Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Beyond Individual and Point: Next POI Recommendation via Region-aware
Dynamic Hypergraph with Dual-level Modeling

Xixi Li’*?, Zhuo Gu'?, Rui Yao?*, Yong Zhou'?,
Hancheng Zhu'?, Jiaqi Zhao'?, Wenliang Du'+
1School of Computer Sciences and Technology, China University of Mining and Technology
*Mine Digitization Engineering Research Center of the Ministry of Education, China
{xixil, zhuo.gu, ruiyao, yzhou, zhuhancheng, jiagizhao, wldu} @cumt.edu.cn

Abstract

Next POI recommendation contributes to the pros-
perity of various intelligent location-based ser-
vices. Existing studies focus on exploring sequen-
tial patterns and POI interactions using sequen-
tial and graph-based methods to enhance recom-
mendation performance. However, they don’t ef-
fectively exploit geographical information. In ad-
dition, methods that focus on modeling mobility
patterns using individual limited data may suffer
from data sparsity and the information cocoons
problem. Moreover, most graph structures fo-
cus on adjacent nodes, failing to capture poten-
tial high-order associations among POIs. To ad-
dress these challenges, we propose the Region-
aware dynamic Hypergraph learning method with
Dual-level interaction Modeling (ReHDM), which
exploits users’ dynamic mobility beyond individ-
ual and point. Specifically, ReHDM utilizes re-
gional encoding to mine the potential spatial re-
lationships among POIs with coarse-grained geo-
graphical information. By incorporating POI-level
and trajectory-level associations within a hyper-
graph convolutional network, ReHDM comprehen-
sively captures cross-user collaborative informa-
tion. Furthermore, ReHDM captures not only de-
pendencies among POIs within each trajectory for
a single user, but also the high-order collaborative
information across individual user trajectories and
associated users’ trajectories. Experimental results
on three public datasets demonstrate the superiority
of ReHDM to the state-of-the-art.

1 Introduction

The adoption of mobile technologies has driven the growth
of location-based social networks(LBSNs). Popular LBSNs
like Foursquare and Gowalla generate extensive user check-in
data, fostering POI recommender systems to predict potential
locations of interest. Next Point-of-Interest (POI) recommen-
dation has gained popularity for personalized route planning,
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Figure 1: Statistics on the average number of POI pairs associated
with each user or trajectory in the NYC dataset for a certain reason.

targeted advertising, and business recommendations, drawing
significant attention from academia and industry.

In recent years, how to enhance the performance of the
next POI recommendation has been extensively studied. Tra-
ditional methods use sequential models[Yang et al., 2020;
Qin et al., 2022a] to mine transitions and sequential depen-
dencies, while graph-based[Wang er al., 2022a] approaches
refine POI representations with collaborative information.
Despite the effectiveness of existing methods, there still exist
some limitations that need to be better explored.

Some works address the sparsity issue by incorporat-
ing spatial-temporal[Qin ez al., 2022b], social, and sequen-
tial features[Xie and Chen, 2023]. However, they focus
on individual mobility patterns, limited by the informa-
tion cocoons problem and the sparsity issue. Graph Neu-
ral Networks(GNNs)[Yang er al., 2022; Zhang et al., 2024;
Lai et al., 2024] mitigate sparsity by leveraging global histor-
ical check-ins and refining POI representations through col-
laborative relations. However, static graph construction strug-
gles with extreme sparsity. Moreover, they neglect higher-
order connections among non-adjacent POIs and overlook
dynamic sequential dependencies, which are crucial for cap-
turing complex mobility patterns and user interest changes.

Motivation. In view of the limitations of existing ap-
proaches, we aim to enrich the mobility modeling from col-
laborative users rather than a single user. Besides, we attempt
to model mobility patterns from both POI level and trajec-
tory level. Additionally, we want to capture more potential
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associations among POIs from the coarse granularity. To val-
idate the idea above, we analyzed the number of POI pairs
associated with specific relationships on a real-world dataset.
As shown in Figure 1(a), the average number of POI pairs in
a single user’s visit records is 25.1, which increases signifi-
cantly when collaborative users are considered. Similarly, in
Figure 1(b), the number of POI pairs within a single trajectory
is relatively small but grows substantially with the inclusion
of collaborative trajectories. Additionally, in Figure 1(c), in-
corporating POIs located within the same region also leads to
an increase in the number of POI pairs. These findings sug-
gest that leveraging collaborative users, dual-level modeling,
and regional partitioning have the potential to effectively mit-
igate the sparsity issue and uncover underlying associations.

To this end, we propose a novel region-aware dynamic
hypergraph learning method with dual-level modeling for
next POI recommendation (ReHDM). It explores dynamic
spatio-temporal mobility beyond individual and point, con-
sidering associations among POlIs, users, and trajectories.
Specifically, it leverages coarse-grained geographical influ-
ence through quadkey-based regional encoding to explore po-
tential spatial associations among POIs. Then, a hypergraph
convolutional network integrated with a transformer is de-
signed to dynamically learn spatio-temporal patterns at both
POI level and trajectory level, and capture cross-user col-
laborative information for enhanced representation. During
hypergraph learning, intra- and inter-sequence interactions
are mined simultaneously. At the POI level, a self-attention
mechanism captures sequential and spatio-temporal depen-
dencies within each sub-sequence. At the trajectory level,
hypergraph convolution combined with the transformer mod-
els high-order correlations among trajectories.

The main contributions of this paper are as follows:

* We propose a novel region-aware dynamic hypergraph
learning method with dual-level modeling for next POI
recommendation. To enhance knowledge representa-
tion, it explores dynamic mobility patterns beyond in-
dividual and point.

* We consider associations among users, POIs, and tra-
jectories. Specifically, we leverage coarse-grained geo-
graphical influence to exploit more potential POI corre-
lations. We identify dynamic and complex patterns by
POl-level and trajectory-level interaction modeling, and
mine beneficial cross-user collaborative information.

» Evaluations on three public real-world datasets demon-
strate that the proposed method outperforms state-of-
the-art approaches.

2 Related Work

The methods for next POI recommendation can be broadly
classified into two distinct literature streams: Sequential-
based methods and Graph-based methods.

2.1 Sequential POI Recommendation

Previous methods have commonly treated next POI recom-
mendation as a sequential prediction task. With the success
of recurrent neural networks (RNNS) [Sun ez al., 2020], RNN

and its variants have been widely adopted to capture com-
plex sequential dependencies enriched with contextual infor-
mation [Wu et al., 2020]. However, RNN-based methods
primarily focus on short-term dependencies and emphasize
contiguous interactions, which restricts their effectiveness in
handling more diverse patterns.

To address these limitations, self-attention networks
[Vaswani et al., 2017] have been employed to model long-
term dependencies and capture non-consecutive correlations
between POIs [Zhang et al., 2022]. For example, STAN
[Luo et al., 2021] incorporates a bi-layer attention mecha-
nism to explore non-adjacent check-ins and spatiotemporal
interactions. Despite these advancements, self-attention mod-
els mainly concentrate on intra-sequence relationships, often
neglecting inter-sequence information.

Nevertheless, sequential methods rely heavily on individ-
ual user data, which constrains their recommendation perfor-
mance. Moreover, effectively capturing both local and global
spatiotemporal dependencies remains a significant challenge.

2.2 Graph and Hypergraph-based Models

Graph-based methods [Han et al., 2020; Rao et al., 2022;
Liu et al., 2023] represent user-POI interactions as graph
structures and aggregate neighborhood information to over-
come the limitations of sequ,ential models, enabling more
complex and global behavior modeling. Methods such as
STGCAN [Wang et al., 2022a] and DRAN [Wang et al.,
2022b] utilize GNNSs to capture spatio-temporal dependen-
cies across users. However, these approaches typically incor-
porate only low-order POI-POI relations, making it challeng-
ing to model the complex behaviors arising from trajectory
collaborations.

Hypergraphs [Bai et al., 2021; Xia et al., 2021; Gao et al.,
2022] extend beyond pairwise connections to capture higher-
order relationships among POlIs, users, and spatio-temporal
contexts. Hypergraph Neural Networks [Lai et al., 2023]
have emerged as a promising solution to the limitations of se-
quential and graph-based methods. They effectively integrate
spatio-temporal information and collaborative signals across
users. For instance, STHGCN [Yan et al., 2023] combines
hypergraph structure encoding with spatio-temporal features
to provide a more comprehensive understanding of user pref-
erences, while MvStHgL [An et al., 2024] introduces a multi-
view hypergraph learning approach to capture users’ spatio-
temporal periodic interests, offering richer representations
of user behavior. However, these methods still struggle to
fully explore spatial associations and transcend individual
and POl-level collaborative information.

In contrast to existing methods, our ReHDM is a region-
aware dynamic hypergraph learning method with dual-level
interaction modeling. (1) While grounded in hypergraph
learning, this framework models user visit records at both
POI level and trajectory level simultaneously. By model-
ing the target user’s check-in sequence to capture inter-POI
dependencies, we also emphasize inter-trajectory correla-
tions. (2) Specifically, we incorporate collaborative trajecto-
ries from other users to assist in predicting the current trajec-
tory, thereby uncovering high-order collaborative information



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

e — e m e m - N pmmmmmmmmm———— - q
Il O User ID [T Initial Check-in Vector: = //II Hyperedgestto Hyperedge
: O POIID Check-in Vector after | — ﬂ ( | KX 4 s :
1o Category(CatE)Dj:DA Dependency Capture | D W [ : ] /"k’D* !
| O Time Collaborative H 2 1 L2 l‘:orm |
1 . Trajectory Vector 1= w !
| @ Region T A \
Target - [ MLP ]
1 g 1 1
1 Check-in Trajectory Vector 1 1 ] : e
1 1 . A
| A . _Final Target | Gated Residual |
: # Trajectory Trajectory Vector : T : s
\ —Belonging —Intra-user  --Inter-user | HG Transformer ] ! ‘D
Nl ks S et bt s . 2
1 Y
S dimt : i o
2 ) e
Quadkey-based ST S 1'I¢|I' . <
Regional Encoding w ! ' o
e T [ L2 Norm ] ! S
100 0T Ti0 111 X 3 5 ' o
102703 12713 ( MLP J i
3 I
H T T 1
120 21 30 31 Add & LN 1
1 1 1
1 )
122 23 32 ! T !
v < 1
""""'"'"( /\\\ / \ \”\ [ HG Transformer ] '
: 1
32077782107 \ ! ]
Il NE | o 1
Ve ¥ y ' o / ~ :
(o - = | 1
1322/ 1323 7} o 1
! | ] [} = :
| 1 (e} 3 .
beeoloioou o - N2~ - _Checkiins as vertices Add & LN | G
- == = - 1 ~—
i o
Elements I 7 iing FC Layers i )
Region User ID POI ID Cat. Time H ':
(M) ci=23l] Add & LN ! o
. N <
3| i 1 )
1 T: ) 2| ‘o o
st/ NN s / gL o ! - '
1 2 \ & ™ e 1| | ( Self-Attention 1
ol \ .. i I
gl ' |
st 07 OgP £ !
(a) Model Input J 12 \, Target Check-in Sequence

Figure 2: The framework of our proposed ReHDM. By employing quadkey to encode POIs into regions and constructing a hypergraph, this
framework models the (a) check-ins of the target and collaborative trajectories at the (b) POI level and (c) trajectory level, ultimately (d)

predicting the next location.

among users. (3) Furthermore, we employ coarse-grained re-
gions to capture spatial correlations among POlIs.

3 Problem Formulation

Raw Data: Consider the user set U = {u1,us,...,uy|},
the POI set P = {p1,p2,...,p|p|}, and the category set
C = {c1,¢2,...,¢c} Let Q = {q1,92,...,qg|} denote

the set of all check-in records. Each check-in is denoted by
q = (u,p, ¢, g, t) with information of user u visited a POI p at
timestamp ¢, with the POI category c and geometric informa-
tion g. The geometric information g uniquely identifies the
POI p and is represented as a tuple (longitude, latitude).

Trajectory Definition: Let S = {s1,52,...,5g} be the
set of all trajectories. A trajectory is a set of consecu-
tive check-ins generated as follows: For each user u, let
Q. denote the history check-ins of u. Split @, by spe-
cific time interval (i.e., 1 day) and get a trajectory sequence
Sy = {s}l,si,...,slf“‘}, where the m-th trajectory s7*
contains a sequence of user’s check-ins, denoted by s

{at,q2,. .. qq‘f“ ‘}. Given the historical trajectories S before
the current timestamp ¢, and the current target trajectory s!,
of a specific user u, the goal of next POI recommendation is
to recommend the top-K POIs that user u may visit at the
next timestamp after the target trajectory.

4 Proposed Methodology

The proposed ReHDM framework is schematically illustrated
in Figure 2. This method models user check-in sequences at
both POI level and trajectory level, leveraging collaborative
trajectories to enhance the representation of the target trajec-
tory. Additionally, it employs the quadkey encoding scheme
to partition POIs into coarse-grained regions.

4.1 Quadkey-based Regional Encoding

In POI recommendation, latitude and longitude are com-
monly embedded to capture geographical features. How-
ever, geographic data are often sparse and nonlinear, and the
strong interaction between latitude and longitude makes sep-
arate embedding suboptimal. To address this, we adopt a
quadkey-based region encoding method to hierarchically di-
vide dispersed POIs into regions and leverage coarse-grained
regional information to uncover spatial correlations.

Following [Lian et al., 2020], we partition the Earth’s sur-
face using the Tile Map System and assign each grid cell a
unique quadkey. The encoding process involves selecting a
zoom level, projecting POI coordinates, dividing the grid, and
generating a base-4 quadkey string to represent each region.
As shown in Figure 2, regions sharing the same quadkey pre-
fix are adjacent at higher hierarchical levels.

To facilitate processing, each check-in point’s quadkey is
treated as a discrete categorical feature, with its regional in-
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dex derived by taking a modulo of the total grid count at the
final zoom level.

4.2 Hypergraph Construction

To leverage collaborative information from other users and
reveal high-order inter-user relationships, we construct a hy-
pergraph that models both individual trajectories and their
collaborative connections. Specifically, we define a hyper-
graph H = (V, &), where V represents the set of check-in
records (nodes), and £ represents the set of user trajectories
(hyperedges). Each hyperedge e € £ corresponds to a user’s
time-partitioned trajectory s, and it connects all check-in

>
records {g!, g2, . .., qis" |} within that trajectory. This design
captures high-order relationships among multiple check-ins
belonging to different trajectories.

To encode this structure, we utilize two matrices: H; €
RIVIXIEl H,y € RIEIXIE] The matrix H (node-to-hyperedge
incidence) is defined as

Hl(l}j):{

Hence, H; indicates which check-ins are associated with
which trajectories.

The matrix Hy (hyperedge-to-hyperedge adjacency) en-
codes collaborative relationships among trajectories. We set
Hy(m,n) = 1,if s,, ~ 8, OF 8, = 8y, Where “~” rep-
resents two trajectories from the same user (intra-user rela-
tionship), and “~” represents two trajectories from different
users that are sufficiently similar (inter-user relationship). To
prevent data leakage when predicting future check-ins, we re-
quire that the end time of a source trajectory s,,, precedes the
start time of a target trajectory s,,.

In addition, we introduce an edge-type matrix rg_,¢ to in-
dicate whether each connection in H> is an intra-user corre-
lation or an inter-user collaboration:

Tm,n S N7 Tmmn = {

1, if v; belongs to e;,
0, otherwise.

ey

0, intra-user correlation,
1

During training and inference, we focus on trajectories
connected to the target trajectory being predicted, as well
as the check-ins associated with these trajectories. This
restricted sub-hypergraph ensures efficiency in computation
and maintains relevance to the prediction task.

4.3 POI-Level Modeling Module

The POI-level modeling module focuses on efficiently encod-
ing the underlying relationships between POlIs to capture user
movement patterns. This module employs attention mech-
anisms for representation learning on individual user trajec-
tory data, using self-attention mechanisms to capture depen-
dencies between POlIs, thereby understanding user movement
behavior at the POI level. To more accurately reflect user
preferences, representative POI pairs in users’ historical visit
records are given greater weight, underscoring their impor-
tance in predictions. For this purpose, we have designed a
POI dependency capture module specifically to model the de-
pendencies between check-in points in the sequence of user
visits, enhancing the understanding and predictive capabili-
ties regarding user movement patterns.

@)

inter-user collaboration.

)

Embedding Layer
Each check-in point ¢ = (u, p, ¢, g, t) in the sub-hypergraph
includes three ID features: user ID u, POI ID p, and category
ID c. To capture temporal characteristics, two time-related
IDs are added: hour ID ¢; (24 categories) and day-of-week
ID t4 (7 categories), reflecting mobility patterns like visiting
entertainment venues on weekends. Finally, the POI location
g is clustered into a region ID r using the quadkey-based re-
gional encoding method.

The embedding layer fe.,,, transforms each ID feature into
a dense vector of dimension d;4, and subsequently, all six
embeddings are concatenated to form the check-in represen-
tation. The formula is as follows:

E(q) = Concat (fomb(ID;) |i=1,...,6), (3

so that the dimensionality of the check-in representation E(q)
is d = 6d;q.

Target Check-in Sequence Processing
In the POI-level modeling stage, we use a simplified Trans-
former encoder layer to capture dependencies among POIs
visited by the target user, uncovering latent preferences.
While both target and collaborative sequences are initially in-
put, this stage focuses on the target sequence. The encoder
includes two sublayers: a multi-head self-attention (MSA)
sublayer and a feed-forward sublayer (FFN).

To implement the attention mechanism, we employ three

learnable projection matrices Wgc), Wy;), Wgc) € Réxdn,
dp = d/h, where k denotes the index of the attention head.
Accordingly, the query, key, and value vectors are given by:

QM) =W E(s),
K® =W B, (4)

u

v = WD E(s)),
where E(st) € Rlsulxd represents the embedding of the tar-
get check-in sequence, which is formed by stacking individ-
ual check-in embeddings E(q) € R? for all records in the
sequence. For the k-th attention head, the output is obtained
via scaled dot-product attention:

W) v

Next, the outputs of all attention heads are concatenated
and mapped back to the original embedding dimension by
another learnable matrix W, € R4x¢:

MSA(E(s,)) = [SAy;...;SA,] Wo, 6)

where h denotes the number of attention heads.

After attention calculation, a FEN refines the representa-
tion at each sequence position using two fully connected lay-
ers with ReLLU activation in between:

FFN(x) = ReLU(x Wj 4 bg) W1 + by. (7)

SAx = Softmax( (5)

where W, € Rdde, W, € Rded, by € Rdf7 b, € R
are all learnable parameters, and d; denotes the hidden di-
mension of the feed-forward layers.
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To ensure stable training and facilitate gradient flow, we
apply residual connections, layer normalization (LN), and
dropout around both the MSA sublayer and the FFN sublayer.
Formally, the updated embeddings for the target sequence are
iteratively computed as:

fo(s!,) = LN(E(s},) + Dropout(MSA(E(s})) ). ®
Eo(s,) = LN (Eo(st,) + Dropout (FFN(&o(s,))) ).

Here, E(s!)) represents the original embedding of the target
check-in sequence, while Eq (s!,) and Eq(s,) are the updated
embeddings after passing through the MSA and FFN mod-
ules, respectively.

4.4 Trajectory-Level Modeling Module

The trajectory-level modeling module aims to further uncover
the collaborative relationships among multiple trajectories
from both the same user and different users, building upon the
processing at the POI level. First, we employ hypergraph con-
volution to aggregate check-in information and generate an
initial representation for each trajectory, ensuring that the rep-
resentation of each trajectory encapsulates its internal check-
in information. Then, by applying hyperedge convolution on
hyperedges, this module jointly learns the representations of
multiple trajectories that exhibit collaborative relationships,
thereby capturing higher-order collaboration among users.

Generating Initial Trajectory Representations

To better integrate check-in information within each trajec-
tory, we use a hypergraph convolution approach. Specifi-
cally, a Hypergraph Transformer (HG Transformer) layer ag-
gregates check-in data to generate initial trajectory represen-
tations (V — &). Following [Yan et al., 2023], the HG Trans-
former consists of two stages: message assembling (MA) and
message propagation (MP).

Message Assembling. In this step, we combine the source

node’s hidden representation h'Y with the edge-type vector
r;;, time vector t;;, and distance vector s;; between the two
O]

nodes to obtain the message vector m;’:

mz(‘? = h§” +rij + tij + sij, ©))

where 7 and j denote the target node (practically treating hy-
peredges as special nodes) and the source node, respectively.
Message Propagation. The importance of each message
is evaluated with multi-head scaled dot-product attention
(MSDA), and neighbor messages are aggregated via weighted
summation based on attention scores. The hidden representa-
tion of the target node hng) is then updated as:
l l 0. .
bV = MSDA(LY, {m{)|j e N()}),  (10)
where N (7) represents the set of neighbors of node 7 in the
sub-hypergraph adjacency matrix. Here, hElH) € R% is the
hidden representation of the target node at layer (I + 1).
In summary, the HG Transformer can be written as:

h(tY = MP{MA(hEl), rij,tij, Sij)} an

As trajectories lack initial raw features, we introduce a
learnable weight matrix & € R? as a shared embedding for
all trajectories. The representation after one HG Transformer
layer is computed as:

hz(-l) = HG Transformer(0, E(q), r;;, tij,8:;).  (12)

To preserve initial information, we apply residual con-
nections, layer normalization, and a multi-layer perceptron
(MLP) to compress the representation back to d-dimensions:

A" = LN(6 +h{"),

. 13)
h{Y = 12(ReLU(BVW(” + b )W{” + b{" ),

where L2 denotes L2 normalization. W(()O) e Rhdxd
W e Rixd and b?, b € R? are learnable parame-
ters. At this stage, the target check-in sequence Eg(s!)) is
also processed as the set of E(q) features for the target trajec-
tory.

Finally, we aggregate the check-in information from the
target and collaborative trajectories into their trajectory rep-

resentations h{" € R<.

Convolution Across Trajectories

To update hidden representations (£ — &) with messages
from collaborative trajectories and capture higher-order col-
laboration, we stack (L — 1) HG Transformer layers. This al-
lows the model to gather information from distant neighbors
across trajectories, capturing both intra-trajectory spatiotem-
poral relationships and inter-trajectory interactions. Each
layer applies an MLP and L2 normalization. A linear projec-
tion and gated residual module balance the previous layer’s

output hl(.l) with the HG Transformer’s output flgl—H), effec-
tively integrating knowledge from collaborative trajectories:
gglﬂ) =HG Transformer(hgl), h§l), rij, tij, sij),
BV = s (W +0y)) (=g g, a4
h{'" = Norm (ReLU(B{" VW + b ) W{" + b{"),

where ! = 1,2,...,L — 1. f is a hyperparameter indicating
the residual weight. W) € R4*hd is used for dimensional

alignment in the gated residual module, and bél) € Risa
bias term. Thus, after [-layer convolution, the information
from collaborative trajectory nodes is aggregated into the fi-

nal representation of the target trajectory hEL) € R%

4.5 Predict
Finally, we use a one-layer perceptron to map the represen-
tation of the target trajectory hEL) to the POI ID space, thus
predicting the next location visited by the user:

9: = Softmax(h!”’W, + b,), (15)

where W, € R*IPI and b, € RI”! are the weight matrix
and bias term, respectively. We adopt the cross-entropy loss
for mini-batch training:

N |P|

1 R
L=—5>D vilogFi (16)

i=1 p=1
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Method NYC TKY Gowalla
Acc@] Acc@5 Acc@10 MRR | Acc@1 Acc@5 Acc@l0 MRR | Acc@l Acc@5 Acc@l10 MRR

FPMC(WWW10) 0.1003  0.2126 0.2970  0.1701 | 0.0814  0.2045 0.2746  0.1344 | 0.0383  0.0702 0.1159 0.0911
PRME(JCAI15) 0.1159  0.2236 0.3105 0.1712 | 0.1052 0.2278 0.2944  0.1786 | 0.0521 0.1034 0.1425 0.1002
STGCN(TKDE20) 0.1799  0.3425 0.4279  0.2788 | 0.1716  0.3453 0.3927  0.2504 | 0.0961  0.2097 0.2613 0.1712
PLSPL(TKDE20) 0.1917  0.3678 0.4523  0.2806 | 0.1889  0.3523 0.4150 0.2542 | 0.1072 0.2278 0.2995 0.1847
STAN(WWW21) 0.2231  0.4582 0.5734  0.3253 | 0.1963 0.3798 0.4464  0.2852 | 0.1104 0.2348 0.3018 0.1869
GETNext(SIGIR22) | 0.2435  0.5089 0.6143  0.3261 | 0.2254 0.4417 0.5287  0.3262 | 0.1357 0.2852 0.3590 0.2103
STHGCN(SIGIR23) | 0.2734 0.5361 0.6244  0.3915 | 0.2950 0.5207 0.5980 0.3986 | 0.1730  0.3529 0.4191 0.2558
MCN4Rec(TOIS24) | 0.2569  0.5429 0.6405 0.3868 | 0.2535  0.4580 0.5656  0.3475 | 0.1794 0.3279 0.4322 0.2613
DCHL(SIGIR24) 0.2684  0.4385 0.4861 0.3582 | 0.1918 0.3662 0.4083  0.2308 | 0.1622  0.2863 0.3287 0.2035
ReHDM(Ours) 0.2914  0.5686 0.6521  0.4130 | 0.3184 0.5461 0.6063  0.4229 | 0.1920 0.3805 0.4335 0.2885
% Improv. 6.58%  4.73% 1.81% 549% | 7.93%  4.88% 1.39% 6.10% | 7.02%  7.82% 0.30% 10.40%

Table 1: Performance comparison on three datasets. The best and the second best performances are bolded and underlined, respectively. The
improvements are calculated between the best and the second best scores.

Dataset | #Users | #POIs | #Check-ins | #Sessions | Sparsity
NYC 1,048 | 4,981 103,941 14,130 98.01%
TKY 2,282 | 7,833 405,000 65,499 97.73%
Gowalla | 3,957 | 9,690 238,369 45,123 99.38%

Table 2: Dataset statistics

5 [Experiments and Analysis

5.1 Experimental Setting

Datasets and Metrics

Datasets. We leverage three real-world LBSN datasets in
this work: Foursquare-NYC, Foursquare-TKY [Yang er al.,
2014], and Gowalla-CA [Cho et al., 2011]. Foursquare-NYC
and Foursquare-TKY cover New York City and Tokyo from
April 2012 to February 2013, while Gowalla-CA spans Cali-
fornia and Nevada from March 2009 to October 2010. During
preprocessing, POIs and users with fewer than 10 check-ins
were removed. Each user’s check-in sequence was divided
into 24-hour trajectories, and those with only one check-in
were discarded. Table 2 summarizes the key statistics after
preprocessing. The data was split chronologically, with 80%
for training, 10% for validation, and 10% for testing. Valida-
tion and test sets include only users and POIs from the train-
ing set, and evaluation was performed on the last check-in of
each trajectory.

Metrics. We use two evaluation metrics: Top-k accuracy
rates (Acc@Fk) and Mean Reciprocal Rank (MRR), which are
widely used in the next POI recommendation task. Acc@k
represents the rate at which the true POI appears in the top-k
predicted POIs, while MRR reflects the rank of the true POI
in the predicted POI list. Both metrics measure the classifica-
tion precision and ranking quality of the models.

Baseline Models

Our study compares our method with traditional, sequen-
tial, graph and hypergraph-based-based models, as follows:
1) FPMC [Rendle et al., 2010]: A model that integrates a
Markov chain with matrix factorization; 2) PRME [Feng et
al., 2015]: A model that employs a pairwise ranking metric
embedding algorithm for personalized ranking; 3) STGCN
[Zhao et al., 2020]: A model that introduces a gating mecha-
nism into LSTM to account for time and distance; 4) PLSPL
[Wu et al., 2020]: A rnn model that fuses short-term and
long-term user preferences; 5) STAN [Luo er al., 2021]: A
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Figure 3: Ablation Study on NYC.

model featuring a bi-attention architecture to capture spatio-
temporal correlations; 6) GETNext [Yang et al., 2022]: A
Transformer-based model enhanced by a global trajectory
flow map; 7) STHGCN [Yan et al., 2023]: A Transformer
model that integrates hypergraph structural encoding with im-
plicit spatio-temporal features solves the cold-start problem;
8) MCN4Rec [Li et al., 2024]: A neural network model
that employs multi-graph collaboration and contrastive learn-
ing for next-location recommendation; 9) DCHL [Lai et
al., 2024]: A disentangled contrastive hypergraph learning
model.

5.2 Performance Comparison

Table 1 shows that ReHDM achieves the best performance
across all datasets. On the NYC dataset, it outperforms the
second-best method by 6.58% in Acc@1, 4.73% in Acc@35,
1.81% in Acc@10, and 5.49% in MRR. On the TKY and
Gowalla datasets, improvements range from 1.39% to 7.93%
and 0.30% to 10.40%, respectively.

These improvements can be attributed to the following fac-
tors. First, ReHDM models user check-ins at both POI level
and trajectory level simultaneously. This dual-layer model-
ing allows it to capture both the dependencies between user
check-ins and high-order collaborative information among
users, significantly improving recommendation accuracy. For
instance, on the NYC dataset, ReHDM achieves a 6.58%
higher Acc@1 compared to STHGCN. Second, ReHDM dy-
namically learns collaborative relationships among users, ad-
dressing the limitations of methods like STAN, which only
model individual user preferences. As a result, it achieves a
0.0877 improvement in MRR compared to STAN. Lastly, Re-
HDM employs quadkey-based regoinal encoding to capture
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User Group | Model Acc@] Acc@5 Acc@l0 MRR
Inactive STHGCN | 0.1391 03913 04336  0.2578
Normal STHGCN | 0.3219 0.6369  0.7328  0.4590
Very active | STHGCN | 0.2701 04594  0.6756  0.3766
Inactive Ours 0.1826  0.3565  0.4347 0.2754
Normal Ours 0.3287 0.6986  0.7465  0.4832
Very active | Ours 0.2702 04864  0.6216  0.3706

Table 3: Cold-start (Due to Inactive Users) on NYC

Trajectory Type | Model Acc@] Acc@5 Acc@10 MRR
Short STHGCN | 0.1519 0.2624  0.3011  0.2099
Middle STHGCN | 0.2060 0.4074  0.4398  0.2913
Long STHGCN | 0.2682 0.6167 0.7456  0.4198
Short Ours 0.2348  0.4889  0.5276  0.3392
Middle Ours 0.2476  0.4305  0.5023  0.3365
Long Ours 03135 0.6202 0.7108 0.4444

Table 4: Cold-start (Due to Inactive Users) on NYC

spatial associations between POIs. By incorporating coarser-
grained regional spatial information into POI representation
learning, this approach effectively mitigates data sparsity is-
sues and further enhances recommendation performance.

5.3 Ablation Study

We conduct an ablation study on the NYC dataset to evalu-
ate how each proposed component affects the model’s final
performance. Specifically, we consider five configurations:
1) w/o quadkey: Remove the quadkey region encoding, us-
ing only the other four features of each check-in for embed-
ding; 2) w/o poi-level: Remove the POI-level modeling mod-
ule and directly aggregate the embedded check-in features for
the initial trajectory representation; 3) w/o traj-level: Remove
the trajectory-level modeling module; 4) w/o user-collab: Re-
move the user collaboration module, thereby omitting the col-
laboration among users through hyper-edges; 5) Full Model:
The complete proposed model with all components enabled.

From Figure 3, we observe that the full model achieves
the best performance. Among the ablated components, re-
moving the POI-level modeling has the most significant neg-
ative impact on performance, followed by the removal of the
trajectory-level modeling or the user-collab module. Mean-
while, omitting the quadkey region encoding also reduces
performance.

5.4 Cold-start Study

Inactive users and active users. Table 3 shows recommen-
dation results on the NYC dataset under cold-start scenarios
caused by inactive users. Users are categorized by trajectory
count: the bottom 30% as Inactive, the top 30% as Very ac-
tive, and the remaining 40% as Normal. Recommendations
for inactive users are the most challenging due to insufficient
historical data. As shown, our method outperforms STHGCN
in most metrics. The slightly lower Acc@10 metric for the
Very active user group may be due to instability in predictions
caused by an insufficient number of samples in this group
within the dataset. Notably, for Inactive users, Acc@1 im-
proves from 0.1391 to 0.1826 (31.28%), demonstrating its
effectiveness in addressing cold-start issues.

Short trajectories and long trajectories. When a trajec-
tory contains only one or two check-ins, the limited spatio-
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Figure 4: Hyperparameter Analysis on NYC.

temporal context complicates learning user preferences, pos-
ing challenges for next POI recommendation. Following pre-
vious studies, we classify trajectories by length, labeling the
shortest 30% as short, the longest 30% as long, and the rest
as middle trajectories. Table 4 compares our method with the
baseline model STHGCN on the NYC dataset. Our method
maintains stable Acc@1 across all trajectory types, achiev-
ing a relatively high Acc@1 of 0.2348 for short trajectories.
In contrast, STHGCN performs poorly on short trajectories
due to its lack of POI-level modeling, resulting in signifi-
cantly lower Acc@1 scores. Its poor performance on long
trajectories likely stems from similar limitations. By employ-
ing region-aware dynamic hypergraph learning and dual-level
modeling, our method effectively mitigates data sparsity for
short trajectories, addressing cold-start challenges.

5.5 Hyperparameter Analysis

In order to examine the model’s stability from both spatial
and temporal segmentation perspectives, we further conduct a
qualitative analysis of the impacts of the quadkey hierarchical
level and the session time interval in ReHDM.

Impact of Quadkey Level. As shown in Figure 4(a), set-
ting the quadkey level to 10 yields the best performance. A
smaller quadkey level (e.g., 9) provides less fine-grained spa-
tial encoding, making it insufficient for capturing spatial de-
pendencies. Conversely, a larger quadkey level (e.g., 11) may
introduce redundant spatial information, leading to perfor-
mance degradation.

Impact of Session Time Interval. Figure 4(b) presents the
effect of different session time intervals on ReHDM'’s perfor-
mance. A session interval of 1 day achieves the best overall
results. A shorter interval (e.g., 1/2 day) can segment trajec-
tories too finely, causing the loss of critical temporal depen-
dencies; on the other hand, a longer interval (e.g., 2 days)
may group unrelated check-ins together, introducing noise.

6 Conclusion and Future Work

We propose a region-aware dynamic hypergraph method with
dual-level interaction modeling, capturing POI dependencies
and higher-order user collaboration at both POI level and tra-
jectory level. Collaborative trajectories address data sparsity,
while coarse-grained regional modeling enhances spatial cor-
relations. Experiments on real-world datasets demonstrate
our method’s superiority and potential for broader location-
based service applications.

Future endeavors will concentrate on incorporating user
social relationships, despite current challenges in obtaining
such data.
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