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Abstract

As machine learning models become widely de-
ployed in data-driven applications, ensuring com-
pliance with the right to be forgotten as required
by many privacy regulations is vital for safeguard-
ing user privacy. To forget the given data, exist-
ing re-labeling based unlearning methods employ a
single-step adjustment scheme that revises the deci-
sion boundaries in one re-labeling phase. However,
such single-step approaches lead to coarse-grained
changes in decision boundaries among the remain-
ing classes and impose adverse effects on the model
utility. To address these limitations, we propose
Self-Unlearning with Layered Iteration (SULI), a
novel unlearning approach that introduces a layered
iteration strategy to re-label the forgetting data iter-
atively and refine the decision boundaries progres-
sively. We further develop a Selective Probabil-
ity Adjustment (SPA) technique, which uses a soft-
label mechanism to promote smoother decision-
boundary transitions. Comprehensive experiments
on three benchmark datasets demonstrate that SULI
achieves superior performance in effectiveness, ef-
ficiency, and privacy compared to the state-of-the-
art baselines in both class-wise and instance-wise
unlearning scenarios. The source code is released
at https://github.com/Hongyi-Lyu-MQ/SULIL

1 Introduction

The rapid growth of machine learning (ML) applications has
revolutionized operational efficiency and user experiences
and introduced critical challenges in data privacy and regu-
latory compliance. The General Data Protection Regulation
(GDPR) [Voigt and Von dem Bussche, 2017] emphasizes the
Right to be Forgotten, i.e., organizations must remove per-
sonal data upon request both precisely and efficiently. This
requirement places considerable challenges on data handlers
in ensuring effective compliance with privacy protection.
Machine unlearning has emerged as a vital attempt to meet
these regulatory demands while mitigating privacy threats
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such as data extraction attacks [Carlini et al., 2021] and
membership inference attacks [Shokri ef al., 2017; Hu et al.,
2022]. Tt is still a challenge to efficiently remove the contribu-
tion of specific training data from an ML model while main-
taining satisfactory model utility. Traditional approaches typ-
ically retrain models from scratch using the retaining data
only [Nguyen er al., 2022], which achieves perfect forget-
ting, but such methods are often computationally expensive
and impractical in most real-world scenarios [Foster et al.,
2024]. To mitigate the unacceptable computational cost, a
variety of unlearning methods without retraining have also
been proposed to approximate the forgetting effect of model
retraining [Kong and Alfeld, 2022; Golatkar er al., 2019;
Graves et al., 2020; Chundawat et al., 2022b; Tarun et
al., 2021; Chundawat et al., 2022a; Tarun et al., 2022;
Foster et al., 2024; Baumhauer er al., 20221, but they often
require full access to training data and still incur high compu-
tational overheads [Kurmaniji er al., 2023].

To address the limitations stated above, recently proposed
unlearning methods [Chen e al., 2023; Cha et al., 2024] fine-
tune the target model with re-labeled forgetting data. The
forgetting data are re-labeled to their neighboring classes,
and this re-labeling technique can fulfill efficient unlearning
promisingly by accessing the forgetting data only. However,
existing re-labeling based methods still suffer from the fol-
lowing limitations. While not explicitly specified in their de-
sign, they primarily follow a single-step re-labeling scheme
where all forgetting data are re-labeled to their neighboring
classes only once based on the original model. This scheme
fails to consider the individual relationship between a forget-
ting data sample and the model decision boundaries. As a
result, this coarse-grained re-labeling scheme can assign a
forgetting sample to a class that is far away from the one it
should belong to if retraining is adopted for unlearning. Be-
sides, these methods only re-label the forgetting data with
hard labels. This forces the corresponding forgetting data to
have a significant correlation only with the re-labeled class
but low correlations with the entire class distribution in fea-
ture space. Then, only one of the classification regions will
significantly affect the decision boundary around the forget-
ting data. Hence, these methods will result in abrupt recon-
struction of the decision boundaries during fine-tuning.

In this paper, we propose an approach named Self-
Unlearning with Layered Iteration (SULI) to address the
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aforementioned limitations and improve unlearning efficacy
further. The basic idea is to achieve an iterative fine-grained
re-labeling process for the forgetting data, where the model
is continuously fine-tuned and employed for label prediction
in turn during unlearning. Specifically, the approach consists
of two parts: the layered iteration strategy and the selective
probability adjustment (SPA). The layered iteration strategy
progressively refines the decision boundaries from the high
entropy region to the low entropy region. This adaptive ap-
proach ensures smooth boundary transitions while preserving
model stability and utility. SPA re-labels the forgetting data
with the soft-labels by calculating the probability distribution
of the corresponding forgetting sample. SULI can substan-
tially maintain model utility, significantly reduce the compu-
tational cost, and enhance data privacy preservation.
Contributions.We summarize our contributions as follows:

* We propose a novel unlearning framework named Self-
Unlearning with Layered Iteration (SULI). SULI mod-
ifies the single-step strategy with the layered iteration
strategy, refining decision boundaries by prioritizing high-
uncertainty samples in the early stages of iteration. The it-
eration framework achieves smooth and accurate boundary
adjustments, improving unlearning effectiveness.

* SULI employs the Selective Probability Adjustment (SPA)
strategy to tackle the problem of re-labeling forgetting data
with hard labels. SPA calculates a new soft label for each
sample to reduce the influence of data instances.

* We evaluate our approaches on three benchmark datasets
against the state-of-the-art baselines, using four metrics to
assess unlearning effectiveness, utility, privacy, and effi-
ciency, with a detailed ablation study. Experimental results
show that SULI achieves superior performance.

2 Related Work

Machine Unlearning. Machine unlearning is increasingly
essential for ensuring privacy in machine learning models,
particularly when data must be deleted due to regulatory re-
quirements and individual privacy concerns [Nguyen et al.,
2022]. The existing machine unlearning methods can be di-
vided into two categories:

e Exact Unlearning, introduced by [Cao and Yang, 2015;
Bourtoule et al., 2021], ensures the model behaves like the
deleted data were never part of training. This is typically
achieved by retraining the model from scratch without the
unlearned data, producing a parameter state unaffected by the
forgetting data. Although effective, this method is computa-
tionally expensive and impractical for large-scale models or
frequent deletion requests [Kurmanyji et al., 2023].

o Approximate Unlearning aims to address these ineffi-
ciencies in exact unlearning by adjusting model parame-
ters directly to emulate retraining effects [Izzo et al., 2021;
Goldblum et al., 2020; Golatkar et al., 2019]. [Ginart et al.,
2019] proposed a probabilistic framework based on differen-
tial privacy principles, requiring output distributions of un-
learned models to resemble retrained models closely. How-
ever, [Thudi er al., 2022] argued that achieving specific pa-
rameter configurations does not always guarantee effective

Method Forgetting data W/O retaining data Class Instance

Fisher Unlearning [Golatkar et al., 2019] X
Batches Unlearning [Graves e al., 2020]

Fast Yet Unlearning [Tarun er al., 20211
Zero-shot Unlearning [Chundawat ef al., 2022b]
SSD [Foster et al., 2024]

SCRUB [Kurmanji et al., 20231
L-CODEC [Mehta ef al., 20221
Contrastive Label [Kim and Woo, 2022]
Bad Teacher [Chundawat e7 al., 2022a]
Recoverable Forgetting [Ye et al., 2022]
Random Label [Graves et al., 2020]
UGradSL [Di et al., 2024]

NegGrad [Golatkar et al., 2019]
Boundary Unlearning [Chen ez al., 2023]
Adversarial Unlearning [Cha er al., 2024]

Ours

AN N N SRR S N
NSNS %% %% % % X X X XXX
AN N N S NN

AN AN N S NN N NN

Table 1: Comparison of data requirements and unlearning scope.
v': yes; X: no. ‘Forgetting data’: requires access to the forgetting
data. ‘W/O retaining data’: operates without any retaining data.
‘Class’/‘Instance’: supports class-wise or instance-wise unlearning.

unlearning, as it may fail to remove all traces of the forgetting
data. To address this limitation, [Goel et al., 2022] advocated
focusing on functional equivalence, which ensures that the
unlearned model behaves similarly to the retrained model.
Machine Unlearning in Deep Learning. Unlearning in deep
neural networks presents significant challenges due to their
high dimensionality and complex architectures [Nguyen er
al., 2022]. Existing methods primarily focus on approxi-
mate unlearning and vary in reliance on retaining or forget-
ting data. Table 1 compares applicability to class and instance
unlearning scenarios and whether using the forgetting or re-
taining data. Most existing approaches require access to the
full dataset, whereas ours operates solely on forgetting data,
supporting both class-wise and instance-wise unlearning.

Most unlearning methods still need access to the origi-
nal training dataset, using the retaining data to help remove
the influence of forgetting data while preserving model util-
ity. Two-stage approaches, such as those by [Kim and Woo,
2022] and [Wu et al., 2022], first unlearn forgetting data
and then recover utility using retaining data, achieving ro-
bust results but incurring significant computational and stor-
age costs. Methods like Amnesiac Unlearning [Graves et al.,
2020] and UGradSL [Di et al., 2024] employ random label
assignments or gradient-based techniques to erase forgetting
data, while teacher-student frameworks, including SCRUB
[Kurmanji et al., 2023] and Bad Teacher [Chundawat et al.,
2022al, aim to unlearn data without sacrificing performance.
Noise-based approaches, such as error-maximizing noise ma-
trices [Tarun et al., 2021] and Batch Unlearning [Graves
et al., 2020], remove targeted gradient updates, and Zero-
shot Unlearning [Chundawat er al., 2022b] replaces forget-
ting data with noise before updating the model. However,
reliance on full dataset access imposes a large computational
overhead. Other methods only rely on retaining or forgetting
data, aiming to reduce computational costs while maintain-
ing model utility. Fisher Unlearning [Golatkar et al., 2019]
uses noise updates guided by the Fisher Information Matrix
(FIM), which, despite reducing dataset requirements, incurs
high computational costs and risks significantly degrading
model utility. Similarly, Negative Gradient [Golatkar et al.,
2019] applies gradient ascent to erase forgetting data, leading
to substantial performance loss.

Recent advancements, including Boundary Unlearning
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Figure 1: The boundary evolution of different unlearning methods
is shown. (a) represents the original model with its decision bound-
aries. (b) represents the boundary of retraining from scratch. (c)
shows re-labeling without iteration processes, highlighting less op-
timal boundary shifts. Figures (d1)-(d3) show the gradual boundary
adjustments across hierarchical iterations. The red highlighted sam-
ple is eventually re-labeled to the same class, and the final result in
(d3) closely matches the ground truth shown in (b).

[Chen et al., 2023] and ADV+IMP [Cha et al., 2024], aim
to achieve unlearning by recalibrating decision boundaries
based exclusively on forgetting data, thereby eliminating
the reliance on retaining data. These methods implement a
single-step re-labeling strategy, where forgetting data are re-
assigned to their nearest class boundary based on their posi-
tion in the feature space. However, this static approach ex-
hibits significant limitations, as it narrowly focuses on the
nearest class and fails to account for the global structure of all
classes within the model. Such a constrained perspective of-
ten results in the misclassification of forgetting data into irrel-
evant classes, leading to disruptions in the model’s class rep-
resentation and a reduction in overall performance. This issue
becomes particularly pronounced in scenarios with complex
decision boundaries or diverse class distributions, where class
relationships are intricate and dynamic.

3 Method

3.1 Preliminaries

In our approach, the original training dataset Dynn =
{(z4,y:)}_; consists of samples x; € R, representing d-
dimensional feature vectors, and their corresponding labels
yi € {1,2,..., K}, indicating their class among K unique
categories. This dataset encompasses all categories founda-
tional to our model’s operation. We designate Dy as the
subset of data intended for unlearning and D, as the retain-
ing set for maintaining accurate classification. These subsets
are mutually exclusive and collectively exhaustive, satisfying
D, U Dy = Dyin and D, N Dy = (). Each sample-label pair
from Dyin is denoted as (z,y) € Dyain, With (x5, yr) € Dy
and (z,,y,) € D, representing instances within the forget-
ting and retaining datasets, respectively.

The unlearning objective is to align the output distribution
of the unlearned model f,,, on the forgetting dataset Dy with

Algorithm 1 Self-Unlearning with Layered Iteration (SULI)

1: Input: Original model f,,,, forgetting dataset Dy, num-
ber of layers ¢, small positive value e

2: Output: Unlearned model f,,

: Compute entropy H (xy) forall 2y € Dy

: Sort Dy in decreasing order of H(z¢) and partition into
t subsets {Dys1,Dya,..., Dy}

: Set wy ¢— parameters of original model

: for each layeri = 1tot¢ do

SPA Adjustment:

for each x € Dy; do
Compute P(y|z;w;—1)

10: Adjust P’(y|z ) using SPA with e

11:  end for

12:  Model Update:

13:  Update w; by minimizing:

w; = argmin > Dy (P'(xy) || Play;wioy))
z€Dy;

& W

2

14: end for
15: return f,,

that of the retrained model f,,,, specifically aiming for:

P(fuw,(x5)) = P(fu,(xy))-

Here, f,,(x) denotes the model’s output probabilities for in-
put x under parameters w. The retrained model f,,, is trained
exclusively on the retaining dataset D,., thereby making pre-
dictions on D without prior exposure and relying on gener-
alized knowledge from D,..

3.2 Challenges of Single-Step Re-labeling

This paper focuses on unlearning in image classification
tasks. Current re-labeling based unlearning methods face sig-
nificant challenges in effectively controlling the impact of for-
getting Dy. Processing the entire forgetting dataset in a sin-
gle step often leads to abrupt and inconsistent parameter up-
dates, causing sharp shifts in decision boundaries and com-
promising model utility. The single-step approaches lack the
granularity to refine decision boundaries adaptively, leading
to coarse updates and misclassifications, particularly for sam-
ples close to the class center.

Figure 1 illustrates this issue. Subfigure (a) shows the
model’s decision boundaries before unlearning, while (b) de-
picts the ideal boundaries achieved through retraining on the
retaining dataset D,.. In contrast, the single-step approach
shown in (c) abruptly adjusts boundaries by re-labeling all
forgetting data, resulting in sharp shifts and deviations from
the ideal boundaries. Samples near decision boundaries
(highlighted in red) are prone to misclassification, weaken-
ing the model’s ability to generalize and maintain stability.

3.3 Self-Unlearning with Layered Iteration (SULI)

The Self-Unlearning with Layered Iteration (SULI) frame-
work addresses the limitations of single-step re-labeling by
introducing a hierarchical iterative process, as illustrated in
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Figure 2: A hierarchical unlearning process in SULI proceeds as fol-
lows. Initially, samples in D exhibit strong affinities for their orig-
inal classes (high confidence). Through iterative updates, SPA sys-
tematically reduces the model’s dependence on Dy by redistribut-
ing probabilities to alternative classes. This gradual realignment
prompts the model to treat Dy as if it had never been trained on
it, relying solely on D,. for classification cues. As a result, decision
boundaries shift smoothly, yielding predictions that mirror a fully
retrained model while preserving performance on retaining data.

Figure 2. The unlearning process combines three key com-
ponents: Layered Iteration Framework, Entropy-Based Pri-
oritization, and Selective Probability Adjustment (SPA). This
synergy ensures that the decision boundaries of the model are
progressively refined, aligning closely with the ideal retrained
state while maintaining stability and generalization. Com-
pared to single-step re-labeling, SULI introduces a structured
and layered process to ensure that unlearning progress is in a
stable and interpretable manner, avoiding significant disrup-
tions to the overall decision structure.

Layered Iteration Framework. SULI partitions the forget-
ting dataset Dy into L independent subsets based on entropy,
ensuring that high-uncertainty samples are addressed first.
Each subset Dy, is processed iteratively, with the model pa-
rameters updated at each step ¢. The iterative update is guided
by the following optimization objective:

wep1 = argmin Ly (w),
w

where L (w) represents the loss function at the ¢-th iteration.
This general form highlights the layered structure of SULI
while deferring the specific details of £;(w) to subsequent
sections. As shown in Figure 2, the hierarchical structure en-
sures that the model’s parameters are updated iteratively in a
structured manner. The retaining data D,. anchors the deci-
sion boundaries, while the forgetting data D undergoes se-
lective adjustments. This layered approach mitigates abrupt
changes and performs a stable transition to boundaries.
Entropy-based Prioritization. To determine the unlearning
order of samples in Dy, we compute entropy for each Dy:

K

H(zp) ==Y P(yi | zpiwo) log(Ply; | =5;wn)),
=1

where P(y; | zy;wp) is the model’s predicted probability
for class y;. Higher-entropy samples, typically near decision

boundaries, are addressed first. Let {Dy1, Dya, ..., Dy} de-
note the resulting subsets in descending order of entropy. This
prioritization directs the model to handle boundary-adjacent
samples early, thereby minimizing their influence on subse-
quent iterations and enhancing the stability and efficiency of
unlearning.

Selective Probability Adjustment (SPA). The SPA mecha-
nism modifies the output probabilities of the model for Dy to
simulate the effect of unlearning. For each sample xy € Dy,
the adjusted probability distribution P’(y | 2 ) is defined as:

€, ify =yy,

P) =4 Plyle; wo)

S

where S = Zy/ey\{yf} P(y'|z;wo) ensures normalization,

and e represents the unlearning degree. A detailed discussion
on the choice and effect of ¢ is provided in Appendix A.
The iterative refinement process is formalized as:

Wy = argmﬂi}n Z DL (P'(y | zpe) || P(y | 2pe5w01-1)).
Tyt €Dyy

X(176)7 1fy7£yf7

This ensures that the model’s parameters w,; are updated
to minimize the divergence between the adjusted probabil-
ities P'(y | ) and the current model predictions P(y |
x¢; we—1). The process is repeated for each subset Dy, pro-
gressively refining the model’s decision boundaries.
Self-Unlearning (SU). As a baseline, we introduce a straight-
forward, non-iterative approach, Self-Unlearning (SU), which
facilitates the unlearning process by treating the forgetting
dataset Dy as unseen. This is achieved by modifying each
sample’s output distribution in a single pass using the SPA al-
gorithm, effectively transforming D; into data that the model
perceives similarly to unseen data. In SU, given an instance
zy € Dy and its adjusted probability distribution P’'(y | xy),
derived using the SPA algorithm, the SU approach updates
the model through a single phrase of fine-tuning. The updated
w’ are obtained by minimizing the distillation loss:

w' =argmin Y D (P'(y | xp) | Py | 255w0)),
€Dy

where Dy is the KL-divergence, P'(y | zy) is the SPA-
adjusted probability distribution, and P(y | xf;wo) is the
model’s output distribution under wy.

4 Experiments

Datasets. We follow the previous works [Chen er al.,
2023; Cha et al., 2024] and use three datasets: CIFAR-
10 [Krizhevsky, 2009], VGGFace2 [Cao et al., 2018], and
UTKFace [Zhang er al., 2017]. These datasets are selected
to evaluate different unlearning methods, including object
recognition, face recognition, and age classification. Detailed
dataset information is provided in Appendix B.

Models. Our experiments employ different models suit-
able for each dataset and train all models from scratch.
For CIFAR-10 [Krizhevsky, 2009], we use a ResNet-18
model [He ef al., 2016]. For the UTKFace dataset [Zhang
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Figure 3: Radar charts comparing the effectiveness of various unlearning methods across five objectives on CIFAR-10 datasets: maintaining
model utility, effectiveness of data unlearning, ability to handle new data, thoroughness in removing data, and efficiency of the unlearning
process. SULI maintains high model utility, ensuring the model’s performance on retaining and unseen data remains robust after unlearning.

Dataset Metric | Original Retrain | NegGrad Random Label Initial Label =~ Boundary ADV+IMP | SU (Ours)  SULI (Ours)
D, (1) 100 100+0.0 29.62+2.65 78.77+2.47 14.54+1.34 89.94+0.17 47.35£2.94 | 94.54+0.29  96.03+0.12

CIFAR-10 ADf () 100 0+0.0 0.0£0.0 0.0+0.0 9.69+0.03 12.544+0.0 0.0£0.0 0.0+£0.0 0.0+£0.0
ADy,. (1) 95 92.26+0.11 | 39.43+2.27 74.1442.44 14.35+1.16  85.12+0.14 47.34+2.77 | 88.89+0.27 89.81+0.17

Afo(i) 94.98 0.0+0.0 0.0£0.0 0.02+0.04 5.20£2.93  14.064+0.34  0.02+0.04 0.0+0.0 0.0+£0.0
D, (1) 99.97 99.964+0.04 | 86.79+3.11 84.33+£3.31 72.454+6.12 94.08+0.98 78.5242.52 | 96.86+0.24 98.42+0.11

UTKFace ADf @) 99.95 0.0+0.0 0.0+0.0 0.0+£0.0 21.844+3.09  8.13+0.12 0.0£0.0 0.0+£0.0 0.0+£0.0
AD:. (1) 83.04 83.21£0.09 | 75.91£1.71 76.65+4.69 66.37+£2.53 75.85+1.18 77.89+3.24 | 68.78+0.19 79.81+0.13

Ath(i) 82.16 0.0+0.0 0.0£0.0 0.16£0.12 17.56+3.58  9.61+3.97 0.0£0.0 0.0+£0.0 0.0+£0.0
D, (1) 100 100£0.0 84.01£0.19 83.10+3.78 90.46+0.37 93.924+0.08 56.62+3.12 | 95.65+0.25 97.51+0.21

VooFace2 ADf @) 100 040.0 0.0+0.0 0.04+0.0 17.25+£0.13  6.96+0.06 0.0+0.0 0.04+0.0 0.0+0.0
&g ADy (1) 80.95 81.12+0.02 | 60.854+0.21 63.6043.72 64.62+0.54 71.964+0.14 41.11£2.56 | 72.49+0.16  72.62+0.14

ADy¢ (1) 81.48 0.040.0 0.0+0.0 0.04+0.0 9.52+0.34 3.61+0.19 0.0+0.0 0.04+0.0 0.01+0.0

Table 2: Comparison of accuracy performance in class-wise unlearning.

et al., 2017], focusing on age prediction and demographic
analysis, we adopt the All-CNN model [Springenberg ef al.,
2014]. For the VGGFace?2 dataset [Cao et al., 2018], involv-
ing complex face recognition challenges, we utilize a ResNet-
50 model [He et al., 2016]. Detailed configurations and envi-
ronment are provided in Appendix C.

Baselines. In this study, we select state-of-the-art machine
unlearning methods as our baseline: (a) The Original model
is trained on Dy,.q;n. (b) The Retrained model is retrained
on D,. from scratch. (¢) ‘Negative Gradient’ (NegGrad)[Go-
latkar et al., 2019] modifies the original model by fine-tuning
on Dy through gradient ascent . (d) ‘Random Label’ (RL)
[Graves et al., 2020] assigns arbitrary new labels to Dy and
fine-tunes the network using these random labels. (e) ‘Initial
Label’ (IL) [Chundawat et al., 2022a] involves re-labeling D
with new labels generated by an initial model and fine-tuning
model with new labels. (f) ‘Boundary Shrink’ (Boundary)
creates adversarial examples from Dy and assigns adversar-
ial labels to induce boundary contraction towards disparate
classes [Chen er al., 2023]. (g) ‘Adversarial Unlearning’
(ADV+IMP) [Cha et al., 2024] uses adversarial examples to
re-label and weighted importance to update parameters.
Metrics. We adopt the following metrics to evaluate:

* Accuracy on the unlearning and retaining datasets (Ap,
and Ap,): This assesses the method’s capability to unlearn

without compromising the overall model performance.

* Accuracy on the test datasets (Ap,): This metric analyzes
the model’s generalization performance, further subdivided
into unlearning test set (Ath ) and retaining test set (Ap, ).

Membership Inference Attack (MIA): MIA assesses un-
learning effectiveness by measuring how much information
about the forgetting data remains in the model. We perform
MIA techniques from [Kurmanji et al., 2023]. Distance
metrics like Activation Distance are used to measure un-
learning success, but they fail to reflect actual outcomes due
to inherent neural network variability [Hayes et al., 2024].

Runtime: This metric evaluates the method’s temporal effi-
ciency, providing a comparative computational cost analy-
sis across various unlearning methods.

Implement Settings and Unlearning Tasks. Our experi-
mental environment includes an NVIDIA RTX 4070 GPU,
Python 3.11, and PyTorch 2.1.1. We utilize the ADAM opti-
mizer [Kingma and Ba, 2014] with carefully selected learn-
ing rates optimized for both class-wise and instance-wise un-
learning tasks. To ensure consistent evaluation, the same set
of forgetting data (Dy) is applied across all methods. We per-
form a grid search (the results are shown in appendix D) to
optimize the hyperparameter ¢ within the range [1, 25], se-
lecting ¢ = 2 for all experiments as it balances model util-
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CIFAR-10 UTKFace VggFace2
n=64 n=128 n=256 n=512 | n=64 n=128 n=256 n=512 | n=64 n=128 n=256 n=512
Original 100 100 100 100 99.82 99.82 99.86 99.93 99.07 99.06 99.06 99.05
Retrain 100 100 100 100 99.82 99.82 99.79 96.43 100 99.81 99.56 99.61
Negative Gradient | 99.86 99.18 96.39 95.39 92.23 86.47 75.66 67.71 95.23 83.66 84.22 82.48
Dr () Random Label 97.21 95.10 90.33 77.10 89.49 84.47 76.64 67.37 94.02 87.62 79.97 78.57
" Initial Label 99.23 81.96 98.95 96.01 99.59 88.13 79.82 73.17 93.13 86.72 84.19 81.44
Boundary Shrink 99.56 99.87 99.49 94.86 99.28 97.39 96.48 65.67 96.47 91.20 88.71 83.70
Adv+Imp 92.05 81.96 82.82 78.76 96.91 87.48 82.86 77.60 88.43 83.73 81.39 78.84
SU (Ours) 99.97 99.76 99.15 96.77 99.24 98.21 95.31 93.79 97.10 93.13 89.50 84.26
SULI (Ours) 99.99 9991 99.68 97.27 | 99.29  98.32 97.57 96.13 | 98.12  96.93 93.92 91.49
Original 100.0 100 100 100 100.0 100.0 99.61 99.64 100 100 99.21 99.21
Retrain 85.06 85.6 87.11 85.74 81.53 81.46 81.38 82.44 81.25 83.94 84.23 86.73
Negative Gradient | 82.81 85.16 85.55 85.55 8129  80.47 80.13 8136 | 83.74  83.82 83.79 83.71
D Random Label 82.19 81.88 83.75 80.35 80.13 80.72 80.19 80.71 83.70 83.71 83.72 83.68
f Initial Label 85.94 85.47 83.34 82.38 81.25 81.11 79.55 80.89 83.75 83.78 83.80 83.69
Boundary Shrink 85.94 85.16 85.77 84.67 80.56 81.04 81.33 81.34 83.76 83.77 83.73 83.68
Adv+Imp 85.94 85.47 82.62 79.01 81.81 80.46 81.03 80.08 83.75 83.72 83.76 83.68
SU (Ours) 82.81 84.38 85.55 82.97 81.12 80.63 80.46 81.03 83.71 83.69 83.75 83.72
SULI (Ours) 8594  85.94 85.16 8430 | 81.56  81.71 80.5 80.13 83.72  83.73 83.70 83.74
Original 86.34 86.34 86.34 86.34 82.96 82.96 82.96 82.96 84.52 84.52 84.52 84.52
Retrain 85.2 86.15 85.67 86.09 81.41 82.51 82.86 82.31 83.26 83.52 84.56 85.27
Negative Gradient 85.1 82.64 79.82 76.32 77.49 72.83 63.61 61.63 77.63 72.13 74.56 73.43
Diesr (1) Random Label 78.87 77.82 73.25 68.65 73.47 64.72 55.39 51.39 77.07 76.41 71.86 70.24
test Initial Label 84.42 69.54 81.15 76.96 81.73 75.54 62.79 58.12 75.48 74.18 69.27 64.35
Boundary Shrink 83.98 83.89 83.07 78.78 81.47 79.43 78.89 70.45 76.33 72.29 69.29 64.03
Adv+Imp 75.19 69.54 67.08 66.87 79.69 74.03 71.44 69.71 75.72 73.21 69.53 65.30
SU (Ours) 85.10 83.76 81.84 79.30 82.53 80.72 79.04 74.36 79.27 74.41 76.29 71.29
SULI (Ours) 85.37 84.33 83.78 80.44 82.93 81.14 79.68 78.65 82.19 79.97 78.46 77.56
Table 3: Evaluation results instance-wise unlearning of varying instance counts on CIFAR-10, UTKFace, and VggFace?2.
CIFAR-10 UTKFace VGGFace2 objectives inherently involve trade-offs; for instance, maxi-
Method Class Instance Class Instance Class Instance .« . . . . .
Original 0.57+£0.04 0.61£002 063002 062£003 0.63£0.02 0.64%0.02 mizing unlearning quality might reduce efficiency or degrade
Retrain 0.51£001 0.50£001 051001 0.50+0.01 050+0.02 0.51+0.01 performance on retaining data (D,.) [Kurmanji et al., 2023].
NegGrad 0.62+£0.05 0.50+0.03 0.63+0.04 056002 037+£0.02 043+0.03 . ! ; .
RLabel 0544001 052+003 0554003 0564004 057+£0.07 0.5+ 0.04 SULI is designed to navigate these trade-offs effectively, en-
ILabel 0.49+0.01 047+0.03 057007 046+0.09 0.83£0.05 0.63+0.06 . g . ) .
Boundary 0.56+0.01 053+0.03 0.62+007 0.57+£004 0.61£009 058+0.04 suring forgettmg data (Df) is treated as unseen while main-
ADVAIMP  0.57+0.03 0.49+0.04 045+0.03 046002 044+0.02 046 +0.04 - - - :
SU(Ours) 0521001 048L003 0521001 0521002 053003 052%002 taining strong performance on retaining data. It consistently
SULI (Ours) 0.51+£0.01 0.50+0.01 0.51+0.01 0.50+0.01 0.49+0.02 0.51+0.01 outperforms other methods across multiple metrics (see Fig_

Table 4: Unlearning quality comparison of different methods. An
MIA accuracy close to 0.5 indicates that the unlearning method has
perfectly unlearned Dy.

Metrics (s) ADV+IMP Ilabel Boundary NegGrad RLabel SU (Ours) SULI (Ours)

Class Runtime 107.16 45.76 31.66 19.36 10.36 3.68 0.93
Instance Runtime 3.67 1.33 0.98 0.81 0.55 0.28 0.21

Table 5: SULI demonstrates the lowest runtime for both class and
instance-level unlearning, showcasing its computational efficiency.

ity and unlearning effectiveness. Our experiments cover two
primary unlearning scenarios: class-wise unlearning, where
early stops when the model’s accuracy on D; approaches
zero, and instance-wise unlearning, where unlearning ceases
when the model’s accuracy on Dy matches that on a 1% ref-
erence dataset. For both scenarios, we designate each class
as Dy and report averages and standard deviations over five
seeds to ensure reproducibility. Detailed implementation se-
tups are provided in Appendix E.

Trade-offs. Achieving effective machine unlearning involves
balancing multiple objectives: unlearning quality, model util-
ity, unlearning effectiveness, and runtime efficiency. These

ure 3). Detailed discussions are provided in Appendix F.

Class-wise Accuracy. In class-wise unlearning, the goal
is to reduce the model’s accuracy on forgetting data (Ap,)
and Ath to zero while preserving high accuracy on (Ap,).
Table 2 shows that Model Retraining and NegGrad elimi-
nate Ap, but harm Ap, . Initial Label and Boundary Shrink
methods struggle to sufficiently reduce Ap, and also degrade
Ap,. In contrast, ADV+IMP, SU and SULI successfully
bring Ap, and Ath to zero. Notably, SULI preserves the

highest Ap, and maintains the model utility.

Instance-wise Accuracy. In instance-wise unlearning, the
goal is to align the model’s accuracy on forgetting data (D)
with its performance on unseen reference data, ensuring fair-
ness and generalizability. For simplicity, small standard de-
viations are omitted in subsequent instance-wise tables. Ta-
ble 3 shows that while all methods reduce Dy accuracy, SU
and SULI outperform others by achieving unlearning targets
while maintaining high accuracy on D, and Diey.

Privacy Protection and Unlearning Quality Comparison.
Effective unlearning is essential for robust privacy, preventing
adversaries from using Membership Inference Attacks (MIA)
to distinguish removed data from data never in the model.
Following Kurmanji et al. [Kurmanji er al., 20231, we train
a binary classifier on loss values from Dy and Di. An ac-
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(a) Original Model (b) Retrained Model

i

(c)SU (d) SULT
Figure 4: The visualization of feature space in different models on
CIFAR10. The solid dots in various colors represent D,., and the
green triangle represents the Dy.

curacy nearing 50% indicates strong privacy protection, as
the classifier fails to differentiate between these datasets. To
ensure consistent data distributions in class-wise unlearning,
Dy and Dy, share the same categories. We then use ten-
fold cross-validation to derive average MIA accuracies, min-
imizing outlier effects. Table 4 compares unlearning meth-
ods across class- and instance-level forgetting, revealing that
SULI remains near the ideal 50% attack success rate, thus ef-
fectively obscuring data membership. Their hierarchical iter-
ation and Selective Probability Adjustment (SPA) enable con-
trolled, seamless unlearning with minimal utility loss. Further
details appear in Appendix G.

Computational Complexity. Table 5 compares the runtime
efficiency of various unlearning methods. SULI is the fastest
method, requiring significantly less runtime than all other
baselines (Table 5). In particular, it is 3 times faster than
the adversarial re-labeling methods, which spend substantial
time on iterative adversarial example generation. By contrast,
SULI updates the model solely based on output distributions,
avoiding the costly fine-grained perturbation steps. Overall,
SULI provides the best balance of unlearning efficacy, pri-
vacy, and efficiency. Let |Dy| be the number of samples to
be forgotten and K be the number of classes. SULI’s total
cost can be approximated as O(|Dy| x K), reflecting that it
primarily involves computing probabilities and redistributing
them for each sample-class pair, rather than performing com-
putationally expensive adversarial example generation. De-
tails are provided in Appendix H.

Visualization of Feature Space. To enable a more in-
tuitive observation of how the decision boundary changes
after the machine unlearning, we visualize the decision
boundary of the target model’s feature space using the t-
Distributed Stochastic Neighbor Embedding (t-SNE) tech-
nique [van der Maaten and Hinton, 2008]. The t-SNE maps
high-dimensional data to a low-dimensional space through
probability distributions, facilitating the visualization of com-

c) Retrain

Figure 5: Gradient-weighted class activation mapping of the target
models before and after the unlearning.

plex data structures in graphs [van der Maaten and Hinton,
2008]. In figure 4 (d), we observe that the green triangles
representing Dy are successfully dispersed across adjacent
classes, effectively diluting their association with the original
class. Concurrently, the clustering of other categories (de-
picted as dots) remains stable, and the decision boundaries
between D, classes are preserved without significant alter-
ation. Dispersing D while keeping the decision boundaries
of D, demonstrates the effectiveness of SULI in unlearning
target data without compromising the model’s utility.

Class Activation Mapping. Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) visualizes the decision-making
processes of convolutional neural networks by highlighting
image regions that most influence classification decisions
[Selvaraju et al., 2020]. Figure 5 compares attention maps
across different models. For facial recognition, critical facial
features are the eyes and mouth. SULI further disperses at-
tention while concentrating on the face, albeit less on primary
features and more on other facial regions. Despite the un-
learning processes, the model continues to identify facial fea-
tures by focusing on less discriminative areas. SULI’s facial
recognition attention pattern is similar to the retrain model.

5 Conclusion

We have introduced Self-Unlearning with Layered Iteration
(SULI), a machine unlearning framework that iteratively re-
fines decision boundaries to remove specified data while
maintaining accuracy in retaining data. By circumvent-
ing complete dataset access and avoiding abrupt re-labeling,
SULLI significantly reduces the influence of forgetting data
while preserving model utility and privacy. The layered, step-
wise design ensures model stability and effectively addresses
the limitations of single-step boundary adjustments. In fu-
ture work, we will explore scaling SULI to larger models and
investigate theoretical guarantees for complete unlearning.
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