Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Attribute Association Driven Multi-Task Learning
for Session-based Recommendation

Xinyao Wang', Zhizhi Yu'*, Dongxiao He', Liang Yang?, Jianguo Wei', Di Jin'**
!College of Intelligence and Computing, Tianjin University, Tianjin, China
2School of Artifcial Intelligence, Hebei University of Technology, Tianjin, China

3Key Laboratory of Artificial Intelligence Application Technology, Qinghai Minzu University,
Xining, 810007, China
{wxy2023, yuzhizhi, hedongxiao, jianguo, jindi} @tju.edu.cn, yangliang @vip.qq.com

Abstract

Session-based Recommendation (SBR) aims to
predict users’ next interaction based on their cur-
rent session without relying on long-term profiles.
Despite its effectiveness in privacy-preserving and
real-time scenarios, SBR remains challenging due
to limited behavioral signals. Prior methods of-
ten overfit co-occurrence patterns, neglecting se-
mantic priors like item attributes. Recent studies
have attempted to incorporate item attributes (e.g.,
category) by assigning fixed embeddings shared
across all sessions. However, such approaches suf-
fer from two key limitations: 1) Static attribute en-
coding fails to reflect semantic shifts under differ-
ent session contexts. 2) Semantic misalignment be-
tween attribute and item ID embeddings. To ad-
dress these issues, we propose attribute associa-
tion driven multi-task learning for SBR, dubbed
A2D-MTL. It explicitly models item categories us-
ing cross-session context to capture user potential
interests and designs an adaptive sparse attention
mechanism to suppress noise. Experimental re-
sults on three public datasets demonstrate the supe-
riority of our method in recommendation accuracy
(P@20) and ranking quality (MRR@20), validat-
ing the model’s effectiveness.

1 Introduction

Session-based Recommendation (SBR) has become a criti-
cal task in recommendation systems. A session refers to a
sequence of consecutive user interactions [Tan et al., 2016;
Tuan and Phuong, 2017], which typically completes within
a short time frame and independent of broader context, re-
flecting the user’s preferences or needs in a specific situation.
Unlike traditional recommendation systems that rely on long-
term user profiles, SBR focuses on leveraging the information
within a single session to predict the user’s next behavior or
preference. This approach is particularly valuable in scenar-
ios where user information cannot be obtained due to privacy
constraints or in real-time recommendation contexts, such as
overseas e-commerce websites or video-streaming platforms.

*Corresponding authors.

The primary challenges faced by session-based recommen-
dation systems stem from information scarcity caused by
short sequences and the interference of noise in the data.
First, sessions typically focus only on the ongoing interac-
tion, without considering long-term interaction history. As
a result, the sequences are short, and explicit user signals
(such as clicks, inputs, or feedback) are limited, leading to
data sparsity. Moreover, users may click on items that are ir-
relevant to their current interests out of curiosity, exploration,
or random clicks without clear purchase intent. These behav-
iors may not reflect the user’s true needs and introduce noise,
making it difficult to accurately infer user intentions. Con-
sequently, the model must effectively capture potential user
intentions even with limited sequence data while maintaining
robustness to noise to prevent performance degradation.

Earlier works in session-based recommendation primar-
ily rely on the temporal characteristics of sessions, focus-
ing on single-session modeling. For instance, Recurrent
Neural Network (RNN)-based methods [Hidasi et al., 2016;
Tan et al., 2016; Tuan and Phuong, 2017; Li ef al., 2017],
such as GRU4Rec [Hidasi et al., 2016] and its variants us-
ing Gated Recurrent Units (GRUs), encode the sequential in-
formation of items within sessions. These methods predict
the next item the user may interact with based on the tem-
poral dependencies between items in the session data. Self-
attention-based methods, such as NARM [Li et al., 20171,
overcome the limitations of RNNs by capturing dependencies
not just between adjacent items, but across all items in the
sequence, improving the model’s ability to recognize long-
range relationships. However, these methods typically rely
solely on session-level context and treat each session inde-
pendently, neglecting cross-session context. This limits their
ability to effectively utilize complex transfer relationships
between items, thus reducing recommendation performance.
Not only that, self-attention mechanisms often focus exces-
sively on certain parts of the sequence, ignoring the global
relevance of user behaviors and making it harder to capture
diverse user intentions.

In recent years, some approaches have sought to incorpo-
rate both within-session and cross-session context informa-
tion to improve session-based recommendations. Graph Neu-
ral Network (GNN)-based methods [Chen and Wong, 2020;
Pan et al., 2020; Xia et al., 2021], such as GCE-GNN [Wang
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et al., 2020] and MTD [Huang et al., 2021], model the data of
all historical sessions as a session graph, capturing item corre-
lations within the same session and across different sessions.
This dual modeling approach creates a complex correlation
network between items, facilitating a more comprehensive
understanding of user behavior patterns and improving the
accuracy of recommendations through message passing on
the session graph. Each node (representing an item) aggre-
gates information from its neighboring nodes, enhancing the
model’s ability to capture complex dependencies. However,
these methods often focus solely on item co-occurrence pat-
terns and overlook other valuable information, such as item
attributes like categories, resulting in biased recommenda-
tions that overemphasize frequently co-purchased items. For
instance, as shown in Figure 1, a promotional campaign as-
sociates hiking backpacks with children’s schoolbags, artifi-
cially elevating the latter in the ranking list. Yet this outcome
deviates from the user’s genuine interests. Based on category-
level semantics, the user exhibits preferences for both outdoor
and electronic items—implying a stronger interest in items
like power banks, which bridge these two scenarios. Such
recommendations align more closely with the user’s underly-
ing intent than those shaped by incidental promotional asso-
ciations, highlighting the importance of leveraging attribute
information to improve recommendation relevance.

To alleviate the bias introduced by relying solely on item
co-occurrence patterns, some studies have explored incor-
porating item attribute information to provide additional se-
mantic signals for user preference modeling. Existing meth-
ods [Chen et al., 2023; Song et al., 2021] typically assign a
fixed embedding to each item attribute before training, which
is shared across all sessions. These attribute embeddings are
then directly combined with item ID embeddings to construct
the overall item representation. Howeyver, it suffers from two
major limitations: 1) Static encoding neglects how attribute
semantics vary with session contexts: As shown in Fig-
ure 1, the functional and aesthetic attributes emphasized for a
hardshell jacket differ significantly between casual wear and
outdoor sports scenarios. These context-insensitive embed-
dings make it difficult to accurately capture user intent across
sessions and track evolving interests within a session. 2) Se-
mantic misalignment between attribute and ID embed-
dings: Attribute embeddings encode global, time-invariant
semantics, while item ID embeddings emphasize sequential
dependencies and local transition patterns. This semantic in-
consistency may lead to conflicts when the two are naively
fused, introducing noise that ultimately hinders the model’s
ability to identify fine-grained user preferences and degrades
recommendation quality.

To address the aforementioned challenges, we pro-
pose Attribute Association Driven Multi-Task Learning for
session-based recommendation, termed AZD-MTL. Specif-
ically, we first construct a global category graph based on
inter-session information to capture the structural correlations
among item categories. On top of this, each item dynami-
cally attends to multiple semantically related categories and
adaptively fuses them with the current session context. This
design overcomes the limitations of static attribute modeling
and enhances the model’s ability to generalize user interest

transitions and expand recommendation coverage. Then, we
introduce an adaptive sparse attention mechanism guided by
dynamic category representations. By incorporating item po-
sition and contextual state within the session, the attention
distribution is adjusted in a data-driven manner to explic-
itly focus on attribute signals that are most relevant to the
user’s current intent. This mechanism effectively suppresses
irrelevant noise and facilitates accurate modeling of true user
preferences. Experimental results on three public datasets
demonstrate that our method significantly outperforms exist-
ing methods in recommendation accuracy (P@20) and rank-
ing quality (MRR @20), with the rationality and effectiveness
of the model design being verified.
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Figure 1: An illustrate example containing multiple categories in a
session, where the first half represents electronic items, the second
half represents outdoor activity equipment, and the final target item
is a power bank.

2 Preliminaries

Notations. Let V' = {v1,vs,...,vn} denote the set of
all items, where NNV is the total number of items. A ses-
sion is represented as S = {vy,vs,...,vr}, where T is
the length of the session. Additionally, items are often as-
sociated with auxiliary information such as categories. Let
C ={c1,¢,...,cpr} represent the set of categories, where
M is the total number of categories. Each item v € V cor-
responds to a category ¢ € C. For a session .S, the category
sequence can be derived as S. = {¢y,, Cuys - - - s Cop }» Where
¢y, € C denotes the category of item v;.

Problem Definition. The goal of Session-based Recommen-
dation (SBR) is to predict the next item a user will interact
with based on their anonymous historical behavior in a ses-
sion. Specifically, the task of SBR is to recommend the most
likely next item vz based on the current session S.

3 Method

We begin with a brief overview of the proposed method, fol-
lowed by a detailed description of each component.

3.1 Overview

To address the limitations of static category encoding and
the semantic misalignment between attributes and item se-
quences, we propose attribute association driven multi-task
learning (A2D-MTL) for SBR, which jointly captures item-
level interactions and category-level associations. Dynamic
category embeddings guide an adaptive sparse attention
mechanism for fine-grained intent modeling. The framework
includes two key modules: category relation modeling via a
global category graph, and item interaction modeling across
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Figure 2: Overall architecture of our proposed A?D-MTL.

and within sessions. A multi-task objective combining cat-
egory prediction and item recommendation further enhances
the semantic guidance and improves model adaptability and
generalization.

3.2 Graph Construction

To effectively model the sequential dependencies and
category-level relationships in session-based recommenda-
tion, we construct two global co-occurrence graphs: Item
Graph and Category Graph. These directed graphs are built
from the historical session sequences in the dataset. Similar
to MSGAT [Qiao et al., 2023], normalized edge weights are
used to ensure that the constructed graphs are not dominated
by frequent transitions involving popular nodes, maintaining
fairness in the graph construction.

Item Graph Construction. The item graph G, captures
the co-occurrence relationships between items across all ses-
sions. For each session sequence S = {vy,va,...,vr}, di-
rected edges are created between consecutive items in the or-
der they appear. The edge weight between items v; and vj,
denoted as wy;;, represents the normalized co-occurrence fre-

quency:
- count(v; — v;)
ZkeNom(vi) Couﬂt(vi N Uk) )

where count(v; — v;) denotes the number of times v; is fol-
lowed by v; in the session sequences, and Now(v;) is the set
of items that v; points to in the graph. It is worth noting that
the directed edge v; — v; indicates the order in which items
appear, preserving the sequential nature of user interactions.
Category Graph Construction. The category graph G,
models the relationships between item categories. For a given
session S = {vy,vq,...,vr} and its corresponding category
sequence S. = {cy,, Cuy, -+, Cop ), directed edges are cre-
ated between consecutive categories ¢,, and c,,. Formally,
the edge weight w,,; between categories c; and ¢; can be de-
fined as:

(D

Wi

_ count(c; — ¢;)
ke Now(er) COUNE(C; — cx)’
where count(c; — ¢;) is the number of times c¢; is followed

by ¢; in the category sequences, and Noy(c;) is the set of
categories that ¢; points to in the graph.

2

We, ;
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3.3 Category-Level Representation Learning

After constructing the Category Graph, we aim to learn global
representations of each category to capture the sequential
and dependency relationships between categories. To achieve
this, we employ a graph-based approach that first learns the
global representations of each category through a Graph At-
tention Network (GAT) [Velickovi¢ et al., 2018].

Given a category sequence S, = {c1, ¢, ..., cr}, the goal
is to learn the representation of each category c¢;. To model
the global dependencies between categories, we introduce
neighborhood aggregation to update the representation h’gt of
each category c; at the k-th layer, which is formulated as:

hlgt = act,ctwlhlgtil + ZCjEN(Ct) Ckct’cj Wlh(lfjil, (3)

where a., ., is the attention score between categories ¢; and
c;, representing the importance of category c; with respect
to its neighboring category c;. The attention score ac, ¢, is
computed as follows:

exp(ao (Walhl " [IhE lleey.c,]) )
Z%GN(%)U{%} exp(aTa(Wl[hﬁ';lthk’lueq’%]))

Qep,e; =

 (4)

where || denotes the concatenation operation, e, ., is the
edge weight between categories c; and c;, a and W are learn-
able parameters, and o is the activation function.

Then, we apply a gating mechanism to adaptively fuse the
initial and graph-based category representations as follows:

he, = Bey - Wi + (1 — Be,) - &, )

where ;Lct denotes the final fused embedding of category c;,
hY is the initial category embedding, and h&°" is the global
representation obtained via the graph attention network. The
fusion weight S., € [0, 1] is computed through a gating func-

tion as:
B, = o (Wa [ADIRE™) + b ) ©

where || denotes concatenation, W5 and by are learnable pa-
rameters, and o(+) is the sigmoid activation function that en-
sures the fusion weight lies within [0, 1]. This gating mecha-
nism adaptively balances semantic priors and structure-aware
representations.

To enhance temporal modeling, the fused category repre-
sentation is combined with positional and session-length em-
beddings and encoded by a GRU [Cho et al., 2014]:

Seate = GRU(concat(iLct, Dty 1t))s @)

where h., is the fused category embedding at time step ¢, p;
and [; denote the positional and length embeddings, respec-
tively. In this way, the latent dependencies among categories
can be effectively modeled by integrating global structure-
aware semantics with sequence-aware positional and contex-
tual signals, thus improving both the expressiveness and pre-
dictive performance of the category sequence encoder.

3.4 Item Relation Modeling

Intra-Session Representation Learning. We apply a GAT
the previously constructed item graph G; to obtain global

item representations H%'°*"" = {hy  hy,, ..., hyy }. To fur-
ther encode the current session, we extract multiple types of
session-level features, including the embedding of the last in-
teracted item h,,., which reflects the user’s most recent in-
terest; the full item embedding sequence Hien, € RTXP,
where T' denotes the session length and D is the embedding
dimension; the average-pooled item embedding H;.%; and
the average-pooled category embedding Hoys.

To unify feature dimensions, we apply separate linear
transformations to each input as follows:

Qop = Wihyr + b1, Qseq = HigemWa +b2,  (8)
(item = WSH;;’egnL + b37 Qeate = W4Hg;%e + b4a (9)

where WW; € R4*P and b; € R? (fori = 1,2, 3, 4) are learn-
able parameters. Here, gy,, Gitem, and Geae € R1*? denote
global session-level features, while Qseq € RT*4 encodes lo-
cal item-level representations.

Global features are broadcast-added to local representa-
tions, followed by a sigmoid activation to obtain the enhanced
session representation Ss.q € RTxd .

Sseq = U(Qseq + Qvr + Qitem + QCate)- (10

Then, we apply an Adaptive Sparse Attention Mechanism
(ASAM) to model contextual dependencies. The enhanced
session representation Syq is first transformed via a multi-
layer perceptron (MLP):

Strans = DI‘OpOHt(ReLU(WMLPSseq + bMLp)), (1 1)

where Wyp € RY %4 and byyp € R are the weight and
bias parameters, and d’ denotes the output dimension.

The transformed representation Sy,,s serves as the query,
while the original sequence Siq is used as both key and value
in the attention computation:

QKT
N

where dj, is the key dimensionality, and ae € RT*4 de-
notes the context-aware representation weighted by similarity
between queries and keys.

To further enhance model expressiveness, we refine the at-
tention output using residual connections and layer normal-
ization. The residual path preserves original information and
mitigates gradient vanishing, while the normalization stabi-
lizes the output distribution:

a = LN((Jéan + MLP(OLa[t)) (13)

oy = Attention(Q, K, V') = Softmax < > VvV, (12)

We apply the Entmax activation function [Yuan et al.,
2021] to normalize the attention weights, promoting spar-
sity and encouraging the model to focus on the most relevant
items in the session:

« = Entmax (o, tent), (14)

where .y i @ hyperparameter controlling the degree of spar-
sity. Finally, the session-level representation is computed as
a weighted sum over context features:

St =o', (15)
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where v is a matrix containing external features (e.g., item
or category embeddings), and Sin™ € R serves as the final
session representation for downstream prediction.

Inter-Session Representation Learning. To enhance the
model’s generalization ability, we incorporate inter-session
representation learning based on session-level interaction
similarity. For a given session n, we first compute the

average-pooled representation of all items within the session:

| M
SVE = " Z B, (16)
w

where IV,, denotes the number of items in session n, and hv(")

is the embedding of the i-th item in that session.
Then, we compute the cosine similarity between session n
and all other sessions:

Ve gave
. n m
) = e “

We select the top- R most similar sessions to form an aux-
iliary session set R(n). The inter-session representation
is then obtained by aggregating the reference sessions with
similarity-based weights:

S =" Ynmshe, (18)

meR(n)

where the attention weights +,, ,,, are computed via a softmax
function:

exp(sim(n, m))
Tn,m = N .
Zm/E'R(n) exp(51m(n, m/))

By leveraging contextual information from similar ses-
sions, the model captures broader behavioral patterns, thereby
enhancing the robustness of item prediction.

Final Item Representation Learning. After obtaining the
intra-session representation Si* and the inter-session repre-

sentation S{M", we compute the final item-level representa-

tion via weighted summation:
Sitem = Simra 1 Ginter, (20)

The resulting representation Siep, is then used for item pre-
diction in the session-based recommendation task.

19)

3.5 Prediction

For item prediction, we compute the dot product of the fi-
nal item representation Sie, with the embeddings H,,_; of the
item ¢ to obtain the predicted scores ¢;:

§; = softmax ({Siem, Hy,)) , @D

where 7; represents the likelihood of item v; being the next
item in the session. We use the cross-entropy loss function to
measure the discrepancy between the predicted and true item
labels, where y; denotes the one-hot encoding vector of the
ground truth value:

M
Litem = — Y :1og(3:) + (1 — ) log(1 — §i),  (22)
=1

where M is the total number of items in the session.

For category prediction, we follow a similar process. The
predicted category score g. is computed by taking the dot
product of the final session representation Sjey, With all cate-
gory embeddings H,, in the category set C":

J = softmax ({Scae, He,)) - (23)

We also use the cross-entropy loss for category prediction,
where y. denotes the one-hot encoding vector of the true cat-

egory:
N

Leate = = Y _ ¥, 10g(fe,) + (1 — ye,) log(1 — 4,),  (24)
i=1

where N is the number of categories.
The total loss function is then a combination of both item
and category loss:

L= Litem +A- Lcate7 (25)

where ) is a hyperparameter that balances the two loss terms.

4 Experiment

In our study, we conduct an extensive set of experiments
on three real-world datasets to investigate three key research
questions:

e RQ1: Can our proposed A?D-MTL outperform the
baselines for session-based recommendation?

* RQ2: What is the role of each component in driving the
recommendation performance of A2D-MTL?

» RQ3: How is the performance of A2D-MTL affected by
different parameter settings?

Dataset Diginetica  Tmall  Yoochoosel_64
#Training Sessions 719,470 351,268 369,859
#Test Sessions 60,858 25,898 55,898
#ltems 43,097 40,728 16,766
#Categories 995 711 341
Average Length 5.12 6.69 6.16

Table 1: The statistical results of the datasets.

4.1 Experimental Settings

Datasets. Following recent studies on session-based recom-
mendation systems [Hou et al., 2022; Zhang et al., 2023b;
Wang et al., 2024b], three widely-used public benchmark
datasets are adopted in our work: Diginetica, Tmall, and
Yoochoosel_64.

* Diginetica': A dataset of anonymous user transaction
records from an e-commerce search engine’s logs over
five months, provided by the CIKM Cup 2016.

« Tmall>: A dataset of anonymized shopping logs from
the Tmall platform, released for the IJICAI15 competi-
tion.

"http://cikm2016.cs.iupui.edu/cikm-cup
“https://tianchi.aliyun.com/dataset/42
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Datasets Diginetica Tmall Yoochoosel 64
Metrics P@20 MRR @20 P@20 MRR @20 P@20 MRR @20
GRU4Rec 29.49 8.22 10.93 5.89 60.64 22.89
STAMP 46.62 15.13 26.47 13.36 68.76 29.47
SR-GNN 50.73 17.59 27.57 13.72 70.54 30.97
GCE-GNN 54.22 19.04 33.42 15.42 70.91 30.62
MTD 51.82 17.26 29.12 13.73 71.88 31.32
MSGIFSR 56.08 19.13 36.54 16.09 72.44 32.03
AttenMixer 54.56 19.06 32.49 15.21 65.09 30.92
MiaSRec 54.85 18.93 40.12 16.45 72.93 32.02
MGS 54.85 19.23 40.27 16.62 73.94 31.33
CLHHN 55.67 19.58 41.20 16.39 72.57 30.90
A?D-MTL 61.94 23.25 41.38 17.43 76.06 33.94

Table 2: Performances of comparison approaches on three datasets. The boldface is the best result, and the underline is the second best result.

* Yoochoosel 64°: A dataset of user click events on an
e-commerce platform, created for the RecSys Challenge
2015, using the latest 1/64 portion of training sessions .

Following the approach in [Wu er al., 2019; Wang et al.,
20201, we preprocess the three datasets. Specifically, the most
recent week’s historical sessions are used as the test set, while
the remaining sessions are used as the training set. Addition-
ally, items that did not appear in the training set are filtered
out from the test set to avoid the influence of cold-start factors
for new items. Finally, sessions with a length of 1 and items
that appeared fewer than five times are removed. The details
of the datasets after preprocessing are summarized in Table 1.
Baselines. We categorize the baselines into two types: those
that do not use side information (e.g., GRU4Rec [Hidasi et
al., 2016], STAMP [Liu et al., 2018], SR-GNN [Wu et al.,
2019], GCE-GNN [Wang et al., 2020], MTD [Huang et al.,
2021], MSGIFSR [Guo er al., 2022], Atten-Mixer [Zhang
et al., 2023al, and MiaSRec [Choi et al., 2024]), and those
that use side information (e.g., MGS [Lai et al., 2022] and
CLHHN [Ma et al., 2024]). MGS uses side information
through a mirror graph, while CLHHN incorporates it via a
heterogeneous hypergraph to improve item representations.
Metrics. We adopt two widely used evaluation metrics in in-
formation retrieval: Precision (P@20) and Mean Reciprocal
Rank (MRR @20) for evaluating the performance.
Hyper-parameter Setup. Following [Wu et al., 2019;
Wang et al., 20201, the dimension of the latent vectors is fixed
to 256, and the batch size is set to 100. We use the Adam op-
timizer with the initial learning rate of 0.001, which decays
by 0.8 after every 3 epochs. The I penalty is set to 1072,

4.2 Performance Comparison

To evaluate the effectiveness of A2D-MTL, we report the
comparison results with the state-of-the-art baselines. From
Table 2, we draw the following observations:

* A?D-MTL outperforms all RNN-based methods on all
datasets. Unlike GRU4Rec, which uses GRU to model
sequential data without focusing on key time points,

*http://2015.recsyschallenge.com/challege

A2D-MTL employs an attention mechanism to dynami-
cally highlight important items at each time step. Over-
all, GNN-based models, including A?D-MTL, outper-
form traditional sequential models by capturing more
complex item transitions. Additionally, models like
GCE-GNN and MTD perform better than SR-GNN,
suggesting that integrating item transitions from other
sessions improves interest prediction.

* Methods leveraging attribute information as side infor-
mation consistently outperform GNN-based and multi-
level models, highlighting its effectiveness in handling
sparse interactions in short sequences.

e Our model outperforms all baseline models across all
metrics on three datasets, demonstrating its superiority.
The performance improvement over methods like MGS,
which directly integrates category information into item
embeddings, or CLHHN, which links items and cate-
gories through hyperedges, further highlights that con-
structing a global graph with categories as independent
nodes better preserves the independence and flexibility
of category information, enhances global information
modeling, and avoids excessive coupling between items
and categories.

4.3 Ablation Study

To investigate the necessity of each component of A2D-MTL,
we design four variants and conduct ablation experiments
across three datasets. Specifically, we use the A2D-MTL vari-
ant without side information (category information) (A%D-
MTL w/o CATE) for modeling; the variant that directly inte-
grates category into item embeddings (A?D-MTL w/o EXP);
the variant without sparse attention (A’D-MTL w/o SPA),
which only uses GAT as an encoder; and the variant with-
out adaptive adjustment of sparse attention coefficients (A%D-
MTL w/o AdaSPA).

Table 3 presents the comparison results, from which we
make the following observations: 1) Compared to A2D-MTL
w/o CATE, A2D-MTL w/o EXP performs better, highlight-
ing the importance of side information. However, A2D-MTL
w/o EXP underperforms A2D-MTL, indicating that con-
structing a graph with categories as independent nodes yields
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Datasets Diginetica Tmall Yoochoosel 64
Metrics P@20 MRR @20 P@20 MRR @20 P@20 MRR @20
A?D-MTL w/o CATE 52.92 16.65 35.25 13.34 70.18 30.24
A’D-MTL w/o EXP 54.56 21.13 36.54 16.29 73.03 32.44
A?D-MTL w/o SPA 56.85 19.22 39.57 15.19 73.94 31.02
A?D-MTL w/o AdaSPA 59.21 20.67 40.09 15.78 74.98 31.90
A’D-MTL 61.94 23.25 41.38 17.43 76.06 33.94

Table 3: Performance of variant models on P@20 and MRR @20.

more accurate recommendations than directly integrating cat-
egory information into item embeddings. 2) When compared
to the variant without the sparse attention mechanism (A2D-
MTL w/o SPA), the variant without adaptive adjustment of
sparse attention coefficients (A2D-MTL w/o AdaSPA) per-
forms better, demonstrating the effectiveness of the sparse at-
tention mechanism. However, its MRR value is lower than
that of A2D-MTL, suggesting that the adaptive sparse atten-
tion mechanism helps more accurately identify noise and rank
target items higher. 3) A2D-MTL achieves the best perfor-
mance, demonstrating that the integration of commodity cat-
egory association guidance and the adaptive sparse attention
mechanism enhances recommendation relevance.

4.4 Parameter Sensitivity

The regularization parameter A in Eq.(25) balances the item
prediction loss and category prediction loss in A2D-MTL. We
evaluate the performance of A2D-MTL under different \ val-
ues {0.01, 0.1, 0.2, 0.23, 0.25, 0.27, 0.29, 0.3, 0.4, 0.5}. As
shown in Figure 3, A2D-MTL achieve good results on both
datasets. Specifically, increasing the value of A within the
range of 0.01 to 0.25 gradually improved performance met-
rics. When A is between 0.25 and 0.29, performance met-
rics stabilize. However, when \ exceeds 0.3, the performance
metrics decline significantly. These observations indicate that
selecting an appropriate value of A can enhance recommen-
dation performance.
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Figure 3: The impact of X\ across Tmall and Diginetica datasets in
terms of P@20 and MRR @20.

5 Related Work

Early RNN-based session-based recommendation (SBR)
methods, such as GRU4Rec [Hidasi et al., 2016], predict user
interest by modeling the temporal dependencies in the item
sequence. Later, NARM [Li et al., 2017] introduces the at-
tention mechanism to enhance the modeling of item impor-
tance, but it still lacked sufficient exploration of category in-
formation. As research progressed, attention mechanisms de-
rived from Transformer models were widely applied to SBR.
For example, CoSAN [Luo et al, 2020] generates richer
item representations by combining neighborhood information
with attention mechanisms. Graph Neural Networks (GNN5s)
have also been extensively used in SBR. SR-GNN [Wu et
al., 2019] is the first to apply Gated Graph Neural Networks
(GGNN) [Li et al., 2016] to SBR, learning transfer relation-
ships between items by propagating information on the ses-
sion graph. GCE-GNN [Wang et al., 2020] enhances under-
standing of complex session structures by learning session
representations across multiple graph layers. MGIR [Han
et al., 2022] strengthens session representations by learning
global item relationships.

Recent studies highlight the importance of item category
information in improving recommendation performance, as
it is both effective and easy to obtain in practice. Integrat-
ing such information into SBR models has become an ef-
fective approach to enhancing recommendation performance.
For example, CLHHN [Ma et al., 2023] introduces category
hyperedges and constructs hypergraphs to capture high-order
interactions among categories, thereby revealing more com-
plex item similarities. Additionally, HearInt [Wang et al.,
2024a] integrates category information into its intent recog-
nition module to achieve finer-grained semantic partitioning
when parsing dynamic user interests, thus accurately captur-
ing users’ ever-changing demands.

6 Conclusion

This paper proposes A2D-MTL, a novel session-based rec-
ommendation method that leverages item and category graphs
to capture sequential and categorical relationships. By uti-
lizing a Graph Attention Network (GAT) for global item and
category representation learning, and employing a multi-head
sparse attention mechanism to capture session context, A2D-
MTL significantly improves performance, surpassing existing
baselines. Our approach enhances global information model-
ing while preserving the independence of category informa-
tion, demonstrating its effectiveness in addressing sparse in-
teraction issues and improving recommendation accuracy.
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