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Abstract
Anomaly detection in multivariate time series data
is critical across a variety of real-life applica-
tions. The predominant anomaly detection tech-
niques currently rely on reconstruction-based meth-
ods. However, these methods often overfit the ab-
normal pattern and fail to diagnose the anomaly.
Although some studies have attempted to prevent
the incorrect fitting of anomalous data by enabling
models to learn the trend of data variations, they
fail to account for the dynamic nature of data dis-
tribution. This oversight can lead to the erroneous
reconstruction of anomalies that do not exist. To
address these challenges, we propose RTdetector,
a Transformer-based time series anomaly detec-
tion model leveraging reconstruction trends. RT-
detector employs a novel global attention mecha-
nism based on reconstruction trends to learn dis-
tinguishable attention from the original sequence,
thereby preserving the global trend information in-
trinsic to the time series. Additionally, it incorpo-
rates a self-conditioning transformer, based on re-
construction trend enhancement to achieve superior
predictive performance. Extensive experiments on
four datasets demonstrate that RTdetector achieves
state-of-the-art results in multivariate time series
data anomaly detection. Our code is available at
https://github.com/CSUFUNLAB/RTdetector.

1 Introduction
Multivariate time series anomaly detection technology is ex-
tensively employed across various domains, including indus-
trial equipment monitoring [Xie et al., 2024], vehicle diag-
nostics [Wei et al., 2024], network system surveillance [Lim
et al., 2024], and financial risk assessment [Jiang et al., 2024].
Due to the development of sensor technology, various sen-
sors are widely used to record industrial process variables.
These sensors generate thousands of interconnected multi-
variate time series datasets within these systems. It is crucial
to accurately diagnose the real-time status of equipment from
these extensive sensor data.

∗Corresponding authors

Figure 1: The visualization results of different diagnostic methods
on the SMD dataset.

Currently, most anomaly detection methods rely on
reconstruction-based approaches. While these methods can
effectively identify pattern anomalies, they may overfit to
abnormal patterns, making it difficult to detect amplitude
anomalies [Schmidl et al., 2022]. To solve this problem,
some studies [Kim et al., 2021] prevent incorrect fitting of ab-
normal data by allowing the model to learn the changing trend
of the data. Despite significant progress, these approaches
are typically based on idealized datasets for learning model
variation trends. However, real-world data are often non-
stationary, meaning that the statistical properties and joint dis-
tributions of time series data change over time. These meth-
ods fail to account for the dynamic nature of data distribu-
tion, leading to an inability of the models to effectively learn
the correct trend for data reconstruction. Figure 1 shows that
the existing methods have incorrectly learned the changing
trend of the data, resulting in the reconstruction of anomalies
that should not exist at normal times with the wrong changing
trend.

There are two key challenges in enabling a model to accu-
rately learn the true reconstruction trends of data. Challenge
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1: How to restore the original distributional variations of time
series data during reconstruction. In order to allow the model
to learn a more stable data distribution, most algorithms [Tuli
et al., 2022; Yang et al., 2023] preprocess the time series by
stabilizing it. While this approach can enhance the model’s
predictability, it inevitably leads to the loss of information
regarding the original distributional changes, thereby reduc-
ing the accuracy of anomaly detection. Challenge 2: The
model’s inherent architecture does not capture the true varia-
tion trends of the time series. Previous methods often rely on
the concurrent input of both a window sequence and a com-
plete sequence [Wang et al., 2024] to help the model learn the
trend of data variations. Although this approach allows the
model to learn the changing trend of the data to a certain ex-
tents, the model itself is not designed specifically to recover
the reconstruction trend of time series data. As a result, it
fails to effectively learn the true changing characteristics of
the reconstruction trend of the data.

In response to the above challenges, we propose a recon-
struction trend transformer time series anomaly detector (RT-
detector). This model captures global features by process-
ing both the window sequence and complete sequence within
the Transformer framework and learns the global trend in-
formation of intrinsic time series through RT-Attention. The
global trend information of the reconstructed data is restored
by reconstruction trend enhancement (RTE) of the model’s
decoder output. Additionally, the difference between the re-
constructed data and the real data is amplified through the
attention score, thereby enhancing the detection of anomalies
that are difficult to distinguish. The contribution of our RT-
detector are summarised as follows:

• We propose a global anomaly attention mechanism
based on reconstruction trend to capture global infor-
mation within a window by simultaneously processing
the window sequence and the complete sequence. The
global feature information of the intrinsic time series is
restored through RT-Attention.

• We design a self-conditioning transformer based on
RTE, which recovers the global trend features of the in-
put data in the output by aggregating them. Additionally,
it uses focus scores to amplify reconstruction errors for
better predictability.

• Extensive experiments conducted on four public datasets
demonstrate that RTdetector achieves state-of-the-art
performance in detecting anomalies in multivariate time
series.

2 Related Work
In this section, we provide a concise yet comprehensive re-
view of the current landscape in deep models for time series
anomaly detection and stationarization for time series detec-
tion.

2.1 Deep Models for Time Series Anomaly
Detection

In recent years, the use of carefully designed deep learn-
ing structures to achieve high-precision multivariate time se-

ries detection has garnered significant attention among re-
searchers. A method combining Spectral Residual and CNN
was proposed to detect timing anomalies in service systems
[Ren et al., 2019]. In the real world, it is difficult for multi-
variate time series data to have all label information, so unsu-
pervised anomaly diagnosis methods have been widely stud-
ied [Deng and Hooi, 2021; Li et al., 2022]. The multivariate
spectrum signal frequency consistency is employed for unsu-
pervised anomaly detection [Abdulaal et al., 2021]. For time
series anomaly detection, an unsupervised approach utilizing
LSTM networks is proposed, wherein anomaly identification
is achieved through architectural optimization of LSTM mod-
els in conjunction with support vector machine algorithms
[Ergen and Kozat, 2019]. USAD [Audibert et al., 2020] em-
ploys an autoencoder based on adversarial training, ensuring
efficient model training. Among unsupervised learning meth-
ods, reconstruction-based anomaly detection techniques have
been widely studied due to their effectiveness in solving high-
dimensional and nonlinear data problems. However, they of-
ten tend to overfit to abnormal patterns, which can lead to an
inability to accurately diagnose anomalies.

2.2 Anomaly Detection in Time Series Based on
Reconstruction

Although reconstruction-based anomaly detection methods
can effectively identify pattern anomalies, they are likely
to overfit abnormal data, reconstructing the same abnormal
data, which makes it difficult to detect amplitude anomalies.
To solve these problems, some studies have tried to amplify
the difference between abnormal data and reconstructed data
to enable the model to better diagnose amplitude anomalies
[Schlegl et al., 2017]. To further address the issue of over-
fitting to abnormal data, numerous studies have aimed to pre-
vent the reconstruction of erroneous fitting results by enabling
models to learn the underlying trends of the original data.
RevIN [Kim et al., 2021] recovers the statistics of time series
data through reversible instance normalization. DCdetector
uses a single-scale architecture to extract local features and
global correlations to effectively capture the temporal infor-
mation of long-term series [Yang et al., 2023]. D3R supple-
ments the global information of data through decomposition
and reconstruction [Wang et al., 2024]. While these methods
have mitigated the problem of overfitting to abnormal data
by capturing global trend information to some extent, most
models themselves do not learn the reconstruction trend of
the data. Instead, they rely on preprocessing the data outside
the model, leading to insufficient capability in capturing the
reconstruction trend. Consequently, the anomaly detection
performance remains unsatisfactory.

3 Methodology
For multivariate time series data with timestamps of length
T :

X = (x1, x2, . . . , xT ), (1)

where each data point xt ∈ Rd is collected at timestamp t
from different sensors. Here, d is the data dimension, repre-
senting the number of sensors. The anomaly detection prob-
lem can be defined as: given training data X , for an unknown
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data X̂ , where the data length is T̂ as the test sequence with
the same modality as the training data. We need to predict
Y = {y1, . . . , yT̂ }, where yt ∈ {0, 1} represents whether the
point is anomalous (1 represents an anomaly and 0 represents
a normal point).

3.1 Overall Architecture
Transformer have been widely used in time series data
anomaly detection [Yan et al., 2024]. However, as mentioned
above, it is often difficult to capture time series relationships
[Zeng et al., 2023] when using Transformer for anomaly de-
tection, and it often lacks the capability to extract global re-
construction information. Therefore, we designed the archi-
tecture shown in Figure 2.

We use the complete sequence c to capture the trend of
global time series changes, and the window sequence w to
capture the relationship between adjacent time series. The
masked multi head attention is used to mask the data of sub-
sequent timestamps to prevent the decoder trainer from ob-
taining data of future timestamps. We designed two decoders
to adjust the training model by focusing on the Focus score,
which quantifies the difference between the generated and
original data, thereby enhancing sensitivity to abnormal inter-
vals. The RTE module is used to restore the information lost
by stationarization, which will be discussed in detail in Sec-
tion 3.2. We designed the RT-Attention module to address
the inability of traditional attention mechanisms to capture
data reconstruction trends, which will be discussed in detail
in Section 3.3. Finally, we use the outputs of the two decoders
concurrently to determine the presence of an anomaly.

3.2 Self-conditioning Transformer Based on RTE
In order to make the data distribution of the model more sta-
ble and reduce the deviation trend of the data, we stabilize the
input time series data X = (x1, x2, . . . , xT ) to obtain the sta-
tionarized data X ′ = [x′1, x

′
2, . . . , x

′
T ]. The stationarization

formula is shown as follow:

µx =
1

T

T∑
i=1

xi

σ2
x =

1

T

T∑
i=1

(xi − µx)
2

x′i =
1

σx
� (xi − µx),

(2)

where µx, σx ∈ Rd×1 and � is the element-wise product.
Although data stabilization can achieve better prediction re-
sults by reducing the non-stationarity of the sequence, it of-
ten lead to the model’s inability to accurately capture the
original data reconstruction trends. Therefore, we employ
the RTE module to recover the lost information. After the
model completes the prediction, the input prediction result is
O′ = [o′1, o

′
2, . . . , o

′
T̂
]. We use µx and σx to supplement the

lost information of o′i and obtain the final prediction result
O = {o1, o2, . . . , oT̂ }. The RTE formula is as follows:

oi = σx � (o′i + µx). (3)

By transforming the model input through stationarization and
the output through RTE, the underlying model processes sta-
bilized inputs to yield enhanced predictive outcomes. Subse-
quently, these predictive results are combined with the RTE
module to restore the inherent variability of the data. This
approach ensures that the model incorporates trend of change
of the data during anomaly detection, thereby enhancing the
accuracy of detection.

We adopted the concept of TranAD [Tuli et al., 2022] and
utilized the self-conditioning Transformer for model training.
Initially, we employed Input Window W ∈ RK×d with a
Focus score F = [0]K×d for training where K is the local
contextual window of length. To ensure the generated results
closely matched the original input, we applied the L2-norm
in training both Decoder 1 and Decoder 2:

L1 = ‖σx � (O′1 + µx)−W‖2
L2 = ‖σx � (O′2 + µx)−W‖2,

(4)

Where O′1 and O′2 are the decoder results, followed by a RTE
operation. In this stage, we allow the two decoders to gener-
ate values as close to the window data as possible to ensure
the stability of training. Then, we introduce the concept of
an adversarial network and utilize the reconstruction loss of
L1 as the focus score. After adversarial training, we obtain
the final output Ô2. Decoder 2 attempts to distinguish the
generated data from the input window value as much as pos-
sible, while Decoder 1 strives to make the generated value as
close to the input window as possible to confuse Decoder 2.
Through this stage, the attention weight is adjusted to provide
higher neural network activation for the subsequence, thereby
advancing the short-term time trend. The training objective
is:

min
Decoder1

max
Decoder2

‖Ô2 −W‖2. (5)

Combining the two stages, the loss can be determined as fol-
lows:

L1 = η‖O1 −W‖2 + (1− η)‖Ô2 −W‖2
L2 = η‖O2 −W‖2 − (1− η)‖Ô2 −W‖2,

(6)

where η is the training parameter. Finally, our Self-
conditioning Transformer is shown in Algorithm 1. This
model uses both global and local features of the data to com-
plete model training and achieve better prediction accuracy.

3.3 Reconstruction Trend Attention
In order to capture both global and local trend features of
the data, we input both complete sequence and window se-
quence into the Transformer. The window sequence captures
the short-term time series trend and the complete sequence
captures the overall data trend. To allow the Transformer to
learn the trend of changes of the data at the bottom layer,
we employ a novel reconstruction trend attention mechanism.
This mechanism captures specific time dependencies from
the original data sequence through the bottom-level Atten-
tion module. The vanilla Attention mechanism is defined as
follows [Vaswani et al., 2017]:

Attention(Q,K, V ) = Softmax

(
QKT

√
m

)
V, (7)
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Figure 2: The RTdetector Model.

Algorithm 1 The RTdetector training algorithm
Require: Encoder E, Decoders D1 and D2

Parameter: Iteration limit N
1: Initialize weights E, D1, D2

2: n← 0
3: do
4: for t = 1 to T
5: O′1, O

′
2 ← D1(E(Wt,~0)), D2(E(Wt,~0))

6: O1, O2 = σx � (O′1 + µx), σx � (O′2 + µx)

7: Ô′2 ← D2(E(Wt, ‖O1 −Wt‖2))
8: Ô2 = σx � (Ô′2 + µx)

9: L1 = η‖O1 −Wt‖2 + (1− η)‖Ô2 −Wt‖2
10: L2 = η‖O2 −Wt‖2 − (1− η)‖Ô2 −Wt‖2
11: Update weights of E, D1, D2 using L1, L2

12: n← n+ 1
13: while (n < N )

where Q (query), K (key), V (value) ∈ RT×dk and T is
queries length. Each query Q = [q1, q2, ..., qT ] can be cal-
culated as qi = f(xi) where f is embedding layer and in-
put series X = (x1, x2, . . . , xT ). After stationarization, the
model received X ′ = [x′1, x

′
2, . . . , x

′
T ], and X ′ can get by

equation 2. Thus we can get the query Q′ = [q′1, ..., q
′
T ] by

the equation:

q′i = f(x′) = f(
xi − µx

σx
) =

f(xi)− f(µx)

σx

=
qi − 1

T

∑T
i=1 f(xi)

σx
=
qi − µQ

σx
,

(8)

where µQ = 1
T

∑T
i=1 qi ∈ Rdk×1. and the Q′ can written as

(Q − 1µ>Q)/σx where 1 ∈ RT×1 is an all-ones vector. The
K ′ can same calculated as (K − 1µ>K)/σx. Thus the QKT

can calculated as:

Q′K′
>
=

1

σ2
x

(
QK> − 1(µ>QK

>)

− (QµK)1
> + 1(µ>QµK)1

>
)
,

(9)

and the attention can calculated as:

S

(
QK>√
dk

)
= S

(
σ2
xQ
′K′> + 1(µ>QK

>)
√
dk

+
(QµK)1

> − 1(µ>QµK)1
>

√
dk

)
,

(10)

where S is the softmax calculation, We find the (QµK)1
>

and 1(µ>QµK)1
> are both ∈ RS×S , the same as σ2

xQ
′K′> and

1(µ>QK
>). Thus we can obtain equation 12 from equation 11.

Softmax(x+ c) = Softmax(x), (11)
where c is a matrix with the same columns and the same num-
ber of rows and columns as x.

S

(
QK>√
dk

)
= S

(
σ2
xQ′K′

>
+ 1µ>QK>
√
dk

)
. (12)

In order for the model to capture the date change trend of
Q′, K ′, we use two MLP to obtain τ = σ2

x, ∆ = KµQ

respectively. The RT-Attention can be denoted:

A(Q′,K′,V′, τ,∆) = S

(
τQ′K′> + 1∆>√

dk

)
V′, (13)

where A is the attention calculation. RT-Attention effectively
learns the sequence stationary information while capturing
the change trend of the original sequence through the change
factor.

3.4 Anomaly Detection Inference
Our anomaly detection inference process is shown in Algo-
rithm 2.The anomaly score is defined as follows:

s =
1

2
‖O1 − Ŵ‖2 +

1

2
‖Ô2 − Ŵ‖2, (14)

where the Ŵ is the unseen window data.We considered both
Decoder outputs for obtaining anomaly scores. At the time
of anomaly detection, when the anomaly score of any di-
mension time series is larger than a threshold, we assume
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Algorithm 2 The RTdetector testing algorithm
Require: Trained Encoder E, Decoders D1 and D2, Test
Dataset Ŵ

1: for t = 1 to T̂
2: O′1, O

′
2 ← D1(E(Ŵt,~0)), D2(E(Ŵt,~0))

3: O1, O2 = σx � (O′1 + µx), σx � (O′2 + µx)

4: Ô′2 ← D1(E(Ŵt, ‖O1 − W‖2)), D2(E(Ŵt, ‖O1 −
W‖2))

5: Ô2 = σx � (Ô′2 + µx)

6: s = 1
2‖O1 − Ŵ‖2 + 1

2‖Ô2 − Ŵ‖2
7: yi ← (si ≥ POT(si)) ? 1 : 0
8: y = ∨

i
yi

that the entire multivariate time series is anomalous. To en-
sure a fair comparison, we employ the Peak Over Threshold
(POT) method to dynamically and automatically determine
the threshold [Siffer et al., 2017].

4 Experimental
4.1 Experimental Settings
Datasets
We evaluate RTdetector extensively on four real-world
datasets: (1) UCR [Dau et al., 2019] is a dataset containing a
variety of time series, and we only use data obtained from nat-
ural sources (InternalBleeding and ECG datasets), (2) MIT-
BIH Supraventricular Arrhythmia Database (MBA) [Moody
and Mark, 2001; Goldberger et al., 2000] is a database for
studying arrhythmias provided by the Massachusetts Insti-
tute of Technology in the United States. It contains multi-
parameter cardiopulmonary data and ECG signal diagnos-
tic information recorded by electrocardiologists. (3) Server
Machine Dataset (SMD) [Su et al., 2019] is a collection of
resource utilization calls of 28 machines within 5 weeks.
We use the non-stationary time series for training and test-
ing which named machine-1-1, 2-1, 3-2 and 3-7. (4) Soil
Moisture Active Passive (SMAP) [Hundman et al., 2018] is a
data set that contains telemetry information data collected by
NASA using the SMAP satellite, and the telemetry anomaly
data is annotated by experts.

Baselines
We extensively compare our model with 11 baselines, includ-
ing the reconstruction-based models: OmniAnomaly [Su et
al., 2019], MSCRED [Zhang et al., 2019], MAD-GAN [Li et
al., 2019]; the density-estimation methods: DAGMM [Zong
et al., 2018]; the autoregression-based models: LSTM-NDT
[Hundman et al., 2018] USAD [Audibert et al., 2020],CAE-
M [Zhang et al., 2021], GDN [Deng and Hooi, 2021],
TranAD [Tuli et al., 2022]; the classic methods: MERLIN
[Nakamura et al., 2020].

Evaluation Criteria
We use recall, precision, F1-score and the area under the re-
ceiver operating characteristic curve (ROC/AUC) to evaluate
the detection performance of the model [Huet et al., 2022].

We use common anomaly detection criteria for a fair com-
parison, if any individual time series within the multivari-
ate data is diagnosed as an anomaly, the entire multivari-
ate time series is classified as anomalous [Su et al., 2019;
Tuli et al., 2022].

Implementation Details
Following the approach of TranAD, we use non-overlapping
sliding windows to obtain sub-windows [Tuli et al., 2022].
For all datasets, the sliding window size is fixed at 10. If
the anomaly score at a time point exceeds a certain thresh-
old, the entire window is considered anomalous. We use the
Adam optimizer [Kingma and Ba, 2014] to train our model
with an initial learning rate of 0.01, a step size of 0.5, 64 hid-
den units in the encoder layers, and a dropout rate of 0.1 in
the encoders. All RTdetector experiments are implemented in
PyTorch [Paszke et al., 2019] on an NVIDIA GeForce RTX
2080 Ti GPU.

4.2 Performance Evaluation
We first evaluated our RTdetector on four real-world multi-
variate datasets using eleven competitive baselines, as shown
in Table 1. Our proposed RTdetector outperforms state-of-
the-art baseline methods on most datasets. Specifically, it
achieves superior detection performance across all datasets
except SMAP, while still demonstrating excellent results on
SMAP. We believe this is due to the obvious cyclical nature
of the SMAP dataset, where the amplitude of normal data
does not vary significantly, thus diminishing the advantage of
the RTdetector.

Notably, our method significantly outperformed others on
the SMD dataset. This dataset is characterized by high
non-stationarity, making it challenging to capture the inher-
ent trends. This highlights the difficulty previous methods
faced in effectively capturing accurate reconstruction trends
in datasets with complex trend variations. In our model, we
address this by using a self-conditioning Transformer based
on RTE to restore the inherent trends of the reconstructed
data. Additionally, our RT-Attention effectively captures the
true data trends from the model’s lower layers, thereby im-
proving the application of reconstruction trends in anomaly
detection.

4.3 Ablation Experiments
To validate the effectiveness and necessity of our design,
we conducted ablation studies on the RTE and RT-Attention
modules of the RTdetector. Specifically, we removed the RTE
module and replaced the RT-Attention module with vanilla
Attention, as shown in Table 2. We observed that the RTE
module compensates for information lost due to stationariza-
tion by supplementing it after the model’s decoder output,
making the reconstructed data more closely align with the
true data trends. Removing this module led to significant de-
creases in precision, F1-score, and AUC, demonstrating that
this module effectively enhances the model’s detection ac-
curacy. From the ablation experiments on the RT-Attention
module, we found that using the RT-Attention module in-
stead of vanilla attention, resulted in significant improve-
ments in precision, F1-score, and AUC, though recall slightly
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Method UCR MBA

P R AUC F1 P R AUC F1

MERLIN 0.7542 0.8018 0.8984 0.7773 0.9846 0.4913 0.7828 0.6555
LSTM-NDT 0.5231 0.8294 0.9781 0.6416 0.9207 0.9718 0.9780 0.9456
DAGMM 0.5337 0.9718 0.9916 0.6890 0.9475 0.9900 0.9858 0.9683
OmniAnomaly 0.8346 0.9999 0.9981 0.9098 0.8561 1.0000 0.9570 0.9225
MSCRED 0.5441 0.9718 0.9920 0.6976 0.9272 1.0000 0.9799 0.9623
MAD-GAN 0.8538 0.9891 0.9984 0.9165 0.9396 1.0000 0.9836 0.9689
USAD 0.8952 1.0000 0.9989 0.9447 0.8953 0.9989 0.9701 0.9443
CAE-M 0.6981 1.0000 0.9957 0.8222 0.8442 0.9997 0.9661 0.9154
GDN 0.6894 0.9988 0.9959 0.8158 0.8832 0.9892 0.9528 0.9332
TranAD 0.9407 1.0000 0.9994 0.9694 0.9569 1.0000 0.9885 0.9780
DCdetector 0.8222 1.0000 0.9985 0.9024 0.9523 0.9912 0.9895 0.9712

RTdetector 0.9823 1.0000 0.9998 0.9910 0.9734 1.0000 0.9930 0.9865

Method SMD SMAP

P R AUC F1 P R AUC F1

MERLIN 0.2871 0.5804 0.7158 0.3842 0.1577 0.9999 0.7426 0.2725
LSTM-NDT 0.9736 0.8440 0.9671 0.9042 0.8523 0.7326 0.8602 0.7879
DAGMM 0.9103 0.9914 0.9954 0.9491 0.8069 0.9891 0.9885 0.8888
OmniAnomaly 0.8881 0.9985 0.9946 0.9401 0.8130 0.9419 0.9889 0.8728
MSCRED 0.7276 0.9974 0.9921 0.8414 0.8175 0.9216 0.9821 0.8664
MAD-GAN 0.9991 0.8440 0.9933 0.9150 0.8157 0.9216 0.9891 0.8654
USAD 0.9060 0.9974 0.9933 0.9495 0.7480 0.9627 0.9890 0.8419
CAE-M 0.9082 0.9671 0.9783 0.9367 0.8193 0.9567 0.9901 0.8827
GDN 0.7170 0.9974 0.9924 0.8342 0.7480 0.9891 0.9864 0.8518
TranAD 0.9262 0.9974 0.9974 0.9605 0.8043 0.9999 0.9921 0.8915
DCdetector 0.8359 0.9110 0.9924 0.8718 0.9563 0.9892 0.9918 0.9702
RTdetector 0.9992 0.9974 0.9986 0.9983 0.8339 1.0000 0.9904 0.9094

Table 1: Performance comparison of RTdetector with baseline methods on the complete dataset. P: Precision, R: Recall, AUC: Area under
the ROC curve, F1: F1 score with complete training data. The best result are highlighted in bold.

Method UCR

P R AUC F1

RTdetector 0.9992 0.9974 0.9986 0.9983
w/o RTE 0.9783 0.9973 0.9975 0.9877
w/o RT-Attention 0.9758 0.9971 0.9978 0.9868

Table 2: RTdetector ablation experiment results, removing RTE and
RT-Attention for comparison

decreased. We believe this is because the vanilla Attention
module tends to overfit abnormal patterns, leading to more
false positives. In contrast, RT-Attention enables the model
to learn the correct reconstruction trends at the lower layers,
thereby improving anomaly detection results.

4.4 Overhead Analysis
To demonstrate the computational efficiency of our method,
we further provide the average training time of all models
on each dataset. As illustrated in Table 3, our RTdetector
achieves a reduction in training time of over 75% compared
to most baseline methods.

Method UCR MBA SMD SMAP

MERLIN 4.09 20.19 72.32 6.89
LSTM-NDT 8.71 27.80 373.14 27.62
DAGMM 20.78 74.62 204.36 19.05
OmniAnomaly 27.96 109.86 276.97 27.05
MSCRED 262.45 592.13 109.63 16.13
MAD-GAN 25.71 160.29 285.25 29.49
USAD 21.10 120.86 232.82 23.63
MTAD-GAT 97.12 233.08 1304.09 1015.03
CAE-M 19.42 67.44 552.83 187.35
GDN 58.78 159.01 585.34 62.33
TranAD 0.84 4.08 43.56 3.55
DCdetector 22.39 80.84 338.43 37.942
RTdetector 1.38 8.42 72.90 7.19

Table 3: Comparison of training times in seconds per epoch.
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(a) TranAD (b) RTdetector

Figure 3: The visualization results on the SMD datasets. Figure a used TranAD method and Figure b used RTdetector

Figure 4: Results of the window size sensitivity analysis.

4.5 Visual Analysis
We have conducted a visual analysis of the RTdetector we
proposed and compared it with traditional methods. As
shown in Figure 3, our findings indicate that the RTdetector
method does not aim to generate data that closely resembles
real data like traditional methods. Instead, it only generates
a reconstruction trend of the data and determines the occur-
rence of a fault based on whether the real data aligns with
this reconstruction trend. By focusing on the data reconstruc-
tion trend, our approach can effectively reduce false positives
associated with traditional methods. Specifically, it avoids
reconstructing anomalies that should not exist due to sudden
changes in the data.

4.6 Hyperparameter Analysis
We conducted a sensitivity analysis on the window size pa-
rameter. As shown in Figure 4, our results indicate that when
the window size exceeds 10, the F1 score decrease signifi-
cantly. We believe that this is because an excessively large
window size will cause the anomaly to be hidden in the long
local data and difficult to accurately diagnose. It is difficult
for the model to accurately predict its changing trend from
the local information of a long sequence.

5 Conclusions
To address the issue of overfitting anomalies in
reconstruction-based time series anomaly detection, we
proposes a novel anomaly detection algorithm named RT-
detector. In RTdetector, a self-conditioning transformer
based on RTE is designed to enhance model predictability by
amplifying the difference between reconstruction results and
original data. RTE ensures that reconstruction results adhere
to the normal data trends. Additionally, a global anomaly
attention mechanism based on reconstruction trends is
designed to enable the model to learn the true reconstruction
trends of the data, further ensuring consistency between the
final reconstruction trends and the original data. Extensive
experiments shown that RTdetector outperforms existing
state-of-the-art algorithms on four benchmark datasets.
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