scSiameseClu and gold standard.

we used t-SNE to project the learned embeddings from dif-
ferent methods into a two-dimensional space on the Human
liver cells dataset. As Fig. 3 shows, scSiameseClu produces
well-separated clusters with clear boundaries, effectively dis-
tinguishing different cell types regardless of cluster size. In
contrast, methods like scDeepCluster show dispersed clus-
ters, failing to group similar cell types. We further analyze the
embeddings from scSiameseClu with the cosine similarity ma-
trices. As shown in Fig. 4, the bimodal distribution of cosine
similarities (approaching a multivariate Gaussian) and the dis-
tinct heatmap patterns preserve meaningful cluster structures
in the latent space. scSiameseClu mitigates representation col-
lapse and effectively captures latent cluster structures, unlike
other deep learning and GNN-based methods (Fig1).

4.3 Biological Analysis
Cell Type Annotation. To demonstrate that our clustering
method enables more effective downstream analysis, we first
identified differentially expressed genes (DEGs) and marker
genes for each cluster using the "FindAllMarkers" function in
Seurat [Butler et al., 2018]. Then, we compared the top 50
marker genes identified by scSiameseClu and other methods to
the gold standard on the human pancreas cells dataset, and our
method accurately annotated clusters with cell types, achieving
over 90% similarity in marker genes for most clusters. As
Fig. 5 shows, cluster 1 was identified as endothelial cell type,
and cluster 2 as type B pancreatic cells, etc. Additionally,
Fig. 6 shows scSiameseClu identifies marker genes for each
cluster, e.g., cluster 6 is characterized as pancreatic A cell
type with marker genes TTR, GCG, and IRX2. Our method

Metric pcaReduce scDCC scDSC scCDCG scGNN scSiameseClu

Accuracy 83.17 86.34 91.71 98.05 99.02 99.51
Precision 57.40 66.69 89.30 92.70 88.50 99.69
Recall 49.34 67.65 79.41 93.45 98.98 99.09
F1 48.17 65.82 78.84 93.06 99.23 99.36

Table 2: Classification performance comparison.

effectively matched clusters with known cell types, providing
reliable support for mechanistic studies.
Cell Type Classification. To evaluate the discriminative
power and generalization ability of the learned representa-
tions, we conducted classification experiments. Tab. 2 shows
that scSiameseClu outperforms the baseline models on hu-
man pancreatic cells dataset across four metrics, including
accuracy and F1-score. This demonstrates scSiameseClu’s
superior performance in identifying cellular heterogeneity and
the robustness and effectiveness in cell type classification.

5 Conclusion
scSiameseClu integrates dual augmentation module, siamese
fusion module, and optimal transport clustering to enhance
representation learning while preserving biological relevance.
Experimental results on seven datasets demonstrate that scSi-
ameseClu not only outperforms nine baselines on scRNA-seq
clustering but also alleviates the representation collapse issue
common in GNN-based approaches. In addition, we conduct
biological analyses, including cell type annotation and clas-
sification, underscoring the scSiameseClu’s potential as a
powerful tool for advancing single-cell transcriptomics.
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