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Abstract

Model inversion and adversarial attacks in se-
mantic communication pose risks, such as con-
tent leaks, alterations, and prediction inaccuracies,
which threaten security and reliability. This pa-
per introduces, from an attacker’s viewpoint, a
novel framework called RepObE (Representation
Learning-Enhanced Obfuscation Encryption Mod-
ular Semantic Task Framework) to secure semantic
communication. This framework employs dynamic
encryption during semantic extraction and feature
transmission to hinder attackers from reconstruct-
ing data through eavesdropping, thus strengthen-
ing system privacy. To combat image communi-
cation task challenges, we propose a prototype ad-
versarial collaborative alignment training approach
enhanced by representation learning. This method
extracts and encodes semantic features while us-
ing dynamic perturbation and robust optimization
to improve system resilience against adversarial
threats. The approach ensures reliable semantic
communication in complex environments, main-
taining performance while countering attacks using
feature obfuscation, adversarial training, and rep-
resentation learning. Experimental results demon-
strate that our method surpasses existing techniques
by more than 2% in resisting model inversion at-
tacks on classification tasks. Visually, our method
excels with minimal decipherable images for at-
tackers. It also shows a 3% to 5% improvement
in countering adversarial attacks on classification
tasks.

1 Introduction

With 6G technology advancing swiftly, traditional techniques
are increasingly unable to meet the requirements for high
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bandwidth, low latency, and intelligent processing. Seman-
tic communication, which prioritizes sending the meaning of
data over raw bits, enhances both communication efficiency
and task accuracy [Lu et al., 2024]. Tt also simplifies data
transfer and boosts environmental awareness [Fu et al., 2024].
This approach not only enhances efficiency but also intro-
duces novel methods for intelligent information processing
and resource optimization. Research has progressed from
semantic extraction in single-mode data (e.g., text, images
[Sagduyu et al., 2024], audio [Chen et al., 2024], video) to
multimodal integration [Guo et al., 2024], while addressing
privacy and security issues, thus solidifying the theoretical
and technical foundations of the field.

Recent advancements in semantic communication have
transformed both practical applications and academia. In the
Internet of Things (IoT), it boosts device interaction and re-
source management, enhancing system efficiency [Sang et
al., 2025]. For unmanned aerial vehicles (UAVs), it facilitates
group coordination by extracting essential semantic data from
missions, thereby reducing communication overhead and op-
timizing decision-making [Xu ef al., 2025]. In digital twin
technology, which requires accurate, real-time synchroniza-
tion between physical and virtual entities, semantic commu-
nication is crucial for industrial production monitoring [Du et
al., 2024]. Likewise, in vehicular networks, semantic com-
munication tackles high latency and inefficiency issues in au-
tonomous driving and V2V communication. By transmitting
crucial semantic details about the environment and driving
actions, it aids decision-making, improves safety, and opti-
mizes traffic management [Xu et al., 2023].

Recent research on privacy and security within semantic
communication has gained traction due to the complexity
of extracting and processing deep semantic information. To
counter data breach risks, several privacy-preserving meth-
ods are suggested, such as adversarial learning [Wang et al.,
2025], location privacy protection [Qiu et al., 2023], and fed-
erated learning frameworks [Wang et al., 2024b]. Moreover,
information bottleneck theory [Zhang et al., 2024] and vari-
ational inference [Li et al., 2024] have been examined to
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improve feature extraction and model training, thereby indi-
rectly enhancing privacy. However, these predominantly fo-
cus on data privacy, often overlooking crucial model security
challenges. Existing approaches fall short against sophisti-
cated threats, including model inversion attacks, which re-
construct sensitive data [Wang et al., 2024a], and adversarial
attacks, which disrupt systems and degrade performance us-
ing minimal perturbations [Zhang er al., 2025]. This paper
introduces an innovative solution, with the primary contribu-
tions summarized below.

Innovative Framework for Privacy Protection. We pro-
pose the RepObE framework, which dynamically encrypts
data during the stages of semantic extraction and feature
transmission. This framework effectively prevents attack-
ers from reconstructing data through eavesdropping, signif-
icantly enhancing the privacy protection of the system.

Enhanced Resilience in Image Communication Tasks.
To further strengthen the resilience of the system, we intro-
duce a collaborative adversarial training approach of proto-
type alignment based on learning. This approach leverages
representation learning to extract and encode semantic fea-
tures while integrating dynamic perturbation and robust opti-
mization techniques.

Fusion Approach for Reliable Semantic Communication.
Our fusion approach ensures reliable and stable semantic
communication in complex scenarios. It maintains high per-
formance while defending against attacks through feature ob-
fuscation, adversarial training, and representation learning.

Experimental Results Demonstrating Superior Perfor-
mance. Experimental results show that our method outper-
forms existing methods by more than 2% in resisting model
inversion attacks on the MNIST dataset’s classification task.
Visually, our approach performs the best, making it difficult
for attackers to obtain meaningful images. Our method also
improves by 3% to 5% in resisting adversarial attacks on the
CIFARI10 dataset’s classification task.

The rest of this paper is organized as follows. Section 2
is related work. Section 3 proposes the framework design.
Section 4 presents the experimental results. Finally, Section 5
summarizes the paper.

2 Related Works

2.1 Image Semantic Communication

Advancements in Al and communication technologies have
prioritized efficient image data transmission while retaining
critical information. In image classification, Liu ef al. em-
ployed semantic compression to reduce transmission load and
latency while improving performance [Liu et al., 2021], and
Hu et al. integrated masked VQ-VAE with adversarial train-
ing to enhance robustness and multitask optimization [Hu et
al., 2023]. For UAV scene classification, Kang er al. used
deep reinforcement learning to select key semantic blocks,
optimizing efficiency [Kang et al., 2022]. In segmentation
and autonomous driving, Pan et al. designed a system that
significantly improved segmentation performance [Pan er al.,
2023]. For image retrieval, Jankowski ef al. [Jankowski et al.,
2020] and Xie et al. [Xie et al., 2022] optimized single-user

and multi-user scenarios, enhancing retrieval and transmis-
sion. In reconstruction tasks, Yang et al. leveraged the Swin
Transformer to improve representation and efficiency [Yang
et al., 2023]. For multitask scenarios, Zhang et al. utilized
semantic encoding with a data adaptation network [Zhang et
al., 2023], and Wu et al. introduced cross-task transfer to
reduce storage needs and enhance performance [Wu et al.,
2022]. Additionally, Liu ef al. demonstrated a task-oriented
framework that effectively reduced data volume and latency
in classification and reconstruction tasks [Liu et al., 2022].

2.2 Privacy and Security of Neural Networks

Semantic communication enhances transmission efficiency
but faces significant challenges in data security and privacy
protection [Nan et al., 2023]. Neural network-based encoders
and decoders are vulnerable to threats like model inversion,
inference, and adversarial attacks, leading to potential pri-
vacy breaches and compromised security [Liu ef al., 2024a].
To mitigate these threats, researchers have proposed defense
strategies such as combining information bottleneck theory
with adversarial learning [Wang et al., 2024al, employing
adversarial training for robustness, and implementing hierar-
chical defenses for vehicular metaverse applications [Kang
et al., 2023]. Random feature space perturbations [Xu et
al., 2021] and encryption methods like homomorphic encryp-
tion and secure multi-party computation [Liu er al., 2024b;
Patra et al., 2021] further protect sensitive data and model
parameters. However, existing approaches still fall short in
addressing privacy protection and security for image-focused
semantic communication systems.

Existing literature on semantic communication for image
data has improved efficiency but lacks adequate solutions for
data security and privacy. Despite proposed defense strate-
gies, neural network-based encoders and decoders remain
vulnerable to threats. This paper introduces the Represen-
tation Learning-Enhanced Obfuscation Encryption Modular
Semantic Task Framework to enhance both efficiency and se-
curity of image-focused semantic communication systems.

3 RepObE Framework Design

The proposed system model for this paper can be found
in supplementary materials. In this section, we propose
the RepObE framework for secure semantic communication,
as shown in Figure 1. We dynamically encrypt data dur-
ing processing to prevent eavesdropping and enhance pri-
vacy. For image communication, we introduce a repre-
sentation learning-enhanced adversarial training approach.
This approach encodes features and integrates techniques to
strengthen robustness against attacks. It ensures reliable com-
munication in complex scenarios while maintaining high per-
formance. The training algorithm is shown in Algorithm 1.

3.1 Design of Semantic Encoder-Decoder

Design of Semantic Encoder. The input 224 x 224 image
is processed through a 7 x 7 convolutional layer, followed
by max-pooling, reducing the feature map to 56 x 56 with 64
channels. Two ResNet blocks extract deep features, maintain-
ing the size and channel count. Subsequent residual blocks
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Figure 1: RepObE: Representation learning-enhanced obfuscation encryption modular semantic task framework.

with an SE module increase channels to 96 and reduce the
size to 28 x 28. A convolutional layer reduces the channels to
4, followed by 3 x 3 convolutions with an SE module, adjust-
ing the channels between 32 and 4. A final channel obfusca-
tion operation produces the output.

Design of Semantic Reconstruction Decoder. The feature
map of size 4 x 28 x 28 first undergoes an unShuffle oper-
ation for channel rearrangement. It then passes through two
ResNet blocks, producing a feature map of size 64 x 28 x 28.
A transposed convolution increases the size to 64 x 56 x 56,
followed by two more ResNet blocks that reduce the channels
to 32 while maintaining the size. Another transposed convo-
lution expands the size to 32 x 112 x 112. Two additional
ResNet blocks further reduce the channels to 16, keeping the
size unchanged. Finally, a transposed convolution adjusts the
channels to C, outputting an image of size C' x 224 x 224.

Design of Semantic Classification Decoder. The 4 x 28 x
28 input is first unshuffled to rearrange channels. It then
passes through two ResNet blocks, producing an output with
64 channels and a feature map size of 64 x 14 x 14. Next,
two additional ResNet blocks increase the channels to 128,
reducing the size to 128 x 7 x 7. Another two ResNet blocks
further increase the channels to 256 and reduce the size to
256 x 4 x 4. Finally, global pooling is applied, followed by a
fully connected layer, generating the final classification out-
put with a dimension of 10.

Optimization of Semantic Encoder-Decoder. To ensure
secure and practical transmission, the input image size I €

REXHXW g get to at least 224 x 224. Both the encoder and
decoder leverage convolutional neural networks, incorporat-
ing ResNet blocks and SE attention mechanisms for effective
feature extraction. For an input image of resolution 224 x 224,
the feature map resolution is progressively reduced to 28 x 28
through convolution, pooling, and downsampling, while the
number of channels increases from 3 to 4. ResNet blocks
enhance feature extraction, while SE blocks capture rich se-
mantic features, improving the model’s representational ca-
pacity. Multi-step downsampling minimizes computational
complexity. A confusion layer, utilizing a shift algorithm for
image confusion and deconfusion, is integrated at the sender’s
input and receiver’s output. Each ResNet block comprises
two 3 x 3 convolution layers and a residual connection. The
formula for a ResNet block is

F' = ReLU(Rn(F) + F), ¢))
where the input feature map is ', Rn(F’) represents the re-
sult of two convolution operations, and the output feature
map is F’. The SE Block includes global average pooling,
which compresses the spatial dimensions H x W to the chan-
nel dimension, extracting global features for each channel.
Then, two fully connected layers are used to generate the at-
tention weights for the channels, and finally, each channel is
weighted to enhance the representation of important features.
The formula is

w = o(wy - ReLU (wy - GAP(F))),F' =w-F, (2

where wy and wy are model weights, G AP denotes global av-
erage pooling, and w represents the computed weights. The
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Algorithm 1 RepObE Training Algorithm

Require: A dataset D;, epochs e, batch size B, initialize
semantic encoder network Sp(-), semantic reconstruc-
tion/classification decoder network Gy, (-)/Gg, (+).

Ensure: The trained Sy(-), Gy, (-) or Gy, (-).

1: The transmitter and receiver negotiate the key K =

(Kr, K,y 0);

2: Set epoch counter e = 1;

3: while the training stop condition is not met do

4:  The transmitter generates adversarial sample B’ based
on PGD algorithm and dataset B;

5:  The transmitter encrypts x = Syp(B’+ B) based on the
key K and formulas (4), (5), (6), (7);

6:  Transmit x over the channel, receiving Y at the desti-
nation;

7:  The receiver decrypts X based on the key K and for-
mulas (8), (9), (10), (11);

8:  The receiver calculates the loss function L. (for the
reconstruction task) or L. (for the classification
task);

9:  Update parameters of semantic encoder network Sy ()
and decoder network Gy, (+) or G, (-);

10: e=e+1;

11: end while

feature transmitted over the channel is a k-dimensional vec-
tor z. Considering the output power p from the sender, we
impose an average power constraint on the transmitted signal
vector, expressed as

s=\kp-2/\Vz 2 3)

The encoder and decoder are jointly trained, with the channel
modeled as a non-trainable layer.

3.2 Confusion Offset

Before entering the input channel, assume the semantic en-
coder at the sender needs to send a feature map of size
F, € R>H>XW' \yhere q represents the number of chan-
nels in the feature map, H' is the height, and W’ is the width
of the feature map. The sender and receiver negotiate a key
K = (K,,K.,r,c), when K, is the row permutation key of
size H', K. is the column permutation key of size W', r is
the row offset base, and c¢ is the column offset base.

The encryption process consists of the following four steps.

Row Confusion. Rearrange the rows of each channel a of
the feature map F' according to the order specified by the key
K,. Let the i-th row of F' be denoted as F'[¢, :], and the con-
fusion feature map is denoted as F as follows.

Fl[aaivz] :FS[CL,KT[i],Z], (4)

where K,.[i] is the i-th element in K., indicating that the
K .[i]-th row of the original feature map is mapped to the i-th
row in the confused feature map.

Column Offset. After the row confusion is completed, the
feature map F undergoes a column shift for each row based

on the column offset base ¢ and the current row number <.
The offset feature map is denoted by F5 as follows.

Fla,i,j] = Fila,i,(j + i+ c) mod W']. )

The column offset of each row increases incrementally. The
0-th row has an offset of 0 + ¢, the 1st row has an offset of
1+ ¢, and so on, until the (H' — 1)-th row, where the offset
isH —1+ec.

Column Confusion. For each channel ¢, the columns of F5
are permuted according to the order specified by the key K.
The permuted feature map is denoted by F3, and the operation
is defined as

Fg[ll,:,j] :FQ[Q,5,K(;UH, (6)

where K.[j] is the j-th element in K, indicating that the
K_[j]-th column of the original feature map is mapped to the
j-th column in the confused feature map.

Row Offset. After the column confusion is completed, the
feature map F3 undergoes a row shift for each column based
on the row offset base r and the current column index j. The
offset feature map is denoted by F.,, as follows.
F.,, = Fsla, (i + j +r) mod H', j]. (7

The row offset for each column increases incrementally. The
0-th column has an offset of 0+, the 1st column has an offset
of 1 + r, and so on, until the (W’ — 1)-th column, where the
offsetis (W’ — 1) +r.

The decryption process is composed of the following four
steps.

Inverse Row Offset.

Fll:Fen[aa(ifjfr)mOdHlaj}' (8)
Inverse Column Confusion.
Fila,:, K.[j]] = Fila,, j. )

Inverse Column Offset.
Fila,i,j] = Fila,i,(j —i—¢) mod W'].  (10)

Inverse Row Confusion.
Faela, K., :] = Fyla,i,:]. (11)

Theorem 1. The encryption process consists of row confu-
sion, column offset, column confusion, and row offset. These
steps introduce significant complexity for attackers attempt-
ing to reconstruct the original feature map. The total key
space size of the encryption process is given as follows.

\K|=H'N-W-H-W. (12)

Proof. The row confusion step uses a key K., which is a per-
mutation of length H’. The total number of possible row per-
mutations is H'!.

The column confusion step uses a key K., which is a per-
mutation of length WW’. The total number of possible column
permutations is W'!.

The row offset r and column offset ¢ are values within the
range from 0 to H'—1 and 0 to W’ —1, respectively, providing
H and W possible offset values for rows and columns.

Combining all the above steps, the total size of the key
space is the product of all possible combinations, given by
formula (12). O
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Figure 2: Representation learning-enhanced prototype alignment collaborative adversarial training.

3.3 Representation Learning-Enhanced Prototype
Alignment Collaborative Adversarial Training

To defend against adversarial attacks, we adopt an adversar-
ial training strategy to improve the robustness of the model,
as shown in Figure 2 Adversarial training aims to enhance
the model’s ability to correctly classify natural samples while
resisting the interference caused by adversarial samples by
incorporating adversarial examples into the training process.
The goal of generating adversarial samples is to maximize
the model’s loss function by adding perturbations to the input
sample /. We use the PGD algorithm to generate adversar-
ial samples. PGD is an iterative optimization method that
incrementally finds the most disruptive adversarial samples
through multiple updates. In each iteration, the loss function
is denoted as Lcg(Mg(1aav), ), and the perturbation that in-
creases the loss is denoted as formula (14).

Additionally, to enhance the representation learning ca-
pability of the model, we incorporate a contrastive learning
framework during adversarial training. Contrastive learning
leverages the relationships between adversarial and natural
samples to enforce robust feature representations. Specifi-
cally, we treat adversarial samples [,4,, and their correspond-
ing natural counterparts I,,,; as positive pairs while ensuring
that different samples form negative pairs. The contrastive
loss is expressed as

exp(sim(zady, Znat) /)
> exp(sim(zaav, 2i) /A)

where z,qy and zp, are the embeddings of adversarial and nat-
ural samples, sim(-) represents the cosine similarity, and A
is the temperature parameter. By minimizing Lconerast, the
model learns robust embeddings that are invariant to adver-
sarial perturbations, improving both robustness and represen-
tation quality.

The goal of this paper is to maximize the model’s adversar-
ial robustness through adversarial training, while maintaining
the classification performance on natural samples as much as
possible. First, the adversarial loss is maximized to generate

13)

Lcontrast =-1

adversarial examples that can deceive the model, causing its
predictions to deviate from the correct labels as follows.
max

I - I DKL (MG(Inat) H MO(Iadv)) y (14)
adv " 4Inat

where [,,: represents the adversarial sample generated by
maximizing the adversarial robustness loss. The next step is
to input both adversarial and natural samples into the model,
and optimize it to make the model’s prediction on adversarial
samples as close as possible to that of natural samples. The
adversarial training loss function introduced is

mein Eryy~p [Lee (Mo(Inaw),y) + formula (14)]. (15)

In each training iteration, the sender inputs natural samples
and generates corresponding adversarial samples based on the
current state of the model. Then, both natural and adversarial
samples are fed into the model for training. To minimize the
loss, we have designed a new loss function as follows.

exp(sim(zady, Znat) /)
>, exp(sim(Zaay, i) /)

N
w4 LCE (M0 (Inat)a y)

Lclass = - IOg

TN iv:l W(Toay) Dxr (Mo (Inat) || Mo (Laay)) -
(16)

We introduce W (Ioay)Dicr, (Mo (Inat) || Mo(Lagn)) as the
loss for adversarial samples, which aims to reduce the pre-
diction discrepancy between natural samples and adversarial
samples. € is a hyperparameter used to adjust the magnitude
of KL divergence loss. The KL divergence is used to quan-
tify the difference in output distributions between natural and
adversarial samples, and is given by the following formula.

Di(P | Q) =) P(x)log P(x)/Qz),  (17)
where P, () represent the output distributions of natural and
adversarial samples, respectively. By minimizing KL diver-
gence, the model’s prediction distributions for natural and ad-
versarial samples are consistent, thereby enhancing robust-
ness.
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Figure 3: Experimental study on classification performance of MNIST and CIFAR-10 datasets under different SNRs and channels.

Inspired by prototype alignment, suppose the dataset con-
tains K classes. We first train an auxiliary model, and after
training, the K -dimensional logits output for natural samples
are denoted as the feature p(1) € RX, where

p(I) = [p1(1), p2(I), - - -, px (1)), (18)

and p(x) refers to the high-dimensional feature before the
model’s output layer (or the logits output), which can be used
as a high-level semantic representation of samples during ad-
versarial training and model optimization.

For each class y € K, the prototype p, € R¥ is the mean
of each dimension of the feature of all samples in that class.
The calculation is listed as follows.

py = (/N S (D).

i=1

19)

The goal is to bring the model’s logits output for adversar-
ial samples closer to the prototype of the corresponding class
in natural samples, reducing the prediction discrepancy be-
tween natural and adversarial samples. The adversarial sam-
ples are assigned different weights w(1,q,) based on their
deviation from the prototype of natural samples, where the
weight is inversely proportional to the distance from the nat-
ural sample. A greater weight is assigned to adversarial sam-
ples that deviate further from the natural sample prototype,
and a smaller weight is assigned to those closer to the pro-
totype. The weight calculation formula is listed as follows.

w(lgdy) =1 —exp (_HMG(Iadv) _py||2/7) )

where || My (Iaan) — pyl|? is the squared Euclidean distance
between adversarial sample Mp (1,4, ) and class prototype p,,.

The distance reflects how much an adversarial sample de-
viates from the natural sample distribution, with larger dis-
tances indicating harder-to-classify samples. The function
1—exp(-), a variant of the Gaussian kernel, maps the distance
to a weight range of [0, 1). The smoothing parameter 7 con-
trols the weight’s sensitivity to distance. A larger 7 results in
more uniform optimization, while a smaller 7 increases the
weight of samples farther from the prototype, emphasizing
classification boundaries. Weights are normalized to ensure
the average weight remains 1, dynamically enhancing opti-
mization for difficult samples without diminishing the overall

(20)

adversarial loss impact as follows.

W(Iaav) = Nw(Lay)/ Z:Zl w(Loay). 1)

4 Performance Evaluations

The experiments in this study utilized the MNIST and
CIFAR-10 datasets, representing handwritten digit classifica-
tion and more complex color image classification tasks, re-
spectively. To simulate channel interference in a real wireless
communication environment, the communication channel in
the experiments was modeled as either an AWGN channel or
a Rayleigh fading channel. The Signal-to-Noise Ratio (SNR)
range was set from 7 to 23, covering typical communication
conditions from low to high SNR. This experimental design
aims to comprehensively evaluate the robustness of the pro-
posed semantic communication framework across different
datasets and channel environments, as well as its capability in
privacy protection and resilience against adversarial attacks.
Please refer to the supplementary materials for the experi-
mental settings designed in this study.

4.1 Model Reversal Attack Experiment

As shown in Figures 3a and 3b, RepObE demonstrated su-
perior performance on MNIST dataset under both AWGN
and Rayleigh fading channels, with accuracy steadily im-
proving as SNR increased (e.g., from 0.9943 to 0.9966 un-
der AWGN and from 0.9920 to 0.9956 under Rayleigh).
In contrast, NECST-DP [Choi et al., 2019] exhibited sig-
nificantly lower performance, particularly NECST-DPO.05.
While IBAL [Wang et al., 2024a] and ESCST performed
well at low to medium SNRs, their improvements plateaued
at higher SNRs, ultimately lagging behind ours. Addition-
ally, NECST consistently outperformed NECST-DP across
all SNR levels, reflecting the trade-off between privacy pro-
tection and performance. As shown in Figure 3c, RepObE
exhibited robust performance on CIFAR-10 dataset under
Rayleigh fading channel, improving from 0.9021 at SNR =7
to 0.9151 at SNR = 23. While VAE [Mehrasa et al., 2019]
consistently underperformed with a maximum of 0.8512,
JPEG2000 [Christopoulos et al., 2000] slightly outperformed
ours at high SNR (0.9203 at SNR = 23). Overall, ours demon-
strated the best robustness under low to medium SNRs, while
JPEG2000 showed a slight advantage at high SNRs.
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Figure 4: Adversarial attack experiments on MNIST and CIFAR-10 datasets under different SNRs and channels.

In Figure 3d and Figure 3e, the first four columns show
images reconstructed by attackers using IBAL, NECST,
NECST-DP0.9, and ours, respectively, under model inversion
attacks. The fifth column displays images received by legiti-
mate users with ours. Figure 3d presents results for MNIST
digits “3” and “4”, while Figure 3e shows CIFAR-10 cate-
gories “ship” and “horse”. Visually, attacker-reconstructed
images with ours are almost unrecognizable, containing no
meaningful information, whereas legitimate users received
clear and usable images.

These results confirm the effectiveness of our method in
resisting model inversion attacks while maintaining high-
quality image reconstruction and classification. ~Attackers
failed to extract meaningful information, while legitimate
users successfully received clear images, achieving a strong
balance between privacy protection and task performance.

4.2 Adversarial Attack Experiment

As shown in Figure 4a the experimental results under the
AWGN channel with MNIST dataset and adversarial train-
ing demonstrate that RepObE maintains high performance
on both natural samples accuracy (Nat ACC) and adversar-
ial samples accuracy (Adv ACC). Across all SNR conditions,
the Nat ACC of our method remained stable between 0.9903
and 0.9945, closely matching the baseline model’s Nat ACC
range of 0.9944 to 0.9965, indicating that adversarial training
has minimal impact on the classification performance of nat-
ural samples. Simultaneously, the Adv ACC of our method
improved from 0.9832 at SNR = 7 to 0.9907 at SNR = 23,
demonstrating strong robustness against adversarial attacks.
As shown in Figure 4b, the experimental results under
Rayleigh fading channel with MNIST dataset and adversarial
training (¢ = 0.016) indicate that RepObE outperforms the
baseline model in both Nat ACC and Adv ACC. Across all
SNR conditions, the Nat ACC achieved by RepObE ranged
from 0.9902 to 0.9931, closely approaching the baseline
model’s Nat ACC range of 0.9921 to 0.9957, demonstrating
stability in classifying natural samples. Moreover, the Adv
ACC of RepObE was significantly higher than that of the
baseline model. The Adv ACC of RepObE improved from
0.9745 at SNR =7 to 0.9924 at SNR = 23, whereas the base-
line model’s Adv ACC only increased from 0.7912 to 0.8023.
The experimental results in Figures 4c and 4d demonstrate
the superiority of the proposed method (ours) over compar-

ative methods AT and Trades on the CIFAR-10 dataset with
adversarial samples (¢ = 0.016, step size 0.0032, 5 itera-
tions). Under the AWGN channel (Figure 4c), ours achieved
steady performance gains, improving from 0.6904 at SNR =
710 0.7296 at SNR = 23, reflecting strong robustness and sta-
bility. In comparison, AT and Trades [Zhang et al., 2019]
showed limited improvements, with maximum accuracies of
0.6756 and 0.6669 at SNR = 23, respectively, consistently
lagging behind ours. Similarly, under the Rayleigh fading
channel (Figure 4d), ours outperformed across all SNR levels,
with accuracy increasing from 0.6849 at SNR = 7 to 0.7099
at SNR = 23. In comparison, the AT method exhibited rel-
atively low performance under low SNR conditions, with an
accuracy of only 0.5654 at SNR = 7, improving to 0.5943 at
SNR = 23, but remaining consistently lower than ours. The
Trades method showed relatively stable performance across
SNR conditions, but its maximum accuracy was only 0.6656
at SNR = 23, which was significantly inferior to ours.

These results highlight the notable advantage of the pro-
posed method in robustness against adversarial sample inter-
ference and under complex channel conditions.

5 Conclusion

This paper introduces the RepObE framework for secure se-
mantic communication, emphasizing defense against attack-
ers. By encrypting data dynamically during semantic ex-
traction and feature transmission, the framework deters data
reconstruction via eavesdropping, boosting privacy protec-
tion. We improved system resilience in image communica-
tion tasks using a representation learning-enhanced prototype
alignment collaborative adversarial training method. This in-
tegrated approach, with dynamic perturbation and robust opti-
mization, provides reliable semantic communication in com-
plex situations. Experimental results show our method sur-
passes existing ones, with over a 2% increase in resisting
model inversion attacks and a 3% to 5% improvement in ad-
versarial attack resistance in classification tasks. Visually, it
excels, making it difficult for attackers to acquire useful im-
ages. Future work will explore the RepObE framework’s ap-
plication beyond image communication and additional tech-
niques to enhance system robustness and efficiency against
evolving adversarial threats.
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