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DASS: A Dual-Branch Attention-based Framework for Trajectory Similarity
Learning with Spatial and Semantic Fusion
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Abstract
Trajectory similarity aims to identify pairs of sim-
ilar trajectories, serving as a crucial operation in
spatial-temporal data mining. Although several ap-
proaches have been proposed, they encounter the
following two issues: 1) An overemphasis on spa-
tial similarity in road networks while the rich se-
mantic information embedded in trajectories is not
fully exploited; 2) Dependence on Recurrent Neu-
ral Network (RNN) architectures would struggle to
capture long-term dependencies. To address these
limitations, we propose a Dual-branch Attention-
based framework with Spatial and Semantic in-
formation (DASS) based on self-supervised learn-
ing. Specifically, DASS comprises two core com-
ponents: 1) A trajectory representation module that
models spatial-temporal adjacent relationships in
the form of graph and converts semantics into nu-
merical embeddings. 2) A backbone encoder with
a co-attention module to independently process two
features before they are integrated. Extensive ex-
periments on real-world datasets demonstrate that
DASS outperforms state-of-the-art methods, estab-
lishing itself as a novel paradigm.

1 Introduction
Trajectory similarity search plays an important role in spatial-
temporal data analysis, which quantifies the correlation be-
tween trajectories and serves as a fundamental operation
for identifying both individual movement patterns and col-
lective operational trends [Shang et al., 2017; Yu et al.,
2019]. It holds immense value across various domains,
including personalized recommendation [Bao et al., 2017;
He et al., 2020], navigation [Yao et al., 2022b; Zhang et
al., 2020], and intelligent transportation [Feng et al., 2023;
Ruan et al., 2022; Yi et al., 2023].

The landscape of trajectory similarity methods is rich with
proposals, encompassing both heuristic-based [Koide et al.,
2020; Yi et al., 1998; Vlachos et al., 2002; Yuan and Li, 2019;
Wang et al., 2018], which suffer from high computational
cost of O(n2); and learning-based approaches [Yao et al.,

∗ Corresponding author.

2019; Zhang et al., 2020; Zhao et al., 2024; Tao et al., 2021],
which extract generalizable and concise representations from
sequential trajectory [Liu et al., 2024]. Our study falls
within the latter category, where existing methods have in-
creasingly exploited road networks or scene-related informa-
tion offered by various location-based applications. Specif-
ically, one category [Fang et al., 2021; Zhang et al., 2023;
Mao et al., 2022] incorporates static road network structure
into representation to primarily capture spatial proximity and
path similarity. Another set of methods [Jiang et al., 2023;
Yuan et al., 2022; Liu et al., 2020] gradually leverages seman-
tic aspects, such as travel or time regularity, for a more nu-
anced representation. While both perspectives provide valu-
able insights, current proposals fail to adequately capture the
interaction and complementarity between two views. There-
fore, we argue that an effective similarity measure should
integrate both spatial and semantic similarities to achieve a
more comprehensive, multidimensional representation.

The motivation for our work can be described from two
perspectives: the practical application and the technical view-
point. (i) For the application: Focusing solely on spatial
proximity or semantic closeness usually fails to yield accurate
results. Taking Figure 1 as an example, where illustrates three
trajectories T1, T2 and T3, each comprising four points, with
the spatial coordinates and semantic label annotated next to
each point. When only considering spatial proximity, T1 and
T2 are the most similar, calculated by three distance metrics:
ED [Clarke, 1976], L1dis and MD [Cassels, 2012]. However,
when semantic information is taken into account, and com-
puted via a hybrid type attribute dissimilarity formula [Kauf-
man and Rousseeuw, 2009], T1 and T3 are determined to be
the most similar. From the above observation, we can con-
clude that including or excluding semantic information would
lead to different outcomes in similarity search tasks. (ii)
For the implementation technology: The deep neural net-
work framework offers a promising solution to combine var-
ious information in trajectory representation to enhance the
generalizability. Broadly speaking, converting the connec-
tivity and shape of temporal trajectory into vectors ensures
the correctness of representation, while embedding semantic
information through a dedicated encoding network enhances
the model’s ability to capture activity-related similarities.

To integrate both spatial and semantic information into
the learning model for trajectory similarity calculation, three
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Figure 1: An example illustrating that using more measurement fea-
tures will lead to varying trajectory similarity results. Three spatial
distance functions are listed in the bottom left, while the spatial-
semantic oriented similarity is shown in the bottom right. In the
equation d(i, j), δ(f)ij equals to 0 if two points have the same nom-

inal semantic f and 1 otherwise, and d
(f)
ij is the dissimilarity for f .

Higher similarity between T1 and T2, T3 is marked in red.

non-trivial challenges have to be tackled:

C1: Challenge of Data Representation. The key of tra-
jectory modeling lies in constructing a unified representa-
tion that captures both the complex spatial configurations of
road networks and the temporal dynamics of trajectories. Ex-
isting methods often model spatial information by learning
shared representations of equally-sized grids [Li et al., 2018;
Yao et al., 2019], resulting in weak connections for records
located far apart in sequence modeling. In light of this,
we design a Graph-based Spatial-Temporal Modeling mod-
ule (GSTM), to obtain a multidimensional information fusion
representation. This module is flexible and generic, in that it
can be integrated with any existing trajectory representation
proposal for spatio-temporal similarity learning.

C2: Challenge of Model Framework. To achieve viable uni-
fied similarity learning, a fundamental challenge lies in de-
signing a model framework that facilitates the seamless and
effective integration of various components. A straightfor-
ward idea is to adopt a simple weighted combination. How-
ever, such a design struggles with accurate weights set and
may not fully capture the nuanced relationships between spa-
tial and semantic features. To overcome this limitation, we
develop a Dual feature Co-Attention Fusion module, termed
DualCAF, which enables the effective integration of diverse
information within trajectories over road networks.

C3: Challenge of Effectiveness Improvement. To achieve
both high accuracy and efficiency in similarity queries, the so-
phistication processes and the optimization parameters must
be carefully managed. Current approaches, particularly those
leveraging recurrent neural networks, often have difficulty
with scalability and capturing long-term dependencies, lim-
iting their utility in large-scale, real-world datasets. In re-
sponse, we develop a dual-branch Transformer-based net-
work coupled with an SST-Aware loss function to improve ef-
fectiveness. It enables our model to balance computational ef-
ficiency with the accurate representation of the inherent char-

acteristics across diverse trajectory patterns.
In conclusion, we propose a novel framework DASS to

counter the above challenges in trajectory similarity learning.
Our major contributions are summarized as follows:

• We propose an attention-based framework, which not
only captures the structural information reflected by
spatial-temporal graph, but considers semantic activity
information to enrich trajectory representation.

• We present a dual-branch trajectory backbone encoder,
which incorporates a DualCAF module to simultane-
ously process spatial and semantic information via dis-
tinct attention mechanisms tailored to each feature type.

• We design a weight-adaptive fusion loss function that
allows our model to dynamically adjust the importance
of each component during training, promoting balanced
optimization and enhanced performance.

• We conduct extensive experiments on real-world
datasets, demonstrating that DASS outperforms state-of-
the-art methods, establishing itself as a novel paradigm
for trajectory similarity learning on road networks.

2 Related Work

Trajectory Similarity Learning. Learning-based methods
have gained considerable attention for their ability to auto-
matically derive low-dimensional representations from trajec-
tories data [Li et al., 2018; Yao et al., 2017; Ma et al., 2024;
Messaoud et al., 2021; Jiang et al., 2023], which enables fast
trajectory similarity computation in a linear time. NEUTRAJ
[Yao et al., 2019] is the first learning-based trajectory simi-
larity measure, which samples trajectories as seeds and uses
pair-wise comparisons as guidance. To enhance training effi-
ciency, Traj2SimVec [Zhang et al., 2020] simplifies the pro-
cess by converting training trajectories into triplet samples.
ST2vec [Fang et al., 2022] focuses on both spatial character-
istics and temporal regularities within trajectories, addressing
the inherent complexity of spatiotemporal data. [Chen et al.,
2020] introduces a novel metric to evaluate spatial and tex-
tual domain trajectory semantic similarity comprehensively.
To further improve deep representation for long trajectories,
TrajGAT [Yao et al., 2022a] introduces a quad-tree index to
model long-term dependencies.
Graph Neural Networks. Recent studies have explored inte-
grating GNNs [Kipf and Welling, 2016] for trajectory similar-
ity on road networks, demonstrating their potential to capture
the spatial information of trajectories [Chen et al., 2019]. Han
et al. [Han et al., 2021] first apply GNNs into this domain
and utilize unique POI information. Their subsequent work
[Zhou et al., 2023] further extends this approach, leveraging
LSTM and GAT to model sequential dependencies and spatial
interactions within trajectories. Most recently, Start [Jiang
et al., 2023] presents a spatial networks-based representation
method on the basis of GAT, and achieves innovative results
by considering travel semantics hidden in trajectories.
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3 Preliminaries
3.1 Basic Concepts
DEFINITION 1 (Trajectory). A trajectory, denoted by T , is
a time-ordered sequence of GPS points of a moving object,
i.e., T = ⟨p1, p2, ..., pn⟩, where each point pi = (xi, yi, ti) is
a longitude, latitude, and timestamp triplet.

DEFINITION 2 (Road Network). A road network is rep-
resented as an undirected graph G = (V,E), where each
node v ∈ V is a Point of Interest (POI); and each edge e =
⟨u, v⟩ ∈ E is a road segment connecting points u and v.

Given a trajectory T , we align each trajectory point pi with
vertex vi in road network through a commonly used map-
matching procedure [Brakatsoulas et al., 2005], to obtain the
corresponding vertex trajectory T road = ⟨v1, v2, ..., vn⟩.
DEFINITION 3 (Top-K Similarity Query). Given a query tra-
jectory QT , a set of trajectories T = {T1, T2, ..., Tm}, and
a similarity measure f(·), the Top-K similarity query returns
K trajectories in T that are most similar to QT under f(·).

3.2 Problem Definition
Given a set of trajectories T and corresponding road network
graph G, DASS aims to learn a trajectory encoder E : T →
E , mapping each trajectory T to a d-dimensional embedding
vector E that jointly captures the trajectory characteristics and
road network information. For ∀Ti ∈ T, the objective is to
find Tj ∈ T that is most similar to Ti under the similarity
function f(·). Such problem can be formalized as below:

argmin
Tj∈T, i ̸=j

f (E(Ti), E(Tj)) . (1)

E aims to accurately reflect the similarity between trajecto-
ries through their embeddings, i.e., E(Ti) and E(Tj) are close
(distant) if Ti and Tj are similar (dissimilar), demonstrating
the effectiveness of E in capturing inherent characteristics.

4 Methodology
Figure 2 shows the framework of DASS, which consists of
three following major modules:

• Graph-based Spatial-temporal Modeling, which
models spatial and temporal adjacency relationships be-
tween points with knowledge graph embedding, and
then constructs a similarity-based graph to capture the
underlying structural patterns (Section 4.1).

• Semantic Information Embedding, which comprises
three specific components to capture contextual infor-
mation within the trajectory and enrich representation
with deeper semantic context (Section 4.2).

• Dual-Branch Fusion Encoding, which adaptively pro-
cesses the features from both perspectives, ensuring that
the unique characteristics are effectively captured before
they are integrated (Section 4.3).

The above three modules of DASS work collaboratively to
obtain a unified representation, and the whole framework is
trained by the self-supervised paradigm.

4.1 Graph-based Spatial-temporal Modeling
Road networks inherently possess rich topological structures,
while trajectories are time-ordered sequences. However, due
to varying sampling rates and data sparsity, adjacent points
in trajectory may not always correspond to adjacent points in
the road network. Based on this, we classify adjacency into
two types: 1) temporal adjacency, where two points appear
sequentially over time within the trajectory; 2) spatial adja-
cency, where adjacent points are directly connected by edges
on road networks, indicating spatial continuity. From an in-
tuitive view, a trajectory knowledge graph can be constructed
to model these adjacent relationships, expressed as (h, r, t),
where h and t refer to POIs within the road network, r is the
relationship between two vertices and are defined as follows:
① temporal adjacency Rt, ② spatial adjacency Rs, and ③
spatio-temporal adjacency Rst.

To accurately model various relationships, DASS first uti-
lizes TransD [Ji et al., 2015] to obtain the knowledge graph
representation. Then it introduces a point-relation similar-
ity function to consolidate the multidimensional similarities
between points into a unified similarity computation frame-
work. Drawing inspiration from KGE techniques [Wang et
al., 2014], the distance between two points u and v under a
specific relationship r is defined as:

dr (eu, ev) = ∥eu + er − ev∥ , (2)

where eu, ev, er are the embedding through TransD. Follow-
ing Equation (2), we design a bilateral neighbor similarity
function to calculate the similarity between two nodes, which
not only accounts for the direct similarity between points, but
incorporates contextual information from neighbors to cap-
ture broader spatial distribution within the local structure.
The similarity function is defined as follows:

s(eu, ev) =
1

|N (u)| |N (v)|
∑

i∈N (u)

∑
j∈N (v)

e−dr(ei,ej), (3)

where |N (u)| and |N (v)| denote the neighbor sets of u and
v, respectively. Based on the similarity calculation in Equa-
tion (3), we construct a graph where each point connects its
Top-K most similar neighbors. High-similarity relationships
between points are reflected by neighbor connection, ensur-
ing that adjacent nodes maintain closely related representa-
tions later. The graph construction is formulated as below:

Gst(i, j) =

{
1 if vj ∈ Ns(vi)

0 otherwise
. (4)

The resulting graph Gst will be used as the spatial branch
input for the subsequent network (detailed in Section 4.3).

4.2 Semantic Keywords Embedding
Each point in the trajectory T has an associated keyword to
represent the context of an activity. To efficiently convert
such nominal attributes into numerical embeddings, similar
to BERT’s implementation process, the activity keyword em-
beddings are composed of three components: 1) Positional
encoding. Drawing inspiration from the position embed-
ding in Transformer [Vaswani, 2017], each keyword ki in
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Figure 2: The framework of DASS.

the sequence of trajectory keywords K = {k1, k2, ..., kn} is
assigned a fixed sinusoidal positional encoding embedding,
EP (i), calculated as follows:

EP (i) =

{
EP (i, 2k) = sin

(
i

100002k/d

)
EP (i, 2k + 1) = cos

(
i

100002k/d

)
.

(5)

Here, d is the embedding dimension, and sin(·), cos(·) serve
as periodic activation functions that capture sequential be-
haviors. This component preserves sequential information,
enhancing the model’s sensitivity to sequence order. 2) To-
ken encoding. For each activity keyword ki, we use the pre-
trained GloVe model to generate a token embedding ET (ki),
capturing the intrinsic semantic properties of the word. 3)
Segment encoding. Each activity category (e.g., entertain-
ment) is associated with a unique segment embedding ES(ki)
through GloVe. By mapping each keyword to its correspond-
ing category, this component reinforces the model’s ability to
distinguish and categorize similar activities within the trajec-
tory. The final representation of ki is expressed as:

E(ki) = ET (ki) + EP (i) + ES(ki). (6)
Next, we feed E(ki) in Equation (6) into BERT’s trans-

former architecture step by step to obtain a smoothed rep-
resentation ei ∈ Rd for each keyword. These embeddings
E = {e1, e2, ..., en} have integrated both semantic content
and sequential order, offering a comprehensive foundation for
semantic similarity analysis.

4.3 Dual-Branch Fusion Encoding
Spatial and semantic information of trajectories can be treated
as two observations of the same concept, then a co-attention
fusion module (DualCAF) is designed for our DASS model
to generate spatio-semantic oriented representation.

DualCAF. It takes both graph Gst and semantic embed-
dings E as input and outputs the joint representations of tra-
jectory points. To capture the topological structure within
the graph, the multi-head GAT is employed to assign atten-
tion coefficients to neighboring nodes. Formally, the hidden
state of node vi is updated by aggregating information from
its neighbors, weighted by learned attention coefficients from
multiple attention heads, represented as follows:

hi = ||Kk=1 σ(
∑

vj∈N(vi)
α
(k)
ij W (k)hj), (7)

where α
(k)
ij represents the attention coefficient from the k-th

attention head between node vi and its neighboring node vj ,
W (k) is a learnable weight matrix, and hj is the hidden state
of node vj . The attention coefficient can be computed as:

eij = aT
[
W (k)hi∥W (k)hj

]
, j ∈ N (i) (8)

α
(k)
ij =

exp (LeakyReLU (eij))∑
m∈N (i) exp (LeakyReLU (eik))

(9)

where || denotes concatenation. So far, spatial representation
Sg have been learned by GAT layers, which integrates topo-
logical relations derived from the input graph Gst.

For semantic branch, the semantic feature matrix E is first
projected into value Vi, key Ki, and query Qi matrices, where
i denotes the i-th head. The introduction of muti-head atten-
tion enables to focus on different parts of the semantic feature
space when learning co-attention. Formally, the attention co-
efficient matrix of the i-th head Ai is computed as follows:

Ai = Softmax(
QiKi

T

√
dk

). (10)

Based on Equation (10), the attention coefficient matrix Ai

is multiplied with value matrix Vi to obtain the hidden out-
put hi

s, and the outputs hi
s from each self-attention head are

concatenated and passed through a linear transformation to
generate the final output hs as follows:

hi
s = Ai × Vi, (11)

hs = Concat(h1
s, h

2
s, ..., h

H
s )Wo, (12)

where Wo is the learnable weight matrix.
With both spatial and semantic features embedded, they

are fused using a concatenation strategy, denoted as Fss. Fss

is then passed through another self-attention mechanism to
capture complex feature interactions. Subsequently, a layer
normalization, an MLP module with residual connection, and
another layer normalization are applied to ensure optimiza-
tion stability and model effectiveness, as described in Equa-
tions (13) and (14). Finally, DualCAF outputs the dual feature
fusion representation Css.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

DASS. As illustrated in Figure 2, DASS follows the over-
all structure of a multi-layer Transformer encoder and pos-
sesses two branches with complementary responsibilities. It
takes Gst and E as the input, which are processed through
the DualCAF module to jointly model spatial and semantic
features, learning their complex interactions. The output of
DualCAF Css, is further refined through a series of residual
connections, dropout layers, and layer normalization to stabi-
lize gradient flow and mitigate issues like gradient vanishing
or explosion. The updated representation Jss is then passed
through an MLP, followed by another residual connection and
layer normalization. The process can be summarized as:

Jss = LayerNorm(Sg +Dropout(Css)), (13)

Hss = LayerNorm(Jss+Dropout(Feedforward(Jss))),
(14)

where Sg is the original representation for the similarity-
based graph, and Hss refers to the updated representation ma-
trix, incorporating both the topological and semantic features.
The model is implemented with stacked layers (two layers in
the experiments) of the DualCAF and MLP blocks. After the
final layer, average pooling is applied to Hss to obtain the
final trajectory representation h ∈ Rd as follows:

h = AvgPool(Hss). (15)

Based on Equation (15), the final representation incorporates
both structural and semantic information, providing a com-
prehensive foundation for downstream similarity analysis.

4.4 SST-Aware Loss Function
To enhance the accuracy and robustness of trajectory rep-
resentation, we introduce a novel SST (Spatial-Semantic-
Trajectory)-Aware loss function to optimize model training.
Graph-Based Spatial-temporal Contrastive Loss. It encour-
ages each node in the similarity-based graph Gst to be close
to high-similarity nodes (positive samples) while remaining
distant from unrelated nodes (negative samples). The objec-
tive is to minimize the distance between node v and its posi-
tive samples vpos, while maximizing the distance between v
and its negative samples vneg , thus enhancing the model’s un-
derstanding of underlying graph structure. The loss function
is defined as follows:

Lst = − log
exp (s (v, vpos) /τ)

exp (s (v, vpos) /τ) +
∑

vneg
exp (s (v, vneg) /τ)

,

(16)
where s(·) represents the vector dot-product function.
Semantic Pair-wise Loss. The semantics of each point is ex-
tracted in the form of a (category, subcategory) structure. For
each vi ∈ Ti, two points with the same category are consid-
ered positive samples; others are negative. Then, the semantic
pair-wise loss encourages semantic consistency and is formu-
lated as follows:

Lse = −
m∑
i=1

|τi|∑
j=1

log σ
(
s
(
vij , v

i
pos

)
− s

(
vij , v

i
neg

))
, (17)

where σ is sigmoid function, and vij is a point in Ti.

SST-Aware Loss. For each trajectory Ti, the most similar
trajectory (ground truth) is considered as Tpos, and Tneg is a
negative sample selected from T\ {Ti, Tpos}. The trajectory
loss function is formulated as follows, from the perspective
of the entire trajectory similarity:

Lt = −
m∑
i=1

log σ (s (Ti, Tpos)− s (Ti, Tneg)) . (18)

Finally, SST-Aware loss function is composed of Equa-
tions (16) to (18), expressed as:

L = WλLst +WµLse +WηLt, (19)

where each weight Wλ,Wµ and Wη are learned adaptively
through a softmax function within an attention mechanism.

5 Experiments
In this section, we conduct multiple experiments to verify the
effectiveness of DASS and answer the following questions:

• RQ1: How does DASS perform compared with existing
trajectory similarity computation methods?

• RQ2: How does every module that we design contribute
to the model performance?

• RQ3: How do variations in parameter settings impact
the performance of DASS?

5.1 Experimental Setup
Data Description. We use two road networks from
OpenStreetMap: Beijing Road Network (BJRN), contain-
ing 28, 342 nodes and 27, 690 edges; and New York Road
Network (NYRN), with 95, 581 nodes and 260, 855 edges.
For BJRN, the public real-life trajectory dataset T-drive is
adopted, which includes trajectories from 10, 357 taxis in
Beijing over a week. For NYRN, we randomly sample a sub-
set of taxi trip data from New York to generate the dataset.
After preprocessing, we collect 5231,420 trajectories for T-
drive and 9541,270 for New York. Both datasets are divided
into training, evaluation, and testing sets, with 20%, 10%, and
70% allocated to each set, respectively.
Baselines. To evaluate the effectiveness of the proposed
DASS, we implement in total eight baselines. i) Traj2vec
[Yao et al., 2018] represents trajectory features via the mov-
ing behavior and reconstruction loss. ii) Siamese [Pei et al.,
2016] employs a Siamese Network with a cross-entropy loss
function. iii) NeuTraj [Yao et al., 2019] combines met-
ric learning with spatial attention memory and a distance-
weighted ranking loss. iv) At2vec [Liu et al., 2020] addresses
uneven sampling issues with LSTM. v) Traj2SimVec [Zhang
et al., 2020] designs a custom strategy to extract distance in-
formation from sub-trajectories. vi) GTS [Han et al., 2021]
is the first graph-learning based approach for trajectory simi-
larity on road networks. vii) ST2Vec [Fang et al., 2021] first
considers spatio-temporal similarity in trajectory representa-
tion. viii) GRLSTM [Zhou et al., 2023] designs a residual-
LSTM to model the trajectory data.

https://opendata.cityofnewyork.us
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Method Beijing New York
HR@1 HR@5 HR@10 HR@20 HR@50 HR@1 HR@5 HR@10 HR@20 HR@50

Traj2vec 0.0582 0.1057 0.1864 0.2883 0.4007 0.0495 0.0933 0.1613 0.2457 0.3724
Siamese 0.0633 0.1325 0.2017 0.3261 0.4558 0.0523 0.1111 0.1875 0.2774 0.4216
At2vec 0.0728 0.1487 0.2348 0.3759 0.4973 0.0593 0.1329 0.2173 0.2682 0.4337
NeuTraj 0.0772 0.1978 0.2754 0.3963 0.5357 0.0615 0.1557 0.2328 0.3018 0.4843

Traj2SimVec 0.0781 0.2042 0.2917 0.4014 0.5675 0.0631 0.1703 0.2646 0.3252 0.5055
GTS 0.0921 0.2500 0.3548 0.4807 0.6612 0.0843 0.2164 0.3253 0.4169 0.5817

ST2Vec 0.1036 0.3372 0.4235 0.5492 0.7523 0.0983 0.2514 0.4128 0.4637 0.6328
GRLSTM 0.1296 0.3271 0.4438 0.5734 0.7402 0.1133 0.2785 0.3936 0.4812 0.6247

DASS 0.1953 0.4701 0.5473 0.6185 0.7687 0.1617 0.3770 0.4728 0.5284 0.6429
Improvement 50.69% 39.41% 23.32% 7.81% 3.85% 42.70% 35.37% 14.53% 9.81% 1.59%

Table 1: Top-K similarity performance comparison on Beijing and New York datasets.

Evaluation Metrics. Following existing works, we adopt the
Top-K hitting ratio (HR@K) as the major performance met-
ric, which captures the degree of overlap between a Top-K
result (Definition 3) and the corresponding ground-truth re-
sult. The ground-truth are the exact Top-K similarity search
results obtained through NetERP [Koide et al., 2020].
Parameter Settings. All experiments are conducted with
PyTorch 1.8.1 on a LINUX server (Intel Xeon 5118 6-Core
CPU, 32 GB of RAM, and a GeForce GTX 3090 Ti GPU).
We train DASS using the Adam optimizer, the learning rates
and Top-K selection in Equation (4) are set as 5e-4, 15 in the
Beijing dataset and 1e-3, 30 in the NewYork dataset respec-
tively. The embedding dimensionality d is set to 128 for all
learned methods. For DualCAF, the number head of K in
Equation (7) and s in Equation (12) are set as 8 and 4. For
DASS, The number of encoder #layers is 2.

5.2 Overall Performance (RQ1)
Effectiveness Evaluation. We conduct Top-K similarity
queries and compare DASS with all 8 baselines. Table 1 lists
the results on two datasets. From these results, we provide
observations and analyses as follows.

The first observation is that DASS achieves the best per-
formance in terms of HR@K on both two datasets, signifi-
cantly outperforming all the baseline methods. It confirms
the superior performance of our framework in learning tra-
jectory representations by introducing spatial-temporal fea-
tures and semantics in the pre-training phase. Specifically,
DASS achieves a consistent hitting ratio exceeding 35% (ex-
cept HR@1), with an average improvement of 25.88% over
the best baseline GRLSTM on the Beijing dataset and 22.19%
on the New York dataset. Moreover, we can observe that
methods like Traj2vec and NeuTraj perform relatively poorly,
likely because they lack explicit modeling of road network
constraints and primarily rely on trajectory-level features
without considering the underlying topological information.

The third observation is that although ST2Vec and GRL-
STM account for road network topology, DASS offers two
key advantages contributing to its superior performance.
First, our approach incorporates activity semantic – a feature
absent in the other two methods, which captures critical in-
formation from multiple dimensions to enrich representation.
Second, its Transformer-based network, unlike LSTM-based
methods, can better capture long-term dependencies. It is also

worth noting that DASS’s performance advantage is less pro-
nounced on the New York dataset compared to Beijing. One
possible reason is the significantly larger scale and complex-
ity of the New York road network, which may introduce more
noise and less consistent trajectory patterns.

Model Training time Inference time
GTS 89.35s 3.14 ms

ST2Vec 127.93s 2.82 ms
GRLSTM 148.25s 7.73 ms

DASS 117.46s 5.27 ms

Table 2: Training and inference efficiency on BJ dataset.

Efficiency Evaluation. We evaluate the efficiency of each
measure in both model training time (per epoch) and infer-
ence time (the process of converting trajectories into repre-
sentation). The experimental results are shown in Table 2.
For simplicity, we only present the four models with rela-
tively better efficiency. From Table 2, it is evident that GTS
distinguishes itself with the shortest training time, attributed
to its relatively simple structure and less dependence on tra-
jectory features. In contrast, the other three models consider
additional trajectory features, such as temporal and seman-
tic similarity, which need to be computed during the training
process, resulting in longer training times. Our model, DASS,
although it includes complex components such as graph mod-
eling and text representation, still maintains high efficiency
through optimized design. Its training time is only slightly
longer than GTS but achieves higher accuracy in trajectory
similarity queries. It indicates that DASS successfully bal-
ances computational complexity and model effectiveness.

5.3 Ablation Study (RQ2)
In the ablation study, we quantify the contribution of each
DASS component. The results on Beijing dataset are shown
in Table 3, confirming the necessity of each component in the
DASS framework. A similar trend is observed on the New
York dataset; therefore, we omit it for brevity.

Experimental results of seven variants illustrate that the
most significant decrease occurs when the DualCAF compo-
nent (w/o DualCAF) is excluded due to its adaptive fusion
of both input features. The removal of both graph mod-
eling (w/o GM) and the semantic branch (w/o Se branch)
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HR@5 HR@10 HR@20 HR@50
w/o GSM 0.4292 0.5073 0.5798 0.7413
w/o Se Branch 0.4318 0.5198 0.5811 0.7462
w/o DualCAF 0.4159 0.5098 0.5774 0.7397
w/o G-Loss 0.4652 0.5289 0.6018 0.7517
w/o S-Loss 0.4687 0.5328 0.6093 0.7559
w/o Transformer 0.4528 0.5217 0.5917 0.7435
w/o ResNet 0.4634 0.5289 0.6031 0.7521
DASS 0.4701 0.5473 0.6185 0.7683

Table 3: Ablation study results on Beijing dataset.

(a) Beijing Dataset (b) NewYork Dataset

Figure 3: Performance of DASS varying trajectory length.

also brings a performance decline of approximately 3.79%,
highlighting the importance of richer characteristics for better
model representation. Similarly, excluding the ResNet layer
(w/o ResNet) leads to performance degradation, as ResNet
addresses the gradient vanishing problem without increasing
training time. The inclusion of the Transformer module (w/o
Transformer) offers additional advantages that better captur-
ing contextual and sequential information for representation
learning and achieving improvement from 0.4528 to 0.4701
on HR@5. Moreover, the efficacy of two novel loss functions
is also verified, resulting in a 1.93% improvement.

5.4 Parameter Sensitivity Study (RQ3)
Sensitive to datasize. We investigate the effect of trajectory
length on the performance of DASS. As shown in Figure 3,
the similarity learning performance of DASS is examined as
the trajectory length varies from 1, 000 to 5, 000. It can be ob-
served that the performance of DASS slightly decreases with
the increasing trajectory length. However, it generally ex-
hibits stable performance on both the Beijing and New York
datasets. This suggests that DASS is capable of effectively
capturing the essential spatial and semantic information em-
bedded in longer trajectories, demonstrating its robustness
across varying trajectory lengths.

Varying parameter K. We analyze the impact of the
graph construction parameter K in Equation (4), which de-
termines the number of neighbors considered for each trajec-
tory point in the GSTM module. Figure 4 shows the results,
where we vary K across different values. We observe that the
choice of K has a noticeable impact on the model’s perfor-
mance. Specifically, the best results are achieved when K is
set to 15 for Beijing dataset and 30 for New York dataset. For
example, in term of HR@10 metric, the results are 0.5473
and 0.4728 on Beijing, NewYork dataset, respectively. This
also suggests that a smaller K in Beijing works better due to

(a) Beijing Dataset (b) NewYork Dataset

Figure 4: Performance of DASS varying parameter K.

(a) Beijing Dataset (b) NewYork Dataset

Figure 5: Performance of DASS under semantic noise.

the denser road network and more localized movement pat-
terns, while New York’s more complex urban landscape ben-
efits from a larger neighborhood size.

Semantic Noise. DASS incorporates semantics from tra-
jectories, making semantics a crucial factor in model perfor-
mance. We test various levels of semantic noise, and the re-
sults are shown in Figure 5. It is evident that the model’s
performance gradually declines with increasing noise levels
in both two datasets. However, the impact of noise on DASS
is relatively limited, with performance degradation controlled
within 5.3%. As shown in Table 3 under the “w/o Se Branch”
condition, even in the extreme case where semantic informa-
tion is removed, DASS still outperforms other baselines. This
is attributed to DASS’s unique dual-branch structure, where
the spatiotemporal features extracted from the other branch
can effectively complement the semantic branch, mitigating
the negative impact of noise on overall performance.

6 Conculusion
In this paper, we propose DASS, a self-supervised trajectory
similarity learning model with a dual-branch backbone en-
coder. DASS can effectively capture both the spatial and se-
mantic information embedded in trajectory, and utilizes the
DualCAF module to ensure that the unique characteristics of
each view are captured before being integrated into a unified
representation. We have conducted extensive experiments
on real-world trajectory datasets, demonstrating that DASS
achieves significant performance improvements on similarity
search and outperforms all comparing baselines. The univer-
sality of DASS makes it a promising candidate with ample
potential for various location-based applications.
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