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Abstract

Federated Learning (FL) enables collaborative
model training across distributed devices without
sharing raw data. Hierarchical Federated Learn-
ing (HFL) is a new paradigm of FL that lever-
ages the Edge Servers (ESs) layer as an inter-
mediary to perform partial local model aggrega-
tion in proximity, reducing core network transmis-
sion overhead. However, HFL faces new chal-
lenges: (1) The two-stage aggregation process
between client-edge and edge-cloud results in a
dual-layer non-IID issue, which may significantly
compromise model training accuracy. (2) The
heterogeneity and mobility of clients further im-
pact model training efficiency. To address these
challenges, we propose a novel Clustered Semi-
Asynchronous Hierarchical Federated Learning
(CSAHFL) framework that integrates adaptive
semi-asynchronous intra-cluster aggregation at
client-edge layer and dynamic distribution-aware
inter-cluster aggregation at edge-cloud layer, col-
laboratively enhancing model performance and
scalability in heterogeneous and mobile environ-
ments. We conducte experiments under varying de-
grees of dual-layer non-IID in both static and high-
mobility scenarios. The results demonstrate signif-
icant advantages of CSAHFL over representative
state-of-the-art methods.

1 Introduction
Federated learning (FL) [McMahan et al., 2017] has emerged
as a promising paradigm to enable collaborative training of
machine learning models across distributed clients without
sharing raw data. By ensuring data privacy, FL has found
widespread applications in domains such as healthcare [Wen
et al., 2023], the Internet of Things (IoT) [Rani et al., 2023],
and smart cities [Pandya et al., 2023]. However, the practical

∗Corresponding author

Figure 1: The illustration of Dual-layer non-IID in HFL. Each client
only holds data samples from a single class, resulting in a non-IID
distribution between clients. As shown in (a), both edge servers can
aggregate updates from clients covering 4 classes. In (b), each edge
server can only aggregate updates from clients covering 2 different
classes, leading to a non-IID distribution across edge servers.

deployment of FL is hindered by the prohibitively high com-
munication costs arising from the iterative exchange of model
updates between clients and the cloud server. This issue is
further exacerbated when clients’ local training data are non-
IID, as achieving the desired learning accuracy requires more
aggregation rounds [Shahid et al., 2021; Qin et al., 2021].
Additionally, as model architectures grow increasingly com-
plex, the volume of transmitted model updates grows signif-
icantly, further amplifying the communication burden in FL
systems [Elbir et al., 2021].

To address these challenges, Hierarchical federated learn-
ing (HFL) has been proposed as an advanced extension of
traditional FL [Wang et al., 2022]. HFL adopts a multi-
layer architecture, comprising clients, edge servers (ESs), and
a central cloud server. By leveraging the intermediate ESs
layer for local model aggregation, HFL significantly reduces
the frequency of direct communication between clients and
the cloud, thereby lowering communication overhead. Re-
cent advancements in HFL have addressed key challenges
in communication efficiency, computational scalability, and
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model convergence by introducing multi-layer design [Cui et
al., 2022; Pervej et al., 2024; Ma et al., 2024a]. HFL aligns
naturally with the layered structure of many real-world sys-
tems. For instance, in IoT applications, sensors first transmit
updates to local gateways (i.e., ESs), which then coordinate
with a cloud server for global model training, reducing la-
tency and enabling distributed learning efficiency [Singh et
al., 2022a].

Despite its potential, the practical implementation of HFL
is hindered by several challenges:

Dual-layer Non-IID in HFL. Unlike traditional FL, where
heterogeneity is primarily observed at the client level [Li et
al., 2022], HFL introduces an intermediate aggregation layer
at ESs, resulting in intra-edge heterogeneity (variation among
clients under the same ES) and inter-edge heterogeneity (vari-
ation across different ESs). This dual-layer non-IID char-
acteristic further complicates the convergence of the global
model. For example, clients associated with the same edge
server might exhibit highly diverse data distributions, while
pronounced disparities across ESs can further hinder global
aggregation [Huang et al., 2022]. Figure 1 illustrates the dual-
layer non-IID data distribution.

Heterogeneous client capabilities. Clients in HFL often
exhibit varying computational resources, including differ-
ences in CPU/GPU performance, memory capacity, and net-
work bandwidth, which give rise to variable update laten-
cies and potential bottlenecks during the aggregation pro-
cess. To address these, adaptive scheduling is required to ac-
commodate such variations without stalling the overall train-
ing [Singh et al., 2022b].

Client mobility and dynamic participation. In dynamic
environments such as vehicular systems, clients frequently
join or drop out of the training process due to mobility or
resource constraints. In addition, clients may move between
ESs regions during training. Such mobility disrupts local up-
date consistency and complicates hierarchical aggregation,
thereby impeding convergence of the global model [Prigent
et al., 2024; Morell Martı́nez et al., 2022].

While existing studies have explored solutions to address
individual aspects of these challenges in HFL, a comprehen-
sive framework capable of simultaneously mitigating mul-
tiple issues remains lacking. In this paper, we propose a
novel Clustered Semi-Asynchronous Hierarchical Federated
Learning (CSAHFL) framework, which integrates adaptive
semi-asynchronous intra-cluster aggregation at the client-
edge layer and dynamic distribution-aware inter-cluster ag-
gregation at the edge-cloud layer, collaboratively enhancing
model performance and scalability in heterogeneous and dy-
namic environments. Specifically, we introduce a privacy-
preserving one-shot clustering method that groups clients by
data distribution similarity. This method incurs minimal com-
putational overhead and supports efficient cross-edge cluster
identification. At the client-edge layer, our adaptive semi-
asynchronous aggregation mechanism dynamically adjusts
each client’s workload based on real-time availability, thereby
increasing participation rates for low-capacity clients and re-
ducing idle time. At the edge-cloud layer, we employ a
dynamic distribution-aware inter-cluster aggregation strategy

that assigns weights to aggregated edge models according to
their similarity to the global objective, effectively mitigat-
ing inter-cluster disparities. Together, these features enable
CSAHFL to comprehensively address the dual-layer non-IID
heterogeneity inherent in HFL. Our contributions in this pa-
per are as follows.

• We propose the CSAHFL framework, which effectively
tackles the dual-layer non-IID heterogeneity in HFL
by incorporating a privacy-preserving one-shot cluster-
ing, intra-cluster aggregation at the client-edge layer and
inter-cluster aggregation at the edge-cloud layer.

• We design an adaptive semi-asynchronous update mech-
anism that reduces the impact of client heterogeneity by
dynamically balancing workload allocation while ensur-
ing efficient model training.

• We introduce three different Edge non-IID (ENIID) con-
figurations to gain insights into the impact of dual-layer
non-IID on model performance. We conducted exper-
iments in both static and high-mobility scenarios, and
the experimental results demonstrate that our proposed
method CSAHFL exceeds the performance of state-of-
the-art algorithms.

2 Related Work
HFL extends traditional FL by introducing an intermediate
layer of ESs, thereby reducing communication overhead and
enabling more efficient model aggregation. However, com-
munication efficiency and heterogeneity in both client capa-
bilities and data distributions remain significant barriers to its
practical deployment.

Several studies have targeted communication optimiza-
tion in HFL. HierFedAVG [Liu et al., 2020] was the
first to propose the client-edge-cloud hierarchical Federated
Learning system, enabling faster model training and bet-
ter communication-computation trade-offs by leveraging par-
tial model aggregation at edge servers. RAF [Yang et al.,
2022] proposed a dynamic aggregation strategy to minimize
the number of communication rounds, while HED-FL [Per-
vej et al., 2024] introduced a compression technique to re-
duce transmitted data size. HFEL [Luo et al., 2020] formu-
lates a joint resource-allocation and edge-association prob-
lem, developing an efficient scheduling algorithm that min-
imizes global cost and enhances training performance. Al-
though these approaches have markedly improved communi-
cation efficiency, they do not consider how data heterogeneity
affects model accuracy.

To address devices and data heterogeneity, HELCHFL [Cui
et al., 2022] developed a client selection mechanism
that prioritizes devices with greater computational power.
SARE [Deng et al., 2024] maximized diversity in edge-
aggregated data by shaping local distributions to allevi-
ate non-IID effects. HARMONY [Tian et al., 2022] de-
signed a hierarchical coordination scheme that balances lo-
cal data distribution characteristics and global training round
requirements to improve model accuracy and convergence
speed. HiFlash [Wu et al., 2023] integrated deep re-
inforcement learning for adaptive staleness control along-
side a heterogeneity-aware client-edge association strategy.
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Nonetheless, these approaches focuses primarily on the client
level, lacking investigation into the non-IID discrepancies
among ESs.

Although prior HFL research has enhanced communica-
tion efficiency and mitigated client-level heterogeneity, ex-
isting approaches still fall short of addressing the combined
challenges posed by dual-layer non-IID data distributions and
heterogeneous device capabilities. In this paper, we bridge
these gaps.

3 The Proposed CSAHFL Method
3.1 Problem Definition
We provide the definition of the problem based on the Cloud-
based FL. HFL consists of N clients, M Edge Servers and
one cloud server. Each client n owns a local data set Dn =

{(xi, yi)}|Dn|
i=1 where xi denotes the i-the input sample and

yi is the corresponding labeled output for client n’s feder-
ated learning task. Clients are divided into M disjoint groups
based on their geographical locations, each of which is as-
sociated with one ES. The overall objective of the HFL is to
minimize the global loss function, which is defined as:

F (w) =
M∑
j=1

nj

N
Fj(w) (1)

where Fj(w) is the loss of function for ES j, nj is the total
data size of clients assigned to ES j, N is the total data size
across all clients.

At each ES j, the local loss function Fj(w) is defined as:

Fj(w) =
∑
i∈Sj

ni

nj
Fi(w) (2)

where Sj is the set of clients assigned to ES k, ni is the data
size of client i, Fi(w) = E(x,y)∼Pi

[ℓ(fw(x), y)] is the local
loss function for client i, with ℓ being the loss function.

The final optimization objective is to minimize:

min
w

M∑
j=1

nj

N

∑
i∈Sj

ni

nj
E(x,y)∼Pi

[ℓ(fw(x), y)] (3)

This problem encapsulates the dual-layer aggregation pro-
cess, aiming to produce a globally optimized model while
efficiently handling hierarchical data distributions.

3.2 Overview of CSAHFL
We propose Clustered Semi-Asynchronous Hierarchical Fed-
erated Learning (CSAHFL), a framework that integrates three
interdependent components to work in harmony to handle
data and system heterogeneity. As shown in Figure 2. The
CSAHFL comprises: (1) Privacy-preserving one-shot clus-
tering module: Clients are grouped into clusters based on
data-distribution similarity without revealing raw data. It
ensures efficient clustering with minimal computational and
communication overhead. These clusters form the basis for
all subsequent aggregations. (2) Adaptive semi-asynchronous
intra-cluster aggregation at the client-edge layer: Each client

Figure 2: The overview of CSAHFL

dynamically adjusts its aggregation interval according to real-
time availability and resource constraints, minimizing idle
time and ensuring that low-capacity clients continuously con-
tribute to local model updates. (3) Dynamic distribution-
aware inter-cluster aggregation at the edge-cloud layer: Up-
dated cluster models are aggregated at the cloud by assign-
ing weights proportional to inter-cluster distribution similar-
ity, thereby mitigating the impact of heterogeneity across ESs
and yielding a robust, globally consistent model. We provide
one global aggregation iteration of CSAHFL in Algorithm 1.

3.3 Privacy Preserving One-Shot Clustering
Module

Clients in HFL often exhibit heterogeneous (non-IID) data
distributions, which impede both local and global model con-
vergence. To alleviate these effects, clients with similar distri-
butions can be grouped into clusters, thereby reducing inter-
client variability and enabling localized training within each
cluster. This strategy naturally exploits the HFL architecture,
where ESs mediate between clients and the central cloud.
Here, we employ principal angles to quantify distributional
similarity among clients. Unlike iterative clustering methods,
this approach performs clustering in a single step, incurring
no additional computational overhead during training[Vahid-
ian et al., 2023].

The cosine similarity metric is extended to measure the
similarity between subspaces using principal angles. For two
subspaces X ⊂ Rn and Y ⊂ Rn, the smallest principal angle
Θ1 is defined as:

Θ1(X,Y ) = min
x∈X,y∈Y

arccos

(
|x⊤y|
∥x∥∥y∥

)
(4)

Principal angles quantify subspace distances, providing a ro-
bust similarity metric for clustering[Qian et al., 2004].
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To ensure privacy, each client computes a truncated sin-
gular value decomposition (SVD) of its dataset Di, retaining
only the top p singular vectors:

Un
p = [u1,u2, . . . ,up] , p ≪ rank(Di) (5)

These vectors, serving as low-dimensional data signatures,
are transmitted to the server while preserving privacy by
avoiding raw data sharing.

We construct a proximity matrix A, where each element
Ai,j represents the smallest principal angle between the sub-
spaces Ui

p and Uj
p:

Ai,j = Θ1

(
Ui

p,U
j
p

)
, i, j = 1, . . . , N (6)

Smaller values of Ai,j indicate higher similarity. Hierarchi-
cal clustering (HC) is applied to A to group clients into K
clusters, with the clustering threshold β determining the num-
ber of clusters C = {C1, C2, ...CK}.

3.4 Adaptive Semi-Asynchronous Intra-Cluster
Aggregation at the Client-Edge Layer

To address resource heterogeneity among clients and im-
prove their participation rates in HFL, we propose an adap-
tive semi-asynchronous intra-cluster aggregation mechanism
at the client-edge layer, which tries to unify each client’s
round time to the limited aggregation interval Tθ by adap-
tively adjusting the workload concerning its real-time avail-
ability, effectively mitigate the impact of weak or stale clients
while enhancing training efficiency.

Adaptive Local Trainning
At each ES communication round, the ES randomly samples
n clients to construct the collection S and distributes the edge
model to clients, each selected client would perform one data
batch full model training to estimate its pre-epoch computa-
tion time tunit and report it to the ES. Sequentially, the ES
calculates each client’s total time, the total time ttotal con-
sists of computation time tcmp and communication time tcom,
which is defined as:

ttotal = tcmp + tcom
= Emax ×NBS × tunit +M/Bw

(7)

where NBS is the number of batches, determined by dividing
the dataset size by the batch size B, Emax is a hyperparam-
eter representing the upper bounds for training epochs, M is
model’s file size and Bw is real-time network bandwidth.

The ES dynamically adjusts the aggregation interval Tθ, is
defined as:

Tθ = median(Ttotal) + α · IQR(Ttotal) (8)
where median(Ttotal) represents the typical time consumption
among clients, IQR(Ttotal) captures the variability in client
performance, and α is a tunable parameter to control the de-
gree of tolerance for stragglers. By dynamically adjusting Tθ,
the ES ensures that the majority of clients can complete their
training tasks and report updates within the designated inter-
val.

Each client i then adjusts its workload Ei to ensure timely
completion within Tθ:

Ei = max

(
min

(
Tθ − tcom

NBS × tunit
, Emax

)
, 1

)
(9)

Semi-Asynchronous Intra-Cluster Aggregation
Clients that successfully report updates within Tθ are in-
cluded in the aggregation set Sk for cluster k. For clients that
fail to submit updates, their contributions are asynchronously
included in the aggregation process during subsequent itera-
tions to ensure their updates are not discarded. The aggre-
gated edge model for cluster k is computed as:

wk,t
edge =

1

Nk
edge

∑
i∈Sk

niw
t
i +

∑
j∈Ak

τjnjw
t
j

 (10)

where ni and nj are the local dataset sizes of synchronous
client i and asynchronous client j, Nk

edge =
∑

i∈Sk
ni +∑

j∈Ak
nj is the total dataset size for all reporting clients in

cluster k, including both synchronous Sk and asynchronous
Ak sets. τj is a discount factor applied to asynchronous up-
dates from client j to account for potential staleness in their
contributions, where τj = 1/(1+γj), γj represents the num-
ber of delayed rounds for the update from client j. wt

i and
wt

j represent the local model updates from synchronous and
asynchronous clients at round t.

After intra-cluster aggregation, the ES maintains K up-
dated cluster models {w1

edge, w
2
edge, ..., w

K
edge}.

Algorithm 1 CSAHFL Under One Global Aggregation
Input: Cluster set C, initial global model w0

g , aggregation interval
Tθ , maximum epoch Emax

Output: Final global model wg.
/* Intra-Cluster Aggregation */
for each edge communication round t = 1, 2, . . . , γe do

for each cluster Ck, k = 1, 2, . . . ,K in parallel do
ES sends the current cluster model wk,t

edge to all clients in Ck

for each client i ∈ Ck in parallel do
Client i estimates unit computation time tunit and re-

ports it to ES.
ES computes total time Ttotal and adjusts the aggrega-

tion interval Tθ dynamically,
Tθ = median(Ttotal) + α · IQR(Ttotal)

Client i updates workload,
Ei = max

(
min

(
Tθ−tcom

NBS×tunit
, Emax

)
, 1
)

Client i performs local training for Ei and sends wt
i to

ES.
ES aggregates updates:
wk,t

edge =
1

Nk
edge

(∑
i∈Sk

niw
t
i +

∑
j∈Ak

τjnjw
t
j

)
/* Inter-Cluster Aggregation */

Cloud server receives all updated cluster models {w1
edge, . . . , w

K
edge}

for each cluster Ck, k = 1, 2, . . . ,K do
Compute weights:λk =

ω
qua
k

·ωdis
k∑K

j=1 ω
qua
j ·ωdis

j

Aggregate cluster models: wg =
∑K

k=1 λkw
k
edge

return wg

3.5 Dynamic Distribution-Aware Inter-Cluster
Aggregation at the Edge-Cloud Layer

At the edge-cloud layer, the central server performs a dy-
namic aggregation of the K cluster models received from
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ESs. This aggregation considers both the data distribution
similarity between clusters and the data quantity associated
with each cluster, ensuring a more balanced and robust global
model update.

The global model wg is updated by aggregating the cluster
models {w1

edge, w
2
edge, . . . , w

K
edge}. The aggregation formula is

given as:

wg =
K∑

k=1

λkw
k
edge (11)

where λk is the weight assigned to cluster k, reflecting its
importance in the global aggregation. The weight λk for each
cluster k is dynamically calculated based on two factors: the
quantity and distribution similarity.

Clusters with more data contribute proportionally more to
the global model. The quantity weight ωqua

k is defined as:

ωqua
k =

Nk
edge∑K

k=1 N
k
edge

, (12)

Clusters whose data distribution aligns more closely with
the global target distribution are given higher weights. The
distribution weight ωdis

k is calculated using a similarity metric
such as KL divergence:

ωdis
k =

1

1 +DKL(Pk∥Pg)
, (13)

where DKL(Pk∥Pg) is KL divergence between the distribu-
tion Pk of cluster d and the target global distribution Pg.

The final weight λk is computed as a combination of the
two factors:

λk =
ωqua
k · ωdis

k∑K
k=1 ω

qua
k · ωdis

k

. (14)

4 Experiments
We consider an HFL system consisting of 200 clients, 5 ESs,
and one cloud server, assuming each ES authorizes the same
number of clients with the approximate amount of training
data. We conducted experiments in two scenarios: static and
high-mobility. In the static scenario, each client remains as-
sociated with one ES throughout the entire training process.
In the high-mobility scenario, we follow the experimental
framework in MACFL [Feng et al., 2022], which establishes
a theoretical foundation based on Markov chains for the dy-
namic transition of clients.

4.1 Experiment Settings
Datasets. We validate our proposed CSAHFL on three
popular datasets: Fashion-MNIST [Xiao et al., 2017], CI-
FAR10 [Krizhevsky et al., 2009] and SVHN [Netzer et al.,
2011].
Non-IID setting. To create data with dual-layer non-IID,
we considers the widely used label skew non-IID data dis-
tribution. We first randomly assign each ES x classes of the
total labels and then each client randomly selects y classes
from the labels assigned to its corresponding ES. We focus
on analyzing the impact of Edge non-IID (ENIID) on model
performance. Therefore, y is uniformly set to 20%, while x
is configured under the following three settings.

• EIID: Assign each ES all classes. The datasets among
ESs are IID.

• ENIID50%: Assign each ES a total of 50% classes. The
datasets among ESs are non-IID.

• ENIID30%: Assign each ES a total of 30% classes. The
degree of non-IID between ESs is the highest.

Baselines. We compare CSAHFL against the following set
of baselines. (1) FedAVG [McMahan et al., 2017] is a clas-
sical cloud-based FL. (2) FedProx [Li et al., 2020] optimizes
statistical heterogeneity and system heterogeneity by adding
a proximal term, we perform it in the client-edge aggrega-
tion layer. For baselines that adopt different clustering strate-
gies and communication mechanisms based on HFL. (3) Hi-
erFedAVG [Liu et al., 2020] is a cloud-edge-client HFL that
performs synchronous updates in both client-edge and edge-
cloud aggregation. (4) FedAT [Chai et al., 2021] combines
synchronous intra-tier training and asynchronous cross-tier
training, and conducts client clustering based on their laten-
cies. (5) MACFL [Feng et al., 2022] is a mobility-aware
cluster algorithm by redesigning the local update rule and
model aggregation. (6) HiFlash [Wu et al., 2023] combines
client-edge synchronous and edge-cloud asynchronous ag-
gregation with adaptive staleness control and heterogeneity-
aware client-edge association. (7) FedUC [Ma et al., 2024b]
proposes a time-sharing scheduling algorithm to minimize
intra-cluster aggregation latency. Considering that the Fe-
dAVG and FedAT algorithms are not affected by mobile sce-
narios, we do not repeat their results in the experiments.
Metrics. We use two common metrics to measure perfor-
mance: average test accuracy and training time to achieve
target accuracy.
Client Heterogeneity and Mobility Setting. Each client
runs on a different thread and has a random compu-
tation delay obeying a normal distribution[Zhang et al.,
2024](minimum=2s, maximum=128s, µ=63, σ=40). In the
presence of user mobility, we assume all the users are uni-
formly distributed over the entire network at the beginning
of time. Each user will stay or move to a neighboring ES
according to staying probability ps, denotes the probability
that users staying at the current ES [Feng et al., 2022]. ps=1
represents a static scenario. For the mobile scenario, we set
ps=0.5, meaning the probability of a client staying at the cur-
rent ES to participate in training is 0.5.
Parameter Settings. For each dataset, the number of sam-
ples selected by clients for one training session is B = 10,
the number of local epoch is E = 10, the learning rate is η
= 0.01, the optimization algorithm used for local training of
clients is SGD, the number of rounds the ES aggregates its
clients’ local models is re = 3, and the number of rounds the
cloud server aggregates ESs’ edge models is rc = 50. The
total number of communication rounds equals re × rc.

4.2 Performance Analysis
We conducted experiments on three datasets. As shown in
Tables 1 and 2, CSAHFL consistently outperforms all base-
line methods across all datasets, ENIID settings, and mobil-
ity scenarios, highlighting its robustness to data heterogeneity
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Dataset Fashion-MNIST CIFAR10 SVHN

ENIID setting EIID ENIID50% ENIID30% EIID ENIID50% ENIID30% EIID ENIID50% ENIID30%

ps = 1

FedAVG 87.50±1.01 83.26±0.97 83.08±1.32 48.52±0.98 48.45±0.34 47.74±1.02 84.58±0.26 83.78±0.55 83.83±0.56
FedProx 87.93±0.92 82.96±0.74 80.97±0.74 45.28±0.56 45.28±0.78 40.86±0.84 85.04±0.93 82.65±1.30 78.65±0.95

HierFedAVG 87.43±0.80 83.97±0.46 81.44±0.79 45.51±0.75 45.57±1.10 44.13±0.74 85.05±0.18 84.92±1.50 82.90±0.74
FedAT 83.47±2.32 82.31±4.94 77.01±3.37 51.22±1.84 47.11±3.43 37.64±0.80 82.05±3.92 78.82±1.11 75.15±0.79

MACFL 88.02±0.37 84.95±0.58 81.65±0.91 53.02±1.34 49.77±0.34 47.77±0.34 87.77±0.38 84.13±0.74 81.63±0.74
HiFlash 89.12±1.35 85.24±0.29 81.48±0.52 65.08±0.42 60.58±1.02 49.37±0.64 88.49±0.42 84.92±0.67 80.59±0.37
FedUC 88.14±1.17 83.97±1.32 82.44±1.45 60.98±1.19 58.94±0.74 54.70±0.85 86.62±1.22 83.79±0.64 82.38±1.38

CSAHFL 92.14±0.21 91.11±0.15 88.49±0.43 69.35±0.31 68.06±0.27 64.75±0.34 90.68±0.20 89.62±0.18 88.17±0.56

ps = 0.5

FedProx 86.96±1.01 82.27±2.63 79.86±0.98 45.64±2.78 46.63±1.52 43.32±0.65 83.96±1.48 82.68±1.65 81.57±0.33
HierFedAVG 86.59±0.21 83.80±1.32 81.39±2.96 44.58±1.57 44.04±0.64 41.88±1.04 83.44±0.27 81.62±0.33 80.67±1.53

MACFL 88.44±0.62 85.97±0.15 83.01±0.97 54.06±1.15 46.02±0.13 50.81±0.27 86.06±0.80 83.71±0.42 82.79±1.50
HiFlash 87.71±0.87 87.13±0.23 85.09±1.12 64.83±0.59 63.47±0.44 62.97±0.13 86.92±0.63 86.20±0.24 83.54±0.29
FedUC 86.70±0.98 83.36±1.56 82.57±1.42 60.51±1.86 56.34±1.30 54.85±1.23 84.19±0.92 82.03±0.55 80.97±2.05

CSAHFL 92.82±0.34 91.8±0.42 88.27±0.58 70.68±0.56 68.35±0.20 64.55±0.30 89.72±0.14 89.03±0.29 88.11±0.49

Table 1: Test accuracy comparison across different datasets. For each baseline, the average of final local test accuracy over all clients is
reported. We run each baseline 3 times. The top results are emphasized in bold.

ENIID setting EIID ENIID50% ENIID30%

Target 60% 85% 60% 82% 60% 80%

ps = 1

FedAVG 823 (1.17×) 5043 (3.62×) 987 (1.37×) 8028 (6.46×) 1302 (1.85×) 6229 (3.59×)
FedProx 1341 (1.90×) 5387 (3.87×) 1836 (2.56×) 10137 (8.16×) 1869 (2.65×) 11353 (6.54×)

HierFedAVG 1780 (2.52×) 6712 (4.82×) 1811 (2.52×) 7258 (5.84×) 1811 (2.65×) 11464 (6.61×)
FedAT 706 (1×) 10528 (7.56×) 718 (1×) 7134 (5.74×) 705 (1×) -

MACFL 1632 (2.31×) 6465 (4.64×) 1796 (2.50×) 6912 (5.57×) 1751 (2.48×) 5787 (3.32×)
HiFlash 1400 (1.98×) 2775 (1.99×) 1407 (1.96×) 4299 (4.46×) 1380 (1.96×) 3197 (1.84×)
FedUC 718 (1.02×) 3493 (2.50×) 730 (1.02×) 2665 (2.15×) 1283 (1.82×) 3250 (1.87×)

CSAHFL 724 (1.03×) 1392 (1×) 743 (1×) 1242 (1×) 989 (1.40×) 1735 (1×)

ps = 0.5

FedProx 1776 (2.39×) 7619 (5.12×) 2296 (3.23×) 11068 (8.93×) 2091 (2.81×) 10776 (5.86×)
HierFedAvg 1819 (2.44×) 7164 (4.81×) 1776 (1.79×) 6958 (5.61×) 3202 (4.30×) 11438 (6.22×)

MACFL 1795 (2.41×) 5909 (3.97×) 1807 (1.82×) 5089 (4.10×) 1735 (2.33×) 4374 (2.38×)
HiFlash 882 (1.19×) 6497 (4.37×) 1093 (1.10×) 1733 (1.40×) 824 (1.11×) 2224 (1.21×)
FedUC 853 (1.12×) 5012 (3.37×) 1065 (1.07×) 3793 (3.06×) 912 (1.22×) 3612 (1.96×)

CSAHFL 744 (1×) 1488 (1×) 991 (1×) 1240 (1×) 745 (1×) 1840 (1×)

Table 2: Training time to reach target test accuracy on Fashion-MNIST. ”-” indicates the target accuracy was not reached.

and client mobility. Some representative training curves are
illustrated in Figure 3.

Impact of Edge Non-IID on Model Performance
The severity of ENIID directly correlates with a decline in
model performance. Across all datasets, the model accu-
racy decreases as the data distribution transitions from EIID
to ENIID30%. (1) In the EIID scenario, all methods per-
form relatively well due to the balanced data distribution
across ESs. For example, On CIFAR10, CSAHFL achieves
69.35%, significantly outperforming FedAvg 48.52%. (2)
In the ENIID50% scenario, as data heterogeneity increases,
model performance begins to degrade. For example, on
CIFAR10, FedAT’s accuracy drops from 51.22% (EIID) to
47.11% (ENIID50%), while CSAHFL maintains a high accu-
racy of 68.06%. (3) Under the most extreme ENIID30% sce-
nario, traditional methods experience significant performance
degradation. On CIFAR10, FedProx achieves only 43.32%,
while CSAHFL achieves a much higher accuracy of 64.55%.

Impact of Client Mobility on Model Performance
In high-mobility scenarios, client mobility introduces addi-
tional challenges, causing accuracy drops for all methods.
The accuracy drops in high-mobility scenarios are primar-
ily due to inconsistent data distributions. However, the ac-

curacy improvement observed in HiFlash algorithms may be
attributed to client mobility providing a greater variety of data
sample choices for edge model updates. CSAHFL achieves
the highest accuracy across all datasets and non-IID settings.

4.3 Hyperparameter Analysis
We investigate the effect of the aggregation interval factor
α, the number of max local epoch Emax, and the clustering
threshold β on system performance. The results are summa-
rized as follows:
Interval factor α and max local epoch Emax. We conduct
a combined analysis of α and Emax to study their impact on
training time. As shown in α is tuned across the set {0.5,
1.0, 1.5, 2.0}, while Emax is varied across {5,10,20,30}.
Smaller α values result in tighter aggregation intervals, allow-
ing fewer clients with longer computation times to complete
training and participate in aggregation. Larger α extends the
aggregation interval, enabling more clients to complete full
training rounds with Emax, but at the cost of increased over-
all training time. On the other hand, weaker clients with lower
computational capacity reduce their local epochs E to finish
training within the aggregation interval. This dynamic ad-
justment helps maintain their participation in the aggregation
process while keeping their training times manageable. As
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Figure 3: Comparative analysis of accuracy curves on Fashion-
MINST datasets.

shown in Figure 4(a), the optimal balance is achieved when
α=1.5 and Emax=10, which balances training efficiency and
sufficient client participation. which minimizes training time
while allowing sufficient clients to participate with Emax.

Clustering threshold β. The results suggest that β has a
significant impact on both the number of clusters and model
performance. At lower values of β (β < 5), the final accuracy
increases rapidly, indicating faster model convergence due to
fewer clusters and more concentrated client collaboration. As
shown in Figure 4(b), a moderate value β ≈ 20 achieves the
best trade-off, maximizing model accuracy while maintaining
a reasonable number of clusters.

4.4 Ablation Study
To validate the effectiveness of the CSAHFL framework,
we designed three different ablation experiment methods.
(1) w/o C (without clustering): the client-edge clustering
mechanism is removed, and clients are randomly assigned
to edge servers without considering data distribution similar-
ity. (2) w/o SA (without Adaptive Semi-Asynchronous Ag-
gregation): Semi-asynchronous aggregation is replaced with
a synchronous strategy, requiring all clients to complete local
training before aggregation. (3) w/o D (Without Distribution-
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Figure 4: Hyperparameter analysis on Fashion-MNIST with
ENIID50. (a) Heatmap of Training Time with Varying α and Emax.
(b)Impact of β on Final Accuracy and Number of Clusters.

ENIID Setting Method ps = 1 ps = 0.5

ACC Target Time ACC Target Time

EIID
w/o C 90.12 1432 89.65 1497

w/o SA 91.53 5210 91.41 5108
w/o D 91.21 1398 90.89 1537

ENIID50%
w/o C 86.34 1503 85.92 1607

w/o SA 88.72 5419 89.03 6238
w/o D 89.06 1408 88.74 1718

ENIID30%
w/o C 82.2 1545 81.87 1633

w/o SA 85.17 6193 81.64 6501
w/o D 84.69 1473 83.87 1829

Table 3: Performance Comparison under Ablation Study

Aware Inter-Cluster Aggregation): The inter-cluster aggrega-
tion at the edge-cloud level is replaced by uniform weighting,
ignoring data distribution differences across edge servers.

As shown in Table 3, removing the clustering module leads
to a significant accuracy drop in non-IID scenarios, espe-
cially under ENIID30% (82.20% vs. 90.12%). This demon-
strates that clustering clients based on data similarity effec-
tively mitigates data heterogeneity at the client-edge layer.
Without semi-asynchronous aggregation, the framework ex-
periences slower convergence, particularly in dynamic sce-
narios (ps = 0.5). This highlights the importance of adaptive
client participation for reducing idle time and improving effi-
ciency. Uniform aggregation weights at the edge-cloud layer
reduce the framework’s ability to handle inter-edge data het-
erogeneity, as evidenced by the lower accuracy in ENIID50%
(89.03% vs. 88.74%).

5 Conclusions and Future Work

This paper presents the CSAHFL framework, which effec-
tively addresses dual-layer non-IID challenges and client
heterogeneity through privacy-preserving clustering, adap-
tive semi-asynchronous intra-cluster aggregation, and dy-
namic distribution-aware inter-cluster aggregation. Exper-
iments demonstrate its superior performance in both static
and high-mobility scenarios. However, our approaches lack
adaptability to dynamic data changes. Future work will inves-
tigate personalized federated learning to enhance adaptability
in evolving environments.
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