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Abstract
Temporal processing is vital for extracting mean-
ingful information from time-varying signals. Re-
cent advancements in Spiking Neural Networks
(SNNs) have shown immense promise in efficiently
processing these signals. However, progress in
this field has been impeded by the lack of effec-
tive and standardized benchmarks, which compli-
cates the consistent measurement of technological
advancements and limits the practical applicability
of SNNs. To bridge this gap, we introduce the Neu-
romorphic Sequential Arena (NSA), a comprehen-
sive benchmark that offers an effective, versatile,
and application-oriented evaluation framework for
neuromorphic temporal processing. The NSA in-
cludes seven real-world temporal processing tasks
from a diverse range of application scenarios, each
capturing rich temporal dynamics across multiple
timescales. Utilizing NSA, we conduct extensive
comparisons of recently introduced spiking neuron
models and neural architectures, presenting com-
prehensive baselines in terms of task performance,
training speed, memory usage, and energy effi-
ciency. Our findings emphasize an urgent need for
efficient SNN designs that can consistently deliver
high performance across tasks with varying tempo-
ral complexities while maintaining low computa-
tional costs. NSA enables systematic tracking of
advancements in neuromorphic algorithm research
and paves the way for developing effective and ef-
ficient neuromorphic temporal processing systems.

1 Introduction
Temporal processing is fundamental for intelligent systems
to interpret time-varying sensory signals, facilitating accu-
rate and timely decision-making in dynamic environments.
Neuromorphic computing holds immense potential for pro-
cessing these signals with ultra-low energy consumption and
low latency. Spiking Neural Networks (SNNs), inspired
by the computational principles of biological brains [Maass,

*Corresponding author: Jibin Wu.

1997], serve as a cornerstone of neuromorphic computing.
While SNNs have achieved performance on par with tradi-
tional Artificial Neural Networks (ANNs) in many static im-
age classification tasks, demonstrating significantly improved
energy efficiency and reduced latency [Davies et al., 2018;
Pei et al., 2019; Ma et al., 2024; Yang et al., 2024], their
capacities in processing temporal signals remain inferior to
those of ANNs. Recently, numerous SNN approaches have
been proposed, making substantial progress in bridging this
gap. These advancements include enriching neural dynamic
heterogeneity [Yin et al., 2021; Zheng et al., 2024], in-
creasing neuronal structural complexity [Zhang et al., 2024;
He et al., 2024; Sun et al., 2024], and developing tempo-
ral parallelization methods for improved training efficiency
[Fang et al., 2023; Chen et al., 2024].

Despite this progress, advancements in this research area
are hindered by the absence of effective benchmarks. Ex-
isting SNN benchmarks predominantly focus on visual clas-
sification [LeCun et al., 1998; Li et al., 2017; Amir et al.,
2017] and keyword spotting [Warden, 2018; Cramer et al.,
2020] tasks. While these benchmarks have been valuable
over the past decade in advancing neuromorphic computing
research, they play a limited role in fostering developments
in neuromorphic temporal processing due to three primary
limitations. First, the model performance on the current SNN
benchmarks is largely saturated, and these benchmarks fail to
capture the rich temporal dynamics inherent in real-world sig-
nals, which typically encompass multiple timescales. Second,
existing benchmarks do not adequately represent the diverse
range of temporal processing scenarios that closely align with
the interests and objectives of neuromorphic computing re-
search. Third, inconsistent comparisons across studies and
the absence of evaluations on critical efficiency metrics result
in biased assessments of model practicality.

To address these limitations, we propose a comprehensive
benchmark called Neuromorphic Sequential Arena (NSA),
designed to establish an effective, versatile, and application-
oriented evaluation framework for neuromorphic temporal
processing. Firstly, NSA encompasses a broad range of
tasks that reflect real-world temporal processing scenarios
across application areas of significant interest to the neuro-
morphic research community, including human-computer in-
teraction, speech processing, robotics, and biomedical appli-
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cations. Furthermore, to ensure that these tasks possess an
adequate level of temporal complexity suitable for SNNs, we
introduce a novel tool for analyzing the temporal dependen-
cies required to address a given task, referred to as the Seg-
regated Temporal Probe (STP). This tool has been employed
to validate the effectiveness of both commonly used neuro-
morphic datasets and the proposed NSA in benchmarking the
temporal processing capacity of SNNs. Finally, using NSA,
we conduct a comprehensive comparative study of recently
introduced spiking neuron models and neural architectures
in terms of task performance, training speed, memory usage,
and energy efficiency. By providing a side-by-side compari-
son of these baselines, NSA serves as a valuable foundation
for understanding the current status and practicality of exist-
ing methods. Collectively, NSA is designed as an evolving
framework capable of integrating emerging neuromorphic al-
gorithms, thereby fostering advancements toward more effec-
tive and efficient neuromorphic temporal processing systems.

2 Neuromorphic Sequential Arena (NSA)
The NSA comprises seven tasks that span a diverse array
of real-world scenarios relevant to neuromorphic research.
These tasks, characterized by varying levels of temporal com-
plexity, serve as an effective benchmark for assessing the tem-
poral processing capacities of different SNN approaches. In
the following, we detail our design principles, task formula-
tion, and STP tool used to assess task effectiveness.

2.1 Design Principles
This section outlines the five foundational principles for the
NSA design:
• Neuromorphic relevance. Tasks should highlight the ad-

vantages of neuromorphic solutions, such as energy effi-
ciency, low latency, and robustness.

• Temporal complexity. Tasks should reflect rich tempo-
ral dynamics inherent in real-world scenarios, requiring
models to establish temporal dependencies across multiple
timescales.

• Challenging. Tasks should exhibit an adequate level of
difficulty, highlighting distinguishable performance among
existing SNN approaches while offering significant oppor-
tunities for improvement.

• Training resource. Tasks should account for training time
and GPU resource constraints to ensure accessibility for
both researchers and practitioners. In particular, for SNN
approaches that rely on temporally serial simulation, it is
crucial that the training can be completed within a reason-
able amount of training time.

• Application versatility. Tasks should encompass a wide
range of real-world application scenarios with distinct re-
quirements and data characteristics, bridging the gap be-
tween theoretical advancements and practical applications.

2.2 Tasks
In the following, we will introduce the suite of tasks included
in the proposed NSA benchmark, meticulously designed fol-
lowing the principles outlined above. We provide a compre-

hensive overview of these tasks, including detailed task de-
scriptions, application scenarios, and specific capacities they
evaluate. The task characteristics, evaluation metrics, and
dataset configurations are summarized in Table 1. Detailed
preprocessing techniques for these tasks are provided in the
Supplementary Materials. To facilitate benchmarking efforts,
we provide a comprehensive open-source library* that al-
lows seamless integration of novel spiking neuron models
and neural architectures, and ensures consistent evaluations
across different methods.

Autonomous Localization (AL)
Due to the inherent characteristics of low latency and high en-
ergy efficiency, neuromorphic systems present considerable
potential for robotic control. A fundamental challenge in this
domain is predicting the current state of the robot after exe-
cuting a sequence of actions, which is crucial for overcoming
sensory feedback delays and promptly adapting to external
perturbations. Addressing this challenge requires a neuro-
morphic system to establish long-term temporal dependen-
cies, effectively modeling the intricate relationship between
past actions and the present state.

Given the above requirement and the significance of this
task, we propose a new synthetic dataset called AL. AL sim-
ulates a scenario in which a mobile robot must determine
whether it is positioned on the left or right plane following a
sequence of ordered actions, including ‘turn left’, ‘turn right’,
‘go straight’, and ‘stop’. This constitutes a binary classifica-
tion task with customized sequence lengths and action dis-
tributions, facilitating an effective evaluation of the capacity
of SNNs to establish temporal dependencies across various
timescales.

Human Activities Recognition (HAR)
The HAR task focuses on identifying human activity pat-
terns from time-series data collected by wearable sensors.
This task represents a significant application of neuromorphic
computing, encompassing real-time robotic locomotion con-
trol, pose estimation, and surveillance, where accurate and
efficient temporal processing is essential. HAR requires the
modeling of fine-grained temporal trajectories of human ac-
tivities embedded within noisy sensor signals. Therefore,
HAR is particularly well-suited for evaluating the capacity
of SNNs to capture complex short-term temporal dependen-
cies and to demonstrate their robustness against unpredictable
noise conditions.

In this task, we utilize data samples from the WISDM
dataset [Weiss, 2019], which includes gyroscope data col-
lected from a smartwatch. The data is recorded at 20 Hz and
segmented into 10-second intervals, resulting in a sequence
length of 200. This task is intentionally challenging, requir-
ing models to accurately classify 18 actions that may exhibit
subtle differences, such as ‘eating chips’ or ‘eating pizza’.

Electroencephalogram Motor Imagery (EEG-MI)
We further evaluate the effectiveness of SNNs in brain-
computer interfaces and real-time cognitive monitoring

*The source code and supplementary materials are publicly
available at https://github.com/liyc5929/neuroseqbench.
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Task Dataset Sequence length Metric Backbone model Training samples Testing samples
AL AL User-defined Acc. MLP 50,000 5,000
HAR WISDM 200 Acc. MLP 26,048 6,512
EEG-MI OpenBMI 500 Acc. MLP 17,280 4,320
SSL SLoClas 500 Acc. MLP 37,426 8,969
ALR DVS-Lip 200 Acc. MLP 14,896 4,975
AD N-DNS 751/3,751 SI-SNR Spiking-FullSubNet 60,000 341
ASR AISHELL 76–505 CER VGG-MLP 360,294 7,176

Table 1: Summary of tasks characteristics, evaluation metrics, and other configurations in the proposed NSA benchmark.

through the EEG-MI task. This task focuses on decoding mo-
tion imagery from EEG sequences, which is particularly chal-
lenging due to the sparse, noisy, and highly dynamic nature of
EEG signals. Therefore, it serves as an effective benchmark
for assessing the capacity of SNNs to capture both temporal
and spatial dependencies with a high degree of robustness.

Specifically, we utilize motion imagery data from the
OpenBMI dataset [Lee et al., 2019], which comprises 62-
channel EEG recordings collected from 52 subjects at a sam-
pling rate of 1 kHz. The model is tasked with performing a
binary classification aimed at distinguishing between imagery
trials of left- and right-hand grasping. To ensure manageable
training costs, we downsample the sequence length to 500. To
mitigate the risk of overfitting due to subject-specific bias, we
employ a cross-trail validation approach, in which all samples
are randomly partitioned into training and testing sets.

Sound Source Localization (SSL)
Identifying the origin of a sound source within a noisy en-
vironment is a crucial survival skill for animals and holds
significant importance for applications such as hearing aids
and robotics. In this task, we aim to evaluate the tempo-
ral processing capacity and noise robustness of SNN ap-
proaches. To this end, we adopt the SLoClas dataset [Qian et
al., 2021], which contains 4-channel audio recordings from
a single sound source positioned at azimuth angles ranging
from 0◦ to 360◦ in 5◦ increments, resulting in a 72-class
classification problem. Additionally, directional background
noise fragments are introduced to the raw audio signals at a
challenging signal-to-noise (SNR) ratio of 0. The resulting
audio signals are segmented into sequences of length 500,
then fed directly into the SNNs without any spectral prepro-
cessing. This task poses a specific challenge for temporal
processing, as the model must learn to map the temporal de-
lays between different audio channels to their corresponding
azimuth angles in the presence of background noise.

Automatic Lip-Reading (ALR)
ALR aims to recognize spoken words from a speaker’s lip
movements and plays a pivotal role in various real-world ap-
plications, such as video surveillance and speech recognition
in noisy environments. Dynamic Vision Sensor (DVS) cam-
eras, characterized by high dynamic range and low latency,
have emerged as ideal visual front-ends for capturing the fine-
grained lip movements essential for the ALR task. Their
event-based outputs are particularly well-suited for neuro-
morphic systems.

In this task, we adopt the DVS-Lip dataset [Tan et al.,
2022], which consists of 100 spoken word classes captured

by the DAVIS346 event camera from 40 individuals. The
task is particularly challenging, as the training and testing
sets include different individuals, requiring the SNN model
to generalize across unseen speakers. Moreover, the output
is decoded solely from the spiking activities generated at the
final time step, requiring models to extract and retain crucial
spatiotemporal features over an extended period. To ensure
manageable training costs, each sample is segmented into 200
temporal bins and center-cropped to a resolution of 88 × 88
pixels.

Audio Denoising (AD)
Removing noise from received audio signals to enhance over-
all quality is critical for many edge applications, such as
hands-free communication and hearing aids. Given the low-
power and real-time processing requirements of these tasks,
neuromorphic solutions present a highly promising approach.
Notably, among all tasks within the proposed NSA bench-
mark, AD stands out as a regression problem, providing a
unique opportunity to evaluate the expressive power of SNN
models in capturing subtle and continuous temporal varia-
tions.

In this task, we utilize the publicly available Intel Neu-
romorphic Deep Noise Suppression (N-DNS) Challenge
dataset [Timcheck et al., 2023]. This dataset comprises clean
speech samples in multiple languages (i.e., English, German,
French, Spanish, and Russian) as well as noise samples col-
lected from diverse acoustic environments. We employ the
official synthesizer script to generate a 495-hour training sub-
set and a 5-hour validation subset. All audio samples are
synthesized at a 16 kHz sampling rate and segmented into a
uniform length of 30 seconds. We perform audio preprocess-
ing steps in accordance with the winning entry of the N-DNS
Challenge [Hao et al., 2024] and adopt their model architec-
ture as the default. For model evaluation, we adopt the Scale-
Invariant Signal-to-Noise Ratio (SI-SNR) metric.

Automatic Speech Recognition (ASR)
ASR transcribes spoken language from audio into text, serv-
ing as a foundational technology for various applications, in-
cluding voice assistants, transcription services, and speech
translation tools. This task presents significant challenges for
SNNs due to varying sequence lengths, speaker characteris-
tics, and acoustic conditions.

In this task, we utilize the AISHELL dataset [Bu et al.,
2017], an open-sourced Mandarin speech corpus comprising
approximately 170 hours of speech data from 400 speakers,
encompassing a wide range of accents and speaking styles.
Its moderate data scale and high speaker diversity render it
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Figure 1: Comparison of the three training algorithms in STP.

an effective testbed for assessing the model’s capacity to han-
dle linguistic and acoustic variations. Model performance is
evaluated using the Character Error Rate (CER).

2.3 Segregated Temporal Probe (STP)
To elucidate the limited effectiveness of commonly used neu-
romorphic benchmarks in evaluating the temporal processing
capacity of SNNs and to demonstrate the efficacy of NSA, we
introduce STP. STP assesses the contributions of establishing
temporal dependencies by quantifying the impact of isolating
forward and backward temporal processing pathways of spik-
ing neurons on task performance. As illustrated in Figure 1,
STP consists of three evaluation modules, each corresponding
to a specific training algorithm: Spatio-Temporal Backpropa-
gation (STBP) [Wu et al., 2018], Spatial Domain Backprop-
agation (SDBP), and No Temporal Domain (NoTD). Details
of these three algorithms are outlined below, using the Leaky
Integrate-and-Fire (LIF) neuron model [Burkitt, 2006] as an
example.

The LIF neuron accumulates input spikes sl−1[t] from the
preceding layer l−1 into its membrane potential ul[t]. When
ul[t] surpasses a threshold Vth, it triggers a spike and subse-
quently resets to the resting potential. The dynamics of a LIF
neuron can be formulated as:

ul[t] = λul[t− 1](1− sl[t− 1])︸ ︷︷ ︸
Forward temporal propagation

+W lsl−1[t], (1)

sl[t] = Θ(ul[t]− Vth), (2)

where λ determines the decay rate of ul[t] over time, W l

is the synaptic weight matrix, and Θ(·) is the Step function.
The recursive update in Eq. (1) allows the LIF neuron to itera-
tively propagate temporal information from ul[t−1] to ul[t],
enabling the integration of temporal information over time.

STBP preserves this temporal propagation in both forward
and backward passes, where the gradient of the loss with re-
spect to weights is computed as:

∂L
∂W l

=
T∑

t=1

∂L
∂ul[t]

∂ul[t]

∂W l
=

T∑
t=1

δl[t]
⊤
sl−1[t]

⊤
, (3)

δl[t]= δl[t+1]
∂ul[t+ 1]

∂ul[t]︸ ︷︷ ︸
Backward temporal propagation

+δl+1[t]
∂ul+1[t]

∂ul[t]
, (4)

where δl[t] ≜ ∂L
∂ul[t]

, which is the backpropagated gradient
error along both spatial and temporal dimensions.

SDBP only retains the temporal propagation in the forward
pass but omits its impact on the backward pass. This prevents
the gradient from propagating across time, thereby limiting
the learning of temporal dependency. The modified gradient
error is:

δ̂
l
[t] =


∂L

∂uL[t]
, l=L,

δ̂
l+1

[t]∂u
l+1[t]

∂ul[t]
, l<L.

(5)

NoTD removes temporal propagation in both forward and
backward passes, processing each time step independently.
The resulting neuronal dynamic is simplified to:

ul[t] = W lsl−1[t], (6)

which excludes the update of ul[t] compared to Eq. (1), ren-
dering it unable to integrate any temporal information across
time. The gradient in NoTD is the same as Eq. (5) in SDBP.

By training an SNN using the three algorithms described
and comparing their performance gaps, we can quantify the
effectiveness of a specific task in assessing the temporal pro-
cessing capacity of the SNN:

1. A similar performance between STBP and SDBP indi-
cates that the task fails to leverage temporal propagation
in the backward pass to establish meaningful temporal
dependencies, and, therefore, is ineffective in evaluating
temporal processing capacity.

2. A comparable performance between NoTD and STBP
implies that the task can be solved without leverag-
ing any temporal information, making it unsuitable as
a benchmark for temporal processing.

3. In contrast, significant performance degradation in
SDBP and NoTD compared to STBP indicates that the
task contains rich temporal information and can effec-
tively evaluate temporal processing capacity.

3 Results
In this section, we first employ STP to validate the effective-
ness of the existing and the proposed NSA benchmarks in
evaluating the temporal processing capacity of SNNs. Fol-
lowing this, we conduct a comprehensive comparison of re-
cently proposed spiking neuron models and neural architec-
tures using NSA, thereby illuminating the current status of
SNNs in temporal processing. Additionally, we incorporate
deployment-critical efficiency metrics to further benchmark
these models, including training speed, memory usage, and
energy consumption, to assess their practicality for real-world
applications. For all Tables, bold values indicate the best per-
formance, and underlined values represent the second best.
Details on experimental configurations and hyperparameters
are provided in Supplementary Materials.

3.1 Benchmark Effectiveness Validation
We first apply the proposed STP tool to evaluate 12 com-
monly used benchmarks in the neuromorphic community (see
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Method AL
Acc. (%) ↑

HAR
Acc. (%) ↑

EEG-MI
Acc. (%) ↑

SSL
Acc. (%) ↑

ALR
Acc. (%) ↑

AD
SI-SNR (dB) ↑

ASR
CER (%) ↓

STBP 63.52 81.27 65.20 8.88 17.83 11.47 20.70
SDBP 58.52 (-5.00) 76.29 (-4.98) 57.48 (-7.72) 5.79 (-3.09) 2.47 (-15.36) 10.18 (-1.29) 26.30 (+5.60)
NoTD 53.34 (-10.18) 67.75 (-13.52) 52.48 (-12.72) 3.45 (-5.43) 2.01 (-15.82) 9.47 (-2.00) 27.10 (+6.40)

Table 2: Validating the effectiveness of NSA in evaluating the temporal processing capacity of SNNs.

Architecture Neuron model AL HAR EEG-MI SSL ALR AD ASR Average
rank ↓Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ SI-SNR (dB) ↑ CER (%) ↓

SFNN

LIF 54.40 81.27 65.20 8.88 17.83 11.47 20.70 6.6
CE-LIF 59.58 79.71 70.56 12.21 48.32 -* 17.70 5.3
LTC 77.40 80.97 64.42 10.33 48.93 14.36 15.90 4.3
SPSN 72.02 86.73 76.46 20.30 45.73 13.00 18.50 3.7
PMSN 87.42 88.31 75.00 75.35 57.43 14.35 17.70 1.9

SRNN
LIF 56.50 77.32 64.68 6.17 34.71 9.36 15.70 6.4
CE-LIF 60.62 80.83 74.35 12.72 51.64 -* 15.30 3.7
LTC 79.04 82.03 69.16 16.37 56.64 14.29 16.30 3.1

* These models are not applicable due to the inconsistent sequence lengths between the training and test phases.

Table 3: Results of NSA benchmark for different spiking neuron models with SFNN or SRNN architectures.

Architecture AL HAR EEG-MI SSL ALR AD ASR Average
rank ↓Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ Acc. (%) ↑ SI-SNR (dB) ↑ CER (%) ↓

SFNN 54.40 81.27 65.20 8.88 17.83 11.47 20.70 5.9
SRNN 56.50 77.32 64.68 6.17 34.71 9.36 15.70 5.9
GSN 67.22 82.31 68.85 10.34 21.17 14.45 14.30 3.6
Spiking TCN 69.88 82.41 75.58 40.60 47.14 12.77 17.10 3.1
Spike-Driven Transformer 58.00 71.07 69.12 5.75 39.62 9.86 36.80 5.7
Binary S4D 81.44 89.37 78.61 79.34 44.80 14.21 15.20 1.7
GSU 80.42 89.16 77.43 82.39 41.35 14.05 14.40 2.1

Table 4: Results of NSA benchmark for different neural architectures using LIF neurons.

Supplementary Materials for details). Our results indicate
comparable performance between STBP and SDBP, suggest-
ing that their effectiveness in assessing the temporal process-
ing capacities of SNNs is limited. Subsequently, we per-
form the same study on the proposed NSA benchmark to
validate its effectiveness. As shown in Table 2, both SDBP
and NoTD exhibit substantial performance degradation com-
pared to STBP across all tasks in NSA. This suggests that the
seven selected tasks contain essential temporal dependencies
that must be effectively captured to attain high performance.
Consequently, the proposed NSA serves as a more effective
benchmark for neuromorphic temporal processing.

3.2 Performance Benchmarking of SNN Models
To elucidate the current status of SNN models in tempo-
ral processing, we further evaluate five spiking neuron mod-
els notable for their enhanced temporal processing capaci-
ties: LIF, Context Embedding LIF (CE-LIF) [Chen et al.,
2023], Liquid Time-Constant (LTC) [Yin et al., 2023], Slid-
ing Parallel Spiking Neuron (SPSN) [Fang et al., 2023], and
Parallel Multicompartment Spiking Neuron (PMSN) [Chen
et al., 2024]. In addition to the commonly used feedfor-
ward (SFNN) and recurrent (SRNN) networks [Bellec et al.,
2018], we also benchmark five advanced neural architectures

that excel in temporal processing, including Gated Spiking
Neuron (GSN) [Hao et al., 2024], Spiking Temporal Con-
volution Network (Spiking TCN) [Bai et al., 2018], Spike-
Driven Transformer [Yao et al., 2024], Binary S4D [Stan
and Rhodes, 2024], and Gated Spiking Unit (GSU) [Stan and
Rhodes, 2024]. To ensure a fair comparison, all models are
configured with a comparable number of trainable parameters
for each task. For architectures like Spiking TCN and Spike-
Driven Transformer, which are originally designed to repeat
each time step D times to enhance their model representation
power, we set D = 1 to facilitate fair comparisons with other
models.

Our experimental results demonstrate that the performance
of spiking neuron models varies significantly across tasks.
LTC shows only marginal improvements in noise-intensive
tasks such as HAR, EEG-MI, and SSL, attributable to its
input-dependent mechanism, which is highly susceptible to
noise accumulation over time. In contrast, PMSN and SPSN
neurons exhibit stronger noise robustness in these tasks. Ad-
ditionally, PMSN and LTC excel in AL and ALR tasks re-
quiring long-term memory, showcasing superior temporal re-
tention capacities over extended periods. Furthermore, LTC
and PMSN demonstrate high expressiveness in the AD task,
while CE-LIF with recurrent connections stands out in the
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ASR task, exhibiting remarkable generalizability. Overall,
PMSN emerges as the top-performing spiking neuron model
on NSA, striking a balance between robustness, temporal de-
pendency establishment, and generalizability across tasks.

For neural architectures, Binary S4D and its variant GSU
exhibit strong noise robustness in HAR, EEG-MI, and SSL
tasks, outperforming other architectures in handling noisy in-
puts. In contrast, the GSN model achieves notable gains in
AD and ASR tasks, which require high model expressive-
ness and generalizability. This result suggests the high effec-
tiveness of GSN in capturing diverse, fine-grained temporal
patterns. Conversely, SRNNs and Spike-Driven Transformer
fall short in performance compared to other models. We no-
ticed that SRNNs often suffer from training instability and
convergence issues in our experiments, resulting in compa-
rable or worse performance than SFNNs. The Spike-Driven
Transformer struggles to establish temporal dependencies ef-
fectively due to its binary activations (i.e., D = 1), which
significantly constrains its expressiveness. Meanwhile, this
architecture is typically designed to work with large datasets
and networks, the moderate dataset size of NSA and the small
parameter count in our evaluation may constrain the full ex-
ploitation of its architectural advantages.

3.3 Efficiency Benchmarking of SNN Models
We further report the efficiency metrics of the evaluated SNN
models on the AL task, including training speed, GPU mem-
ory usage, and energy efficiency, which are critical factors
for practical implementation. To ensure a fair comparison,
all evaluations are conducted using a batch size of 256 and
all evaluated SNN models are configured with a uniform
network dimension, comprising two hidden layers with 256
channels each. Training speed and memory costs are evalu-
ated with sequence lengths of {200, 400, 800}, while energy
efficiency is assessed with a sequence length of 400. The
comparative results are summarized in Table 5.

Training Speed
Our evaluation results on NSA exhibit notable training speed
differences between serial and parallel models. Serial mod-
els, including LIF, CE-LIF, LTC, and GSN, process temporal
data sequentially, maintaining consistent but inherently slow
training speeds per time step, regardless of sequence lengths.
Consequently, their total training time scales linearly with the
sequence length, leading to high computational costs for pro-
cessing long sequences. This limitation becomes even more
pronounced when involving complex neuronal dynamics. For
instance, LIF achieves the fastest training speed among serial
models, whereas LTC achieves the slowest, highlighting that
inefficient training in serial models poses a significant bottle-
neck for long sequence processing.

Parallel models, on the contrary, demonstrate high compu-
tational efficiency by processing data in multiple time steps
simultaneously. Our results show that recently proposed par-
allel models, including SPSN, PMSN, Spiking TCN, binary
S4D, and GSU, achieve approximately 3 × speedup com-
pared to serial models. However, the Spike-Driven Trans-
former fails to achieve noticeable speedups over the LIF
model due to its high computational complexity. Addition-

ally, the training speed of parallel models varies with se-
quence length, reflecting differences in their underlying par-
allelization strategies. Specifically, SPSN exhibits a decline
in training speed as the sequence length increases, resulting
in an exponentially growing total training time. This slow-
down arises from the design of its receptive kernel, which
expands proportionally with sequence length to capture long-
range temporal dependencies. Consequently, the neuron dy-
namics incur a quadratic time complexity of O(L2). In con-
trast, other parallel models sustain consistent training speeds
across varying sequence lengths, owing to their more efficient
linear-time complexity of O(L).

Memory Usage
Despite enhanced temporal processing capacity offered by
many recent SNN models, our finding reveals that these
advancements come with a significant increase in memory
consumption. Specifically, while parallel computing mod-
els accelerate training speeds, they typically incur substan-
tially higher memory usage, trading off between space and
time. This inefficiency arises from their need to store ad-
ditional states to capture temporal dependencies in parallel.
Among these parallel models, the Spike-Driven Transformer
stands out as the most memory-intensive due to the expanded
embedding space involved in the self-attention mechanism.
In contrast, PMSN, S4D, and GSU consume comparatively
less memory, benefiting from their compact representation
of model states. However, they still exceed the memory re-
quirements of serial approaches due to the additional storage
needed for their parallelized operations. SPSN employs a 1-
D temporal convolution kernel to capture local temporal fea-
tures without the need to buffer extra transient states, making
it a highly memory-efficient parallel architecture comparable
to the LIF model. In contrast, serial models generally con-
sume less memory as they store fewer transient states across
time. The only exception is LTC, whose poor memory effi-
ciency stems from its complex computation graph involved
in gating computations. Notably, memory consumption for
all evaluated models scales linearly with sequence length, re-
gardless of structure or computational strategy. It highlights
SNNs’ memory efficiency in handling extended temporal se-
quences, as each time step contributes a fixed and predictable
amount of memory without exponential growth.

Energy Efficiency
The high energy efficiency of SNNs promises to enable effi-
cient temporal processing at the edge. To present a compre-
hensive assessment of the energy efficiency of advanced SNN
models, we conduct a quantitative analysis of the number of
Multiply-Accumulate (MAC) and Accumulate (AC) opera-
tions per inference time step and per sample. Additionally,
we derive the average empirical energy consumption for each
model based on the experimental data. Detailed calculations
of energy cost can be found in the Supplementary Materials.

The results presented in Table 5 suggest that most ad-
vanced SNN models improve temporal processing capacity
at the cost of increased energy consumption. Among the
evaluated models, CE-LIF, PMSN, and GSU stand out for
achieving a favorable trade-off between performance and en-
ergy efficiency, making them more suitable for deployment in
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Architecture Neuron
model

Training speed (k step/s) ↑ Memory consumption (GB) ↓ Energy efficiency
200 400 800 200 400 800 ACs (k) ↓ MACs (k) ↓ Empirical cost (nJ) ↓

SFNN

LIF 1.91 (1.0) 1.91 (1.0) 2.04 (1.0) 0.49 (1.0) 0.98 (1.0) 1.96 (1.0) 3.72 (1.0) 0.26 (1.0) 4.52 (1.0)
CE-LIF 1.25 (0.7) 1.31 (0.7) 1.37 (0.7) 0.59 (1.2) 1.18 (1.2) 2.35 (1.2) 3.22 (0.9) 0.77 (3.0) 6.43 (1.4)
LTC 0.63 (0.3) 0.66 (0.3) 0.68 (0.3) 1.43 (2.9) 2.84 (2.9) 5.68 (2.9) 0.93 (0.3) 262.91 (1,011) 1,210.23 (268)
SPSN 5.04 (2.6) 4.14 (2.2) 3.21 (1.6) 0.50 (1.0) 1.01 (1.0) 2.01 (1.0) 1.56 (0.4) 32.77 (126) 152.14 (33)
PMSN 6.34 (3.3) 6.31 (3.3) 6.24 (3.1) 1.23 (2.5) 2.46 (2.5) 4.92 (2.5) 10.27 (2.8) 4.66 (18) 30.68 (6.8)

SRNN
LIF 1.19 (0.6) 1.25 (0.7) 1.30 (0.6) 0.54 (1.1) 1.08 (1.1) 2.16 (1.1) 22.91 (6.2) 0.26 (1.0) 21.79 (4.8)
CE-LIF 0.92 (0.5) 0.98 (0.5) 1.00 (0.5) 0.64 (1.3) 1.28 (1.3) 2.55 (1.3) 8.26 (2.2) 0.77 (3.0) 10.96 (2.4)
LTC 0.55 (0.3) 0.57 (0.3) 0.57 (0.3) 1.43 (2.9) 2.84 (2.9) 5.68 (2.9) 2.12 (0.6) 262.91 (1,011) 1,211.30 (268)

GSN 0.88 (0.5) 0.92 (0.5) 0.92 (0.5) 0.64 (1.3) 1.28 (1.3) 2.55 (1.3) 27.33 (7.3) 1.28 (4.9) 30.48 (6.7)
Spiking TCN 4.92 (2.6) 4.99 (2.6) 5.01 (2.5) 0.66 (1.4) 1.30 (1.3) 2.58 (1.3) 50.49 (11) 0.00 (0.0) 56.10 (15)
Spike-Driven Transformer LIF 1.86 (1.0) 1.99 (1.0) 2.06 (1.0) 3.07 (6.3) 6.10 (6.2) 12.16 (6.2) 214.70 (58) 0.00 (0.0) 193.22 (42)
Binary S4D 7.04 (3.7) 7.07 (3.7) 7.33 (3.6) 1.26 (2.6) 2.51 (2.6) 5.00 (2.6) 44.49 (12) 5.43 (21) 65.01 (14)
GSU 5.93 (3.1) 5.91 (3.1) 5.92 (2.9) 1.48 (3.0) 2.95 (3.0) 5.88 (3.0) 6.37 (1.7) 4.92 (19) 28.36 (6.3)

Table 5: Comparison of SNN models in terms of the training speed, memory consumption, and energy efficiency. Values in brackets indicate
ratios relative to the baseline LIF-SFNN model.

resource-constrained edge systems. It is noteworthy that LTC
presents two orders of magnitude higher energy consumption
than standard LIF models, which can be attributed to the hun-
dreds of thousands of MAC operations required for comput-
ing its temporal dynamics. Such high energy costs compara-
ble to traditional ANN methods severely limit its practicality
for energy-constrained systems. These observations highlight
the critical role of efficiency evaluation in model design. To
unleash the full potential of neuromorphic systems in tempo-
ral processing, we argue that the development of SNN mod-
els must prioritize not only the enhancement of task accuracy
but also the maintenance of ultra-low energy consumption,
thereby ensuring their competitiveness in real-world applica-
tions.

4 Related Works: Current SNN
Benchmarking Practices

Existing benchmarks commonly used for evaluating SNNs
can be divided into four categories, each with its own limi-
tations that hinder their ability to effectively assess the tem-
poral processing capacity of SNNs. The first category in-
cludes static image recognition tasks [LeCun et al., 1998;
Krizhevsky and Hinton, 2009], where identical images are re-
peated along the time axis, lacking any meaningful temporal
dynamics. The second category comprises event-based visual
classification tasks recorded by DVS cameras [Li et al., 2017;
Amir et al., 2017; Zhou et al., 2024; Wang et al., 2022;
Wang et al., 2024]. While these datasets impose artificial
saccadic motion on static images or capture simple mov-
ing objects, their limited temporal dynamics result in per-
formance that primarily emphasizes spatial pattern recogni-
tion rather than the establishment of long-range temporal de-
pendencies. The third category involves keyword spotting
tasks, which encompass both frame-based [Warden, 2018]
and spike-based [Cramer et al., 2020] audio inputs. While
these datasets contain richer temporal dynamics, effective de-
cisions can often be made by integrating only short-term tem-
poral features, making these datasets insufficiently challeng-

ing to evaluate the temporal processing capacity of SNNs.
More recently, several preliminary efforts have been made to
apply SNNs to long-term language modeling tasks [Tay et
al., 2020]. Despite the complex temporal dependencies in-
herent in these tasks, the high training costs associated with
these models render them unsuitable for evaluating many ex-
isting SNN approaches. Furthermore, addressing such tasks
typically necessitates models with a substantial number of
parameters, which are not feasible for deployment on cur-
rent neuromorphic hardware, thereby limiting their utility as
benchmarks for SNNs at this stage of development.

5 Discussion and Conclusion
In this work, we present NSA, an effective, versatile, and
application-oriented benchmark designed to comprehensively
evaluate the temporal processing capacities of SNNs across
diverse application scenarios. To ensure rigorous and reli-
able assessment, we integrate a temporal dependency analy-
sis tool, STP, into NSA to quantify the effectiveness of the
benchmark. Our comparative analysis underscores both the
progress and the challenges in neuromorphic temporal pro-
cessing. While advanced spiking neuron models and neural
architectures demonstrate remarkable improvements in task
performance, many of them struggle to maintain efficiency
in training speed, memory usage, and energy consumption,
which are crucial constraints for real-world applications. Our
findings underscore the urgent need to develop effective SNN
models capable of robustly processing temporal data while
maintaining high energy efficiency. While this paper provides
a limited evaluation of SNN approaches due to time and re-
source constraints, we encourage the community to expand
the scope of evaluations using NSA. We envision NSA as
an effective and adaptive temporal benchmarking framework
capable of addressing the evolving needs of the community.
We hope this benchmark will inspire further advancements in
neuromorphic temporal processing research, thereby paving
the way for more capable, robust, and efficient neuromorphic
solutions for real-world applications.
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