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Abstract
Graph domain adaptation (GDA), which transfers
knowledge from a labeled source domain to an un-
labeled target graph domain, attracts considerable
attention in numerous fields. However, existing
methods commonly employ message-passing neu-
ral networks (MPNNs) to learn domain-invariant
representations by aligning the entire domain dis-
tribution, inadvertently neglecting category-level
distribution alignment and potentially causing cat-
egory confusion. To address the problem, we
propose an effective framework named Coupling
Category Alignment (CoCA) for GDA, which ef-
fectively addresses the category alignment issue
with theoretical guarantees. CoCA incorporates a
graph convolutional network branch and a graph
kernel network branch, which explore graph topol-
ogy in implicit and explicit manners. To mitigate
category-level domain shifts, we leverage knowl-
edge from both branches, iteratively filtering highly
reliable samples from the target domain using one
branch and fine-tuning the other accordingly. Fur-
thermore, with these reliable target domain sam-
ples, we incorporate the coupled branches into
a holistic contrastive learning framework. This
framework includes multi-view contrastive learn-
ing to ensure consistent representations across the
dual branches, as well as cross-domain contrastive
learning to achieve category-level domain consis-
tency. Theoretically, we establish a sharper gen-
eralization bound, which ensures the effectiveness
of category alignment. Extensive experiments on
benchmark datasets validate the superiority of the
proposed CoCA compared with baselines.

1 Introduction
As a crucial problem in graph classification [Lin et al.,
2023; Luo et al., 2023], Graph Domain Adaptation (GDA)
has received substantial interest, particularly in the fields
of temporally-evolved social analysis [Wang et al., 2021],
molecular biology [Zhu et al., 2023; Yin et al., 2023], and
protein-protein interaction networks [Cho et al., 2016]. GDA

transfers graph representations learned from the source do-
main to the target domain, which is necessary in many appli-
cations. Domain adaptive learning is inherently challenging
due to the distribution shift between source and target do-
mains. This challenge is further amplified when handling
graph-structured data, which often represent abstractions of
varying natures [You et al., 2022a].
Currently, various GDA methods have been proposed [Yin

et al., 2022; Yin et al., 2023; You et al., 2022b] by combining
domain adaptation techniques with graphs. They usually as-
sume the distribution invariance is limited [Garg et al., 2020;
Verma and Zhang, 2019] and directly employ adversarial
training to align source and target distribution [Zhang et al.,
2019b; Wu et al., 2020a]. However, the classifier still tends to
favor source domain features and makes incorrect predictions
on the target domain due to category-agnostic feature align-
ment [Zhang et al., 2019a], as shown in Figure 1. To solve
the issue and efficiently design the GDA framework, we still
need to address the following challenges: (i) How to fully

exploit the features of the source and target domain for repre-

sentation learning. Previous approaches typically employ the
MPNNs to capture implicit topological semantics. However,
the absence of labels for the target domain poses challenges in
obtaining sufficient topological semantics. (ii) How to effec-

tively align category-level distribution. While there has been
progress in matching the marginal distributions between two
domains, they may not efficiently align the category distribu-
tion, leading to a degradation in classification performance.
Certain methods have attempted to acquire pseudo-labels for
the target graphs in target domain training [Yin et al., 2023;
Ding et al., 2021; Zhu et al., 2023], they are vulnerable to
bias in cases of significant domain shift, leading to error accu-
mulation in subsequent optimization. (iii) How to design the

GDA framework with the grounded theoretical foundation.

Theoretically, the generic domain adaptation (DA) bound is
not specific to graph data and models [You et al., 2023]. How-
ever, we can still design a more precise model tailored for
graphs with the theoretical guarantee.
To tackle these challenges, we propose a framework named

Copling Category Alignment (CoCA) for unsupervised do-
main adaptive graph classification. Specifically, to fully ex-
ploit the features of both source and target graphs, CoCA in-
corporates an MPNN branch and a shortest path aggregation
branch. The MPNN branch leverages neighborhood aggrega-
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Source domain Target domain Different class samples

ClassifierMisclassified samples

Figure 1: Left: The source and target graph domains. Middle: GDA
methods that align the entire source and target domains, potentially
confuse category distribution (see the red triangles and squares).
Right: The proposed method, which aligns category-level distribu-
tions, alleviates the category-agnostic issue.

tion to implicitly learn topological semantics, while the short-
est path aggregation branch generates paths for each node and
utilizes position encoding to extract informative graph-level
semantics. This shortest path aggregation branch provides
explicit high-order structural semantics, serving as a comple-
mentary enhancement. To collaborate knowledge from two
branches, we jointly train the branches by iteratively filter-
ing highly reliable samples from the target domain using one
branch and fine-tuning the other branch accordingly. Specif-
ically, with the dual pre-trained branches, CoCA first fine-
tunes the shortest path branch with the highly reliable sam-
ples filtered from the target domain with the MPNN branch
and then optimizes the MPNN branch with the filtered target
domain samples labeled by the shortest path branch. The-
oretically, the interactive optimization of one branch with
the support of the other one would gradually mitigate the
category-level distribution shift. Furthermore, we embed the
iterative learning process into a holistic contrastive learn-
ing framework, incorporating cross-domain contrastive learn-
ing to achieve category-level domain consistency, alongside
multi-views contrastive learning to ensure consistent repre-
sentations between branches. Overall, our approach em-
phasizes a unique focus on achieving category-level domain
alignment. Specifically, our methodology is centered on Cou-
pling Category Alignment (CoCA), which systematically it-
erates between branches to identify and select reliable sam-
ples. This process facilitates cross-branch adjustments, effec-
tively mitigating potential domain shifts in an unsupervised
manner. By iteratively refining the alignment process, our
approach enhances the model’s ability to achieve category-
level alignment, supported by solid theoretical foundations,
distinguishing it from prior methods. Extensive experiments
conducted on various datasets with domain shifts for graph
classification demonstrate the superiority of proposed CoCA.

In summary, the main contributions can be summarized as
three-fold: (1) Problem Formulation: We present a novel
problem in graph domain adaptation, which highlights the
discrepancy in the distribution of graph categories between
the source and target domains, posing significant challenges
for accurate graph classification across domains. (2)Method-

ology: We propose a framework named CoCA, which uti-
lizes two branches to explore structural semantics and inte-
grates them into a category-level domain-invariant model. We

provide theoretical proof demonstrating that CoCA is specif-
ically designed to more accurately address the challenges of
the graph domain. (3) Experiments: Extensive experiments
conducted on various domain shift datasets for graph classifi-
cation demonstrate the effectiveness of the proposed CoCA.

2 Related Work
Graph Classification. GNNs [Kipf and Welling, 2017a]
have shown exceptional performance across a wide range of
graph-based machine learning tasks, such as node classifica-
tion [Kipf and Welling, 2017a], graph classification [Wu et

al., 2020b] and link prediction [Cai et al., 2021]. The most
prevalent GNNs follow the message-passing paradigm, which
aggregates the neighbors for node update and applies graph
pooling for graph representation. Nevertheless, MPNNs have
limited capacity to capture high-order topological structures,
such as paths and motifs [Ju et al., 2022]. Therefore, nu-
merous graph kernel methods have emerged to overcome this
flaw [Long et al., 2021]. However, these approaches typ-
ically require an ample supply of labeled annotations [Yin
et al., 2023] while this work delves into the realm of unsu-
pervised graph domain adaptation and introduces a novel ap-
proach CoCA to tackle this challenge.

Unsupervised Domain Adaptation. Unsupervised domain
adaptation is to learn domain-invariant representations that
enable the transfer of a model from a source domain with
abundant labels to a target domain with a scarcity of la-
bels [Feng et al., 2023]. The majority of technical routes
can be broadly categorized into domain discrepancy-based
methods and adversarial approaches. The former methods
typically incorporate different distribution metrics like max-
imal mean discrepancy [Saito et al., 2018] and Wasserstein
distance [Shen et al., 2018] to measure the discrepancy be-
tween different domains. Conversely, adversarial approaches
involve a domain discriminator that is fused to implicitly re-
duce the domain discrepancy. However, these methods typi-
cally concentrate on Euclidean data such as images and texts,
while graph domain adaptation has not been extensively ex-
plored. In this work, we explores graph semantics by utilizing
dual perturbation branches for effective graph domain adap-
tation.

Graph Domain Adaption. Due to the potential economic
value, graph domain adaptation [Lin et al., 2023; Wu et al.,
2022; Luo et al., 2023] is a crucial problem in the fields of
social analysis and molecular biology [You et al., 2022b;
Zhu et al., 2023]. Existing methods mainly focus on how
to transfer information from source graphs to unlabeled tar-
get graphs to learn effective node-level [Dai et al., 2022] and
graph-level [Yin et al., 2023; Ding et al., 2021] representa-
tion. However, these approaches commonly merge GNNs
with domain alignment [Luo et al., 2023] methods, which
overlook the alignment of category distributions in the pres-
ence of label scarcity and domain shift, consequently leading
to a deterioration in classification performance. Towards this
end, CoCA couples the dual branch in a variational optimiza-
tion framework to address the issue.
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Figure 2: An overview of the proposed CoCA. CoCA contains a message passing branch and a shortest path aggregation branch. To align
category-level distribution, we alternatively optimize each branch with highly dependable pseudo-labels learned from the other branch. CoCA
incorporates the learning process in a multi-view and cross-domain contrastive learning framework.

3 Methodology
This work studies the unsupervised GDA problem [Yin et al.,
2023; Yehudai et al., 2021] and proposes a new approach
CoCA (see Figure 2). CoCA consists of two parts, the dual
graph branch explores semantics from implicit and explicit
perspectives; the branch coupling module interactively opti-
mizes one branch with highly reliable sample filtered from the
other branch to minimize the category distribution discrep-
ancy. CoCA incorporates the iterative process into a learning
framework and theoretical proof the designed method is more
precisely tailored for the graph domain.

3.1 Dual Branch for Semantics Mining
Current graph transfer learning methods [Lin et al., 2023;
Wu et al., 2022] typically rely on MPNNs to implicitly cap-
ture topological semantics through neighborhood aggregation
for transfer learning. However, these approaches may be suf-
fered under domain shift. To address this issue, we introduce
a dual-branch architecture for graph representation learning,
comprising a MPNNs branch for implicit topological seman-
tics and a shortest path aggregation branch for explicit topo-
logical semantics derived from high-order structures.
Message Passing Branch. MPNNs extract graph seman-
tics by aggregating neighborhood nodes to update each cen-
tral node representation. We update the representation of
node u at layer l in the massage passing branch f

MP
ω (·) and

summarize the node representations into graph-level as:

hl
u = Cl

MP

(
hl→1
u ,Al

MP

({
hl→1
v

}
v↑N (u)

))
,

zMP
G = f

MP
ω (G) = READOUT

({
hL
u

}
u↑V

)
,

where N (u) is the neighbours of node u. Cl
MP and Al

MP
are combination and aggregation functions at layer l, and
READOUT is the pooling function. In this way, the message
passing branch learns the topological structure in an implicit
manner under label supervision.

Shortest Path Aggregation Branch. However, the mes-
sage passing branch merely extracts topological structural se-
mantics in an implicit manner, which would be challenged
under the circumstance of domain shift. Considering an al-
ternative technical route, graph kernels [Shervashidze et al.,
2011] are capable of explicitly extracting high-order seman-
tics. We introduce a shortest path aggregation branch that
generates various shortest paths from local substructures to
extract high-order semantics into graph-level representations.
Thus, the representations alleviate the impact of structural
shift across domains.
In particular, denote Nk(u) as the set of nodes reachable

from u through a shortest path of length k, and the represen-
tation of node u can be updated with N1(u) → · · · →Nk(u) →
· · · →NK(u), K is the hyperparameter of largest length. We
update the nodes on different path length k:

ml
u,Nk(u)

= Cl
SP

(
m̂l→1

u ,Al
SP

({
m̂l→1

v

}
v↑Nk(u)

))
,

where Cl
SP and Al

SP denotes combination and aggrega-
tion operators at layer l on shortest path branch. Thus,
we obtain the embeddings from different path length, i.e.,{
ml

u,N1(u)
, · · · ,ml

u,NK(u)

}
, and update the representation

of u as follows:

ω
l
= Atten

(
||Kk=1m

l
u,Nk(u)

)
,

ml
u = MLP

(
(1 + ε)ml→1

u +

K∑

k=1

ω
l
km

l
u,Nk(u)

)
,

where ε ↑ R, Atten is the self-attention mechanism, ||
denotes the concatenation operation, and ||Kk=1m

l
u,Nk(u)

↑
RK↓d→

, d↔ is the feature dimension of ml
u,Nk(u)

. MLP is
the fully connected layer. After stacking L layers, we take
the average of all nodes into a graph-level representation:

zSP
G = f

SP
ε (G) = READOUT

({
mL

u

}
u↑V

)
. (1)
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The READOUT function is similar to Eq. 1. The shortest
path aggregation branch acquires topological semantics by
focusing on paths of varying lengths, which help mitigate the
impact of structural domain shifts, such as differences in den-
sity and graph size.

3.2 Coupling for Category Alignment
Recent work attempted to obtain target graph pseudo-labels
for training [Yehudai et al., 2021; Ding et al., 2021; Zhu et

al., 2023]. However, due to discrepancies in the category
distribution, they may suffer from error accumulation during
subsequent optimization. To address this issue, we cleverly
utilize the characteristics of the dual branch to obtain pseudo-
labels and mitigate error accumulation.
With the message passing branch (MP branch) and the

shortest path branch (SP branch), our target is to identify
highly dependable pseudo-labels in the target domain and in-
tegrate them with the source domain to fine-tune the model.
In this way, we can efficiently align the category distribution.
Nevertheless, with category discrepancy and error accumula-
tion challenges, we cannot achieve satisfactory pseudo-labels
in a signal branch. To address the issue, we introduce the
classifier HMP

(·) and H
SP

(·) for the MP and SP branches.
Specifically, we filter the highly dependable pseudo-labels
with the threshold ϑ in the MP branch:

GMP
= {Gt

i|HMP
(zMP

Gt
i
) > ϑ, ↓Gt

i ↑ G
t},

and then use those samples to help fine-tune the SP branch:

L1 = l(H
SP

(zSP
Gs ), y

s
) + lGt

i↑GMP (H
SP

(zSP
Gt

i
), H

MP
(zMP

Gt
i
)),

where HMP
(zMP

Gt
i
) is the target graph pseudo-labels filtered

from the MP branch, l(·) is the loss function. Similarly, we
utilize the target samples filtered from the SP branch to sup-
port the fine-tune of the MP branch:

GSP
= {Gt

i|HSP
(zSP

Gt
i
) > ϑ, ↓Gt

i ↑ G
t},

and then use those samples to help fine-tune the MP branch:

L2 = l(H
MP

(zMP
Gs ), y

s
) + lGt

i↑GSP (H
MP

(zMP
Gt

i
), H

SP
(zSP

Gt
i
)),

where H
SP

(zSP
Gt

i
) is the target graph pseudo-labels filtered

from the SP branch. The interactive optimization of the MP
and SP branches offers two advantages. First, by incorpo-
rating highly confident target pseudo-labels into source do-
main training, we can effectively align the category distribu-
tion. Second, the pseudo-labels filtered from the other branch
help mitigate the error accumulation issue caused by the sin-
gle model.
Theoretical Analysis. Intuitively, incorporating training
samples from target and source domains would effectively
align the category distribution between domains. However,
the theoretical basis for why iterative fine-tuning achieves cat-
egory alignment still requires further investigation. Addition-
ally, the graph category alignment bound remains agnostic.
To address this, we present Theorem 1 demonstrating that
employing a category distribution alignment module results
in a lower bound on the empirical risk in the target domain
than without this module.

Theorem 1. Assume that there exists a small amount of high
dependable i.i.d. samples with pseudo labels {(Gn, Yn)}

N →
T

n=1
filter from the target distribution PT (G, Y ) (N

↔
T ↔ NS)

and bring in the conditional shift assumption that do-

mains have different labeling function ĥS ↗= ĥT and

maxG1,G2

|ĥD(G1)→ĥD(G2)|
ϑ(G1,G2)

= Ch ↘ CfCg(D ↑ {S, T})
for some constant Ch and distance measure ϖ. LetH := {h :

G ≃ Y} be the set of bounded real-valued functions with the

pseudo-dimension Pdim(H) = d, with probability at least

1⇐ ϱ the following inequality holds:

εT (h, ĥT ) ↘
N

↔
T

NS +N
↔
T

ε̂T (h, ĥT ) +
NS

NS +N
↔
T

(
ε̂S(h, ĥS)

+

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

ϱ
)

+ 2CfCgW1 (PS(G),PT (G)) + ς
↔
)
,

where ς = min||g||Lip↗Cg,||f ||Lip↗Cf
{εS(h, ĥS) +

εT (h, ĥS)} and ς
↔

= min(|εS(h, ĥS) ⇐
εS(h, ĥT )|, |εT (h, ĥS)⇐ εT (h⇐ ĥT )|).

The proof is detailed in Appendix A. From Theorem 1, we
observe that the bound of CoCA is lower than GDA by incor-
porating source and target samples during training, demon-
strating that it is possible to design a more accurate model
specifically tailored for graphs with a theoretical guarantee.

3.3 Learning Framework
Through the iterative learning process of the MP and SP
branches, we integrate them into a unified contrastive learn-
ing framework. Specifically, this framework employs cross-
domain contrastive learning to achieve category-level domain
consistency, while multi-view contrastive learning ensures
consistent representation between the branches [Yin et al.,
2023].
Multi-view Contrastive Learning. For each a graph Gi, we
first obtain the embeddings from MP and SP branches, i.e.,
zMP
i and zSP

i . Then, we introduce the InfoNCE loss to en-
hance the consistency representation cross coupled branches:

Lmv =⇐ 1

|Ds|+ |Dt|
∑

Gi↑Ds↘Dt

log
exp(zMP

i · zSP
i /φ)∑

Gj ,j ≃=i exp(z
MP
i · zSP

j /φ)
,

where φ is set to 0.5 as default .
Cross-domain Contrastive Learning. To achieve the
category-level domain consistency, we construe the cross-
domain contrastive learning with the help of pseudo-labels
from each branch. Taking the MP branch as an example, we
first filter highly dependable samples with the threshold ϑ as
introduced in 3.2, and then calculate the loss between source
and target domain with the same category.

Lcd = ⇐
∑

j↑!(j)

1

|!(j)| ·
∑

i↑”(j)

log

exp

(
zSP,t
j · zSP,s

i /φ

)

∑
Gk↑Ds,k/↑”(i) exp

(
zSP,t
j · zSP,s

k /φ

) ,

where !(j) = {i|ysi = ŷ
t
j} denotes the index of all posi-

tives in the source domain, ”(i) is the index of filtered highly
dependable samples from the target domain.
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Methods M0≃M1 M1≃M0 M0≃M2 M2≃M0 M0≃M3 M3≃M0 M1≃M2 M2≃M1 M1≃M3 M3≃M1 M2≃M3 M3≃M2 Avg.

WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
GCN 73.0±1.7 68.7±1.5 66.8±3.5 69.2±0.9 53.9±3.4 53.4±2.7 69.3±0.8 74.0±1.1 55.1±1.3 42.6±1.9 55.5±3.5 57.9±2.9 61.6
GIN 74.1±1.8 73.4±3.4 65.4±1.5 70.4±2.9 58.9±2.7 61.2±1.1 73.2±3.8 77.7±3.0 63.1±3.7 63.9±2.4 67.4±2.3 73.2±1.9 68.5
GMT 69.0±4.0 67.4±3.8 60.3±4.2 66.5±3.8 54.9±1.6 54.8±3.6 65.6±4.2 70.4±3.2 64.0±2.3 56.8±4.3 64.7±1.5 61.1±3.5 63.0
CIN 68.5±2.1 65.1±2.6 65.4±1.3 63.6±2.8 57.3±3.4 59.0±3.1 59.3±1.5 68.3±1.3 58.1±2.4 71.1±3.1 60.7±1.7 61.7±2.4 63.2

CDAN 74.2±0.3 73.7±0.5 68.8±0.2 71.8±0.4 59.9±2.0 58.6±1.9 70.7±1.4 74.3±0.3 59.2±1.2 69.0±1.6 60.0±1.2 62.7±1.3 66.9
ToAlign 75.5±1.9 67.1±3.8 68.1±1.5 63.3±2.7 55.6±1.2 67.3±4.3 69.4±3.3 77.0±1.2 57.6±1.6 74.9±2.4 59.0±3.3 64.6±3.4 66.6
MetaAlign 74.5±0.9 73.8±0.6 69.4±1.2 72.6±1.3 59.8±1.8 70.7±2.7 72.0±0.5 75.6±0.6 62.4±2.1 72.3±1.9 62.2±1.1 72.0±1.2 69.7

DEAL 76.3±0.2 72.4±0.7 68.8±1.0 72.5±0.7 57.6±0.6 67.6±1.9 77.4±0.6 80.0±0.7 64.9±0.7 72.8±1.4 70.3±0.3 76.2±1.3 71.4
CoCo 77.5±0.4 75.7±1.3 68.3±3.7 74.9±0.5 65.1±2.1 74.0±0.4 76.9±0.6 77.4±3.4 66.4±1.5 71.2±2.7 62.8±4.2 77.1±0.6 72.2
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.3±0.3 54.9±0.6 55.8±0.4 55.1±0.8 54.2±1.0 57.1±1.2 56.1±0.5 55.2±0.7 57.9±1.5 56.3±0.6 54.4±0.5 58.1±1.5 55.8
PA-BOTH 56.3±0.5 57.7±0.9 56.9±0.6 56.2±1.0 55.7±0.8 56.5±0.9 57.8±1.2 56.9±2.1 56.5±1.5 56.2±1.8 56.8±1.4 57.4±0.7 56.8

CoCA 82.4±1.5 80.8±1.2 74.5±1.7 79.6±2.1 74.8±2.2 79.2±0.7 83.4±0.9 85.7±0.6 73.9±0.8 81.3±1.5 77.8±0.7 83.3±1.4 79.7

Table 1: The classification results (in %) on Mutagenicity under edge density domain shift (source→target). M0, M1, M2, and M3 denote
the sub-datasets partitioned with edge density. Bold results indicate the best performance.

Methods F0≃F1 F1≃F0 F0≃F2 F2≃F0 F0≃F3 F3≃F0 F1≃F2 F2≃F1 F1≃F3 F3≃F1 F2≃F3 F3≃F2 Avg.

WL subtree 65.7 71.8 57.9 71.1 47.4 43.4 65.5 75.1 45.3 34.9 52.7 49.8 56.7
GCN 70.6±2.1 60.3±1.5 60.5±3.4 62.3±1.1 58.4±0.5 43.2±0.2 63.8±1.0 70.3±0.3 50.6±1.0 32.8±0.3 50.1±0.4 42.2±0.2 55.4
GIN 66.7±2.1 73.7±2.4 57.3±3.1 69.4±2.3 58.6±0.4 43.1±0.3 66.4±2.7 74.8±1.8 42.2±1.6 33.5±1.0 57.4±0.8 43.9±2.3 57.2
GMT 67.3±0.3 56.8±0.4 58.0±0.2 56.8±0.2 60.6±0.3 56.8±0.5 57.8±0.1 67.3±0.1 39.5±0.3 67.3±0.2 39.5±0.5 57.8±0.4 57.1
CIN 67.6±0.4 63.7±2.1 58.9±1.0 56.8±0.4 63.6±0.4 59.5±2.7 58.7±1.2 67.0±0.5 61.7±1.6 67.8±0.7 62.2±2.1 56.0±1.3 61.9

CDAN 72.9±0.4 72.7±0.4 65.4±0.3 72.9±0.1 61.2±0.3 70.3±0.2 65.7±0.4 72.7±0.1 61.0±0.1 72.1±1.2 60.7±0.2 65.3±0.6 67.7
ToAlign 32.7±2.0 43.2±0.1 42.2±1.3 43.2±0.9 60.5±0.7 43.2±1.2 42.2±0.4 32.7±1.2 60.5±0.9 32.7±0.3 60.5±0.7 42.2±0.4 44.7
MetaAlign 67.3±0.7 56.8±0.2 57.8±0.6 56.8±0.4 60.5±1.3 56.8±0.8 57.8±1.1 67.3±1.2 60.5±0.4 67.3±0.6 60.5±0.7 57.8±0.6 60.6

DEAL 75.0±0.9 76.3±2.4 65.9±1.8 77.5±2.7 60.3±4.5 69.7±3.2 67.2±1.5 75.3±1.7 57.4±4.1 71.1±2.2 65.7±2.7 66.4±1.6 69.0
CoCo 74.2±1.7 74.3±0.6 65.9±1.2 72.7±2.1 61.1±0.2 71.0±1.7 68.6±0.3 75.9±0.2 60.7±0.2 73.9±0.4 59.7±1.1 67.3±0.8 68.8
SGDA 55.9±0.6 57.1±0.5 56.1±0.4 54.6±0.8 55.8±1.1 57.7±0.6 54.3±0.7 53.6±1.3 59.1±0.8 56.7±0.6 55.4±1.2 53.8±0.5 55.9
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.9±0.7 55.7±0.4 56.6±0.6 57.1±1.0 56.1±1.2 55.8±0.5 56.5±0.7 55.5±0.4 55.9±0.8 56.2±0.6 56.5±1.5 56.0±0.5 56.2
PA-BOTH 56.4±0.5 55.9±0.6 56.0±0.5 56.4±0.4 56.3±0.6 57.7±0.7 56.6±0.2 58.8±0.9 56.9±0.7 57.2±0.3 56.5±0.5 58.3±0.8 56.9

CoCA 81.6±1.5 83.5±0.6 78.5±0.6 82.4±2.3 71.1±0.8 76.9±1.1 75.2±0.5 82.0±1.1 79.5±1.4 79.5±1.2 72.7±0.6 77.7±1.0 78.4

Table 2: The graph classification results (in %) on FRANKENSTEIN under node domain shift (source→target). F0, F1, F2, and F3 denote
the sub-datasets partitioned with node. Bold results indicate the best performance.

Iterative Optimization. As introduced in Section 3.2, we
first filter the highly dependable samples in the MP branch,
i.e., ”(i) = {i|HMP

(zMP
Gt

i
) > ϑ}, and then optimize the

objective function to update ↼ in the SP branch:

L = L1 + ωLmv + ↽Lcd. (2)

After that, we utilize the updated SP branch to filter the highly
dependable samples, i.e., ”(i) == {i|HSP

(zSP
Gt

i
) > ϑ}, and

update ⇀ in the MP branch:

L = L2 + ωLmv + ↽Lcd, (3)

where ω and ↽ are the hyper-parameters. Additionally, we
analysis the model complexity, which is presented in Ap-
pendix B.

4 Experiments
4.1 Experimental Settings
Datasets. We use 4 graph classification benchmarks: Mu-
tagenicity (M) [Kazius et al., 2005], FRANKENSTEIN
(F) [Orsini et al., 2015], NCI1 (N) [Wale et al., 2008], and
PROTEINS (P) [Dobson and Doig, 2003], obtained from TU-
Dataset [Morris et al., 2020] to evaluate the effectiveness of

the CoCA. The details are presented in Appendix C. To as-
sess the domain shift in each dataset, we follow [Yin et al.,
2023] and partition each dataset into four sub-datasets (D0,
D1, D2, and D3, where D represents the respective dataset)
based on edge and node density and graph flux.
Baselines. We compare the proposed CoCA with vari-
ous state-of-the-art methods, including the kernel-based ap-
proach: WL subtree [Shervashidze et al., 2011], GNNs meth-
ods: GCN [Kipf andWelling, 2017b], GIN [Xu et al., 2019a],
GMT [Baek et al., 2021], CIN [Bodnar et al., 2021], and
domain adaptation methods: CDAN [Long et al., 2018],
ToAlign [?], MetaAlign [Wei et al., 2021], and GDA meth-
ods: DEAL [Yin et al., 2022], CoCo [Yin et al., 2023], SGDA
[Qiao et al., 2023], DGDA [Cai et al., 2024], A2GNN [Liu et
al., 2024a] and PA-BOTH [Liu et al., 2024b]. The details are
introduced in Appendix E and the implementation details are
proposed in Appendix D.

4.2 Performance Comparison
Table 1, 2 and 3 show the comparison performance of CoCA
and baselines on Mutagenicity, FRANKENSTEIN and NCI1
datasets under different domain shift. More results are shown
in Appendix F. From the results, we find that: (1) The GDA
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Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 75.9 70.4 64.3 63.9 60.6 64.7 73.2 78.9 66.8 69.2 74.2 72.9 69.6
GCN 49.2±1.7 55.8±1.5 46.8±0.5 54.6±2.2 43.4±0.6 46.7±0.2 50.0±1.8 57.2±2.2 44.2±0.4 51.6±0.8 62.7±2.1 56.8±1.3 51.6
GIN 68.8±2.5 70.6±1.0 64.2±1.1 67.2±2.4 62.2±1.8 62.5±1.5 68.7±2.4 72.5±0.6 63.3±1.6 65.2±0.6 62.4±0.3 70.9±0.5 66.6
GMT 66.7±0.3 58.2±0.5 63.9±0.3 58.4±0.3 63.8±0.4 56.7±0.5 63.9±0.7 66.3±1.0 63.8±1.1 66.6±0.4 63.8±0.2 62.6±0.7 62.9
CIN 58.7±2.4 54.9±0.2 52.0±0.3 54.8±0.1 56.6±0.2 54.9±0.1 52.9±1.4 52.8±0.5 56.5±0.6 52.8±2.1 58.5±0.8 56.6±1.4 55.1

CDAN 64.0±1.1 68.1±0.3 60.1±0.5 64.0±1.3 60.9±0.2 57.8±1.0 64.3±1.6 61.2±0.2 66.3±0.7 59.0±0.5 68.9±0.3 63.7±0.6 63.2
ToAlign 52.8±0.5 54.8±0.2 48.2±1.1 54.8±1.5 44.0±0.8 54.8±2.0 48.2±1.7 52.8±0.6 44.0±0.2 52.8±0.3 44.0±1.0 48.2±1.2 50.0
MetaAlign 63.1±0.3 63.8±1.3 58.9±2.4 58.5±0.4 59.1±2.1 59.2±1.6 70.1±0.8 63.3±1.4 66.5±2.7 60.9±1.1 71.4±0.2 67.5±0.8 63.5

DEAL 70.7±0.9 72.3±0.2 69.9±0.8 68.9±0.7 64.1±0.6 65.6±0.9 71.9±0.4 69.9±1.7 70.6±0.4 66.5±0.3 71.6±0.7 69.9±0.5 69.3
CoCo 64.0±1.3 63.9±0.6 65.8±1.8 59.9±1.7 62.2±2.1 60.6±1.6 65.0±2.1 64.8±1.4 60.0±0.8 61.3±0.5 68.5±0.4 67.1±0.6 63.6
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 56.5±0.9 56.7±0.7 58.8±1.2 56.0±1.0 61.2±1.5 60.9±1.6 61.0±1.3 56.1±1.9 64.9±1.6 59.3±2.1 65.4±1.5 63.3±2.3 60.1
PA-BOTH 57.4±0.5 58.2±0.4 58.2±0.6 57.6±0.8 58.2±0.6 58.5±0.5 58.1±1.0 59.9±0.7 63.6±1.1 57.7±0.9 58.2±0.8 57.6±1.2 58.7

CoCA 81.4±0.9 76.3±1.5 75.1±0.7 74.3±1.2 72.6±1.5 78.4±0.8 77.4±2.3 73.2±2.0 75.3±0.5 76.9±1.0 80.1±1.3 74.0±0.3 76.3

Table 3: The graph classification results (in %) on NCI1 under graph flux domain shift (source→target). N0, N1, N2, and N3 denote the
sub-datasets partitioned with graph flux. Bold results indicate the best performance. OOM means out of memory.

Figure 3: The performance with different GNNs and kernels on different datasets. (a), (b) are the performance of different GNNs, (c), (d) are
the performance of different graph kernels.

methods, including DEAL, CoCo, CoCA, etc., consistently
outperform the kernel and GNN methods. This demonstrates
that domain shift limits the expressive capability of traditional
graph methods. Therefore, it is critical to design the domain
invariant methods for GDA. (2) The GDA methods demon-
strate competitive performance compared to traditional do-
main adaptation approaches. This achievement can be at-
tributed to the challenges associated with obtaining high-
quality graph representations, which make the direct applica-
tion of domain adaptation techniques to graphs a demanding
task. (3) The proposed CoCA outperforms recent GDAmeth-
ods. We attribute this performance gain to two factors: (i) The
dual branch approach for graph semantic extraction, which
effectively leverages the complementary strengths of message
passing and shortest path aggregation models. (ii) The archi-
tecture of the branch coupling module effectively aligns the
category-level distribution, addressing the category-agnostic
limitations typically encountered with GDA methods.

4.3 Flexibility of CoCA
To show the flexibility of CoCA, we replace the MP and
SP branches with different GNNs and kernels. Specifically,
we replace the MP branch with GCN [Kipf and Welling,
2017b], GIN [Xu et al., 2019b] and Graphsage [Hamilton et

al., 2017], and the SP branch with Graph Sampling [Leskovec
and Faloutsos, 2006], Random Walk [Kalofolias et al., 2021]
and WL kernel [Neumann et al., 2016]. Figure 3 shows the
performance of different GNNs and graph kernels on four
datasets, and we have similar observations on other datasets.

More results are shown in Appendix G. From the results, we
observe that when compared to other GNNs and graph ker-
nels, GMT and shortest path aggregation consistently achieve
the best performance in most cases. This can be attributed
to the powerful representation capabilities of GMT and the
shortest path kernel. This observation further justifies our
choice of GMT and shortest path aggregation to improve per-
formance in our GDA task.

4.4 Ablation Study
To assess the impact of each module on CoCA, we conduct
ablation experiments with various configurations: (1) CoCA-
MP, where both branches exclusively use the message pass-
ing model; (2) CoCA-SP, where both branches exclusively
use the path aggregation model; (3) CoCA/BC, removal of
the branch coupling module; (4) CoCA/MV, removal of the
multi-view contrastive learning module; (5) CoCA/CD, re-
moval of the cross-domain contrastive learning module.
We conducted these experiments on the Mutagenicity

dataset, and the results are presented in Table 4. From the
results, we observe that: (1) CoCA consistently outperforms
both CoCA-MP and CoCA-SP, emphasizing the critical im-
portance of extracting graph semantics from both implicit
and explicit perspectives in order to achieve superior perfor-
mance. (2) The performance of CoCA is significantly su-
perior to models that lack the branch coupling module (i.e.,
CoCA/BC), highlighting that by aligning the category-level
distributions, the branch coupling module effectively resolves
the category-agnostic issue that arises when attempting to
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Methods M0≃M1 M1≃M0 M0≃M2 M2≃M0 M0≃M3 M3≃M0 M1≃M2 M2≃M1 M1≃M3 M3≃M1 M2≃M3 M3≃M2 Avg.

CoCA-MP 77.3 70.1 70.8 71.6 68.3 71.1 77.2 82.8 68.3 77.6 67.8 76.2 73.2
CoCA-SP 80.6 74.1 68.8 70.8 65.7 72.5 78.3 83.3 67.2 78.5 69.6 81.3 74.2
CoCA/BC 76.0 76.3 69.3 74.4 67.4 64.9 78.8 82.2 68.5 73.2 69.4 77.5 73.2
CoCA/MV 77.3 77.2 71.8 76.4 70.2 75.7 79.3 83.1 71.4 79.5 74.2 78.5 76.2
CoCA/CD 78.1 75.4 70.4 76.7 72.7 77.2 78.8 86.4 72.3 80.1 73.4 79.3 76.7

CoCA 82.9 80.5 75.3 79.3 74.4 79.2 83.1 86.1 74.7 81.3 78.5 82.6 79.8

Table 4: The results of ablation studies on Mutagenicity (source→target). Bold results indicate the best performance.

Figure 4: Hyperparameter sensitivity of threshold ω and shortest path lengthK on different datasets. (a), (b) are the performance of threshold
ω, (c), (d) are the performance of shortest path length K.

align the entire feature distribution, which could otherwise
impair model performance. (3) CoCA/MV and CoCA/CD
perform worse than CoCA, and we attribute this to the fact
that by ignoring multi-view and cross-domain contrastive
learning, CoCA is unable to efficiently learn consistent repre-
sentations between the source and target domains, ultimately
leading to a notable reduction in predictive performance.

4.5 Sensitivity Analysis
In this part, we investigate the influence of hyperparameters
on the performance of the proposed CoCA. We specifically
examine the effects of two key hyperparameters, including
the threshold ϑ in the branch coupling module for category
alignment, and the shortest path length K in the SP branch.
We report the results of ϑ and K in Figure 4. ϑ determines
the number of reliable samples selected from each branch,
and we vary ϑ in the range from 0.5 to 0.9. The experi-
mental results presented in Figure 4 (a), (b) indicate an ini-
tial increase followed by stability or a decreasing trend in
performance as ϑ increases. We attribute the reason to the
fact that smaller values of ϑ introduce low-confidence sam-
ples, which would detriment the performance of CoCA. Con-
versely, larger values of ϑ introduce high-confidence samples
for training. However, excessively high values of ϑ may lead
to fewer filtered samples, potentially resulting in a decline
in model performance. Therefore, we set ϑ to 0.7 as default.
Additionally, the parameterK controls the number of shortest
paths extracted in the SP branch, and we vary K in the range
of {2, 3, 4, 5, 6}. The results are shown in Figure 4 (c) and
(d). From the results, we observe that increasingK generally
leads to improved performance when the value is small. This
suggests that incorporating more shortest path aggregations
can enhance the representation capability. However, whenK
becomes large, the performance stays stable. Considering the
significant increase in algorithmic complexity associated with
higher values ofK, we setK = 5. Additionally, we examine

the accuracy of filtered samples from MP and SP branches,
and the results are shown in Appendix H.

5 Conclusion
In this paper, we address the practical challenge of unsu-
pervised graph classification and introduce a novel approach
called CoCA. We leverage a dual-branch architecture, con-
sisting of a message passing branch and a shortest path aggre-
gation branch, to capture graph semantics from both implicit
and explicit perspectives. The incorporation of the branch
coupling module ensures effective category-level alignment,
thereby mitigating the category-agnostic issues commonly
encountered in traditional graph domain adaptation methods.
Additionally, our framework integrates cross-domain and
multi-view contrastive learning, which enhances the consis-
tency of representations across domains and branches. Theo-
retical analysis shows that CoCA achieves a tighter empirical
risk bound compared to existing GDA methods. Extensive
experiments across multiple datasets demonstrate the supe-
rior performance of CoCA in handling domain shifts. In fu-
ture work, we plan to extend CoCA to more complex scenar-
ios, including domain generalization and source-free GDA.
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