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Abstract
Few-shot learning (FSL) addresses the challenge
of classifying novel classes with limited training
samples. While some methods leverage seman-
tic knowledge from smaller-scale models to miti-
gate data scarcity, these approaches often introduce
noise and bias due to the data’s inherent simplicity.
In this paper, we propose a novel framework, Syn-
ergistic Knowledge Transfer (SYNTRANS), which
effectively transfers diverse and complementary
knowledge from large multimodal models to em-
power the off-the-shelf few-shot learner. Specif-
ically, SYNTRANS employs CLIP as a robust
teacher and uses a few-shot vision encoder as
a weak student, distilling semantic-aligned visual
knowledge via an unsupervised proxy task. Subse-
quently, a training-free synergistic knowledge min-
ing module facilitates collaboration among large
multimodal models to extract high-quality seman-
tic knowledge. Building upon this, a visual-
semantic bridging module enables bi-directional
knowledge transfer between visual and semantic
spaces, transforming explicit visual and implicit
semantic knowledge into category-specific classi-
fier weights. Finally, SYNTRANS introduces a vi-
sual weight generator and a semantic weight re-
constructor to adaptively construct optimal mul-
timodal FSL classifiers. Experimental results on
four FSL datasets demonstrate that SYNTRANS,
even when paired with a simple few-shot vision
encoder, significantly outperforms current state-of-
the-art methods.

1 Introduction
Deep learning models have achieved remarkable success in
numerous computer vision tasks [Li et al., 2019]. However,
their effectiveness typically relies on deep neural architec-
tures [He et al., 2016] and large-scale training datasets [Rus-
sakovsky et al., 2015], which hinders their applicability in
real-world scenarios where annotated data are scarce. In con-
trast, humans exhibit an exceptional ability to acquire new

∗ Corresponding author.

concepts and recognize categories from only a handful of
samples, aided by extensive prior knowledge and contextual
understanding [Ralph et al., 2017]. This gap has motivated
researchers to investigate few-shot learning (FSL) [Tang et
al., 2020; Wu et al., 2022], where a model classifies query
samples into one of N novel classes, each provided with only
K labeled examples.

The effectiveness of FSL heavily relies on leveraging prior
knowledge to address data scarcity. Existing methods com-
monly transfer knowledge [Tang et al., 2022; Zha et al.,
2023] from a disjoint base dataset to novel classes. Early
works primarily focused on efficiently exploiting visual prior
knowledge, including metric-based [Snell et al., 2017] and
optimization-based paradigms [Ravi and Larochelle, 2016],
both striving to train a base learner capable of rapid adap-
tation to novel classes with limited training data. While
these methods have achieved promising results, there remains
a huge gap in comparison to how humans utilize accumu-
lated knowledge and experiences. As a result, semantic-based
methods have emerged to explore various types of semantic
knowledge as auxiliary information to improve FSL perfor-
mance. This semantic knowledge can be obtained either man-
ually (i.e., attribute annotations) or automatically (i.e., word
vectors). Unfortunately, acquiring attribute annotations re-
quires substantial human effort and may be infeasible for
large-scale datasets, while word vectors derived from a sin-
gle class name tend to be noisy or lack contextual richness.
Hence, how to effectively collect and utilize high-quality
prior knowledge in FSL is worthy of further investigation.

Perceptual filling-in [Neumann et al., 2001] is a funda-
mental characteristic of the human visual system, in which
the brain employs prior knowledge and contextual cues to in-
tuitively “fill in” missing information, resulting in a coher-
ent and comprehensive perception. This phenomenon be-
comes particularly apparent in scenarios where visual stim-
uli are limited or partially obscured, enabling a seamless vi-
sual experience despite incomplete data. Inspired by this
phenomenon, we hypothesize that transferring rich external
knowledge to the off-the-shelf few-shot learner can further
improve performance. Recently, Large Multimodal Models
(LMMs) [Ouyang et al., 2022; Radford et al., 2021] con-
taining abundant implicit knowledge have emerged as pow-
erful repositories of external knowledge in various domains.
These models encompass extensive understandings of the vi-
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Figure 1: The pipeline of the proposed Synergistic Knowledge Transfer (SYNTRANS) framework.

sual world, language, and inter-entity relationships, encapsu-
lating diverse knowledge and information. A natural ques-
tion thus arises: can we replicate this human-like cognitive
process by connecting the rich, multimodal knowledge of
these “giants” to compensate for incomplete visual data?

In this paper, we propose a Synergistic Knowledge Trans-
fer (SYNTRANS) framework to harness the extensive knowl-
edge embedded in large multimodal models to empower the
small few-shot learner. Three key challenges arise in achiev-
ing this goal: ❶ effectively distilling desired visual and se-
mantic knowledge from these models, ❷ transforming ex-
plicit or implicit knowledge into a usable form, and ❸ adap-
tively integrating them with limited visual data to improve
FSL performance. As illustrated in Figure 1, SYNTRANS
addresses these challenges in three stages. First, we intro-
duce a vast CLIP model as a strong teacher, adding a lin-
ear projection layer after the frozen few-shot vision encoder
as a weak student to distill semantic-aligned visual knowl-
edge via an unsupervised proxy task. Next, our Synergistic
Knowledge Mining (SynMine) module exploits a large lan-
guage model to generate comprehensive text descriptions by
tapping into the implicit knowledge through chain-of-thought
prompting. These descriptions are then refined by a visual-
language model into rich semantic descriptors, producing
deeper, context-aware understanding of class characteristics.
Central to the semantic transfer stage is the Visual-Semantic
Bridging (VSBrid) module, which leverages a dual encoder-
decoder design to facilitate bi-directional knowledge transfer
between the visual and semantic spaces, ultimately mapping
these high-quality visual embeddings and semantic descrip-

tors to practical class-specific classifier weights. Finally, a vi-
sual weight generator and a semantic weight reconstructor are
incorporated for dynamic visual-semantic knowledge fusion,
constructing robust and adaptable multimodal classifiers.

We evaluate SYNTRANS on four benchmark datasets,
demonstrating its state-of-the-art performance even when
equipped with a simple few-shot vision encoder. To the best
of our knowledge, SYNTRANS is the first framework that
systematically integrates knowledge from large multimodal
models to empower small few-shot learners, opening new av-
enues for bridging the gap between human-like intuition and
machine learning in FSL.

2 Related Works
Visual-based FSL Methods. Visual-based FSL meth-
ods [Tang et al., 2023; Fu et al., 2023; Fu et al., 2024]
transfer prior visual knowledge from base classes to novel
classes. Broadly, these approaches can be categorized into
two branches: optimization-based methods and metric-based
methods. Their core distinction lies in how they lever-
age the support set, either by fine-tuning an end-to-end net-
work or by directly generating classifiers for novel classes.
Optimization-based methods [Finn et al., 2017; Ravi and
Larochelle, 2016] focus on learning an effective initializa-
tion or optimization strategy, enabling rapid model adapta-
tion to novel tasks with only a few fine-tuning steps. De-
spite their flexibility, such methods can face meta-overfitting
issues when limited labeled data are available. In contrast,
metric-based methods [Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018] learn a metric space where samples
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from the same category lie close together while those from
different categories are farther apart. Another emerging
paradigm [Chen et al., 2019] involves pre-training a powerful
feature extractor on base data and directly generating classi-
fier weights for new classes using, for instance, a cosine clas-
sifier [Luo et al., 2018]. However, purely visual approaches
may struggle under limited training samples, as real-world
data often contain background noise and significant intraclass
variation. Consequently, relying solely on visual cues may be
insufficient for robust recognition of novel categories. This
limitation naturally leads to the question of how high-quality
semantic knowledge can be integrated to complement visu-
ally dominated FSL methods.

Semantic-based FSL Methods. To overcome the short-
comings of purely visual approaches, semantic-based FSL
methods [Li et al., 2023; Lu et al., 2023] leverage auxil-
iary semantic information such as attributes [Lampert et al.,
2009], word embeddings [Xian et al., 2019], or even knowl-
edge graphs [Miller, 1995]. For example, AM3 [Xing et al.,
2019] combines label embeddings derived from class names
with visual prototypes to generate semantic prototypes, which
are then adaptively fused. Knowledge graphs also provide
valuable correlation cues: KTN [Peng et al., 2019] builds
a graph convolutional network (GCN) with node representa-
tions and edges derived from label embeddings and semantic
relationships, allowing knowledge transfer from base to novel
categories. Nevertheless, these methods often rely on either
sparse attribute annotations or word vectors obtained from
limited textual sources (e.g., Glove [Pennington et al., 2014],
Word2vec [Mikolov et al., 2013]), which may lack sufficient
contextual richness. As a result, the potential noise in these
external semantics can hinder performance. Encouraged by
the rise of large multimodal models [Ouyang et al., 2022;
Radford et al., 2021] that encapsulate abundant implicit
knowledge, we investigate how to extract and distill higher-
quality prior knowledge to complement visual-based FSL.
Our experiments show that the desired knowledge distilled
from these large multimodal models can significantly boost
FSL performance, even when used with a relatively simple
pre-trained backbone.

3 Method
3.1 Problem Formulation
We consider the standard FSL setting [Vinyals et al., 2016],
where two disjoint sets of classes are given: a base set
Cbase and a novel set Cnovel, such that Cbase ∩ Cnovel = ∅.
The model first trains on samples from Cbase, denoted by
Dbase = {(x, y)}, where each pair (x, y) corresponds to
an image x and its one-hot label y drawn from Cbase. For
semantic reference, each label y can be mapped to a spe-
cific class name c, such as “House Finch” or “Robin”.
During evaluation, we adopt the “N -way K-shot” protocol,
which randomly selects N categories from Cnovel to construct
two subsets: a support set and a query set. The support set
S = {(xi, yi)}N×K

i=1 contains K examples for each of the
N novel classes, while the query set Q = {(xi, yi)}N×Q

i=1
includes Q samples from the same N categories. Here, xi

denotes the i-th image, and yi is one of the novel class la-
bels in Cnovel. The main objective of FSL is to leverage the
base knowledge (learned from Dbase) along with the limited
support samples in S to classify new query images in Q.

3.2 Overall Framework
As shown in Figure 1, the SYNTRANS framework consists of
three stages: visual knowledge distillation, semantic knowl-
edge transfer, and multi-modal knowledge fusion. These
stages work synergistically to enhance a few-shot learner by
integrating visual and semantic knowledge. Notably, unlike
traditional FSL methods, our method does not require
fine-tuning the vision encoder at any stages. This unique
characteristic highlights the efficiency of SYNTRANS, mak-
ing it readily applicable on top of existing few-shot learners.

Visual Knowledge Distillation. In this stage, we train a
lightweight projector fφ and a cosine classifier fΦ. The pro-
jector fφ enables SYNTRANS to perform CLIP-like vision-
semantic alignment, while the classifier fΦ distills more task-
relevant visual knowledge from the few-shot vision encoder
for subsequent knowledge transfer. Specifically, the parame-
ters of fΦ are optimized using cross-entropy loss, while the
parameters of fφ are optimized via the teacher-student distil-
lation paradigm [Wu et al., 2024].

Semantic Knowledge Transfer. This stage consists of two
phases: semantic knowledge mining and visual-semantic
knowledge bridging. First, we introduce the train-free Syn-
ergistic Knowledge Mining (SynMine) module, which ef-
ficiently extracts implicit knowledge from visual- and lan-
guage models to generate high-quality semantic descriptors.
Next, the Visual-Semantic Bridging (VSBird) module facili-
tates bidirectional knowledge transfer between the visual and
semantic spaces, mapping the visual embeddings and seman-
tic descriptors to category-specific classifier weights.

Multi-modal Knowledge Fusion. In this stage, the frozen
few-shot learner computes visual prototypes for all classes in
the support set. Simultaneously, the VSBird module gener-
ates classifier weights based on these visual prototypes and
the semantic descriptors. To integrate these weights into ro-
bust multimodal few-shot classifiers, we introduce a visual
weight generator and a semantic weight reconstructor, which
function as meta-learners, adaptively combining both types
of classifier weights for current FSL task.

3.3 Visual Knowledge Distillation
In this stage, we introduce a large CLIP teacher model to
distill semantic-aligned visual knowledge, empowering the
frozen few-shot learner with the ability to perform CLIP-like
vision-semantic alignment. Unlike the heavy CLIP vision en-
coder, the frozen few-shot vision encoder is lightweight and
compatible with existing FSL methods, such as IER [Rizve
et al., 2021] and SMKD [Lin et al., 2023], enabling training
from scratch for simplicity.

As shown in Figure 1(a), we align the few-shot vision
encoder with the CLIP vision encoder by learning a linear
projector. To achieve this, we treat unsupervised vision-
semantic alignment as a proxy task, inspired by [Li et al.,
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2024], and use knowledge distillation to align the output dis-
tributions of both models. For a given FSL task with images
{xi}N×(K+Q) and their class names {cj}N from Cbase, the
CLIP teacher model first processes the category names using
a fixed prompt template (e.g., ”a photo of a {CLASS}”), then
passing images and category names through the image en-
coder f t

I and text encoder f t
T to obtain normalized teacher im-

age features ut
i and text features wt

j . We then input the same
images into the frozen few-shot vision encoder fs

I to obtain
the normalized student image features us

i . The learnable pro-
jector fφ(·) is introduced to match the feature dimensions at
minimal computational cost while ensuring alignment qual-
ity. The teacher and student image features, along with the
generated teacher text features, are used to compute the out-
put logits qti and qsi for the teacher and student models, re-
spectively. The knowledge distillation loss is formulated us-
ing Kullback-Leibler divergence:

Lkd

(
qt, qs, τ

)
= τ2KL

(
σ
(
qt/τ

)
, σ (qs/τ)

)
. (1)

where σ(·) is the softmax function and τ is the temperature.
Additionally, the cosine classifier fΦ is trained to acquire

transferable visual knowledge from the base dataset Dbase us-
ing the pre-trained few-shot vision encoder. Let Wbase =
{wc}c∈Cbase

denotes the weight vectors of classifier fΦ. The
classification loss, Lce, is computed with cross-entropy over
the base classes Cbase:

Lce = − log
exp (cos(fs

I (xi),w
c))∑|Cbase|

c′=1 exp (cos fs
I (xi),wc′)

. (2)

This allows the learned classifier can provide more meaning-
ful and task-relevant visual knowledge for subsequent knowl-
edge transfer and fusion within our SYNTRANS. Finally, we
combine the knowledge distillation and classification losses
into a multi-task objective to ensure the projector fφ and clas-
sifier fΦ perform their respective tasks effectively within the
same FSL task as Lvis = Lce + Lkd.

3.4 Synergistic Knowledge Mining

In leveraging the capabilities of large multimodal models,
our proposed SynMine first utilizes the rich common-sense
knowledge embedded in large language model (LLM) to gen-
erate detailed class descriptions. Additionally, SynMine takes
advantage of the advanced image-text alignment capabilities
of pre-trained visual-language model (VLM) to refine these
descriptions into high-quality semantic descriptors, enhanc-
ing their relevance for FSL.

As illustrated in Figure 2, SynMine follows a multi-step
process to enhance the comprehensive understanding of class
characteristics. Inspired by the “chain-of-thought” prompting
technique [Wei et al., 2022], which improves LLM perfor-
mance through intermediate reasoning, we guide LLM using
this technique. Initially, a concise definition matching the vi-
sual content is provided to the LLM to eliminate ambiguity
and help it generate class descriptions focused on visual fea-
tures. The first prompt is as follows:

House Finch

Class Label small finch originally
of the western

United States and
Mexico

Definition

Chain-of Thought
Prompting

The house finch (Haemorhous mexicanus) 
is a small passerine bird found in the
western United States and Mexico...

VLMs

Text Description

Semantic Descriptor

Figure 2: The pipeline of how the proposed SynMine module gen-
erates high-quality semantic descriptors.

Prompt 1: [DEFINITION] is the definition of the
[CLASS]. Can you describe the visual features asso-
ciated with this category?

Here, [DEFINITION] is a brief class definition obtained
from WordNet [Miller, 1995], and [CLASS] refers to the class
name. Next, we refine these descriptions by focusing on dis-
tinctive visual attributes based on the initial responses. The
second prompt is as follows:

Prompt 2: Please describe the [CLASS] in a maxi-
mum of five sentences, focusing on discriminative vi-
sual features. Make the description more detailed and
aligned with scientific facts, avoiding general sum-
maries and subjective interpretations.

The generated descriptions are then processed by the text
encoder of a pre-trained VLM, producing high-quality se-
mantic descriptors. This approach is preferred over tradi-
tional word embedding models, such as Word2Vec [Mikolov
et al., 2013], as it captures deeper contextual meanings
and nuances, enhancing the discrimination of visual features
across classes.

3.5 Bidirectional Visual-Semantic Bridging
After distilling high-quality semantic descriptors through the
SynMine module, we introduce the Visual-Semantic Bridg-
ing (VSBird) module, as shown in Figure 3. VSBird em-
ploys a dual autoencoder architecture to establish bidirec-
tional mappings within and between the visual and semantic
spaces, aiming to reconstruct multimodal classifier weights
based on visual embeddings and semantic descriptors. This
step is crucial for mapping visual and semantic knowledge
into actionable classifier weights for FSL.
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Classifier 
Weight

Pre-tained
Cosine Classifier

Class
Label

Semantic
Descriptors

Class Label

Training Stage

Inference Stage

SynMine

SynMine Semantic
Descriptor

Pretrained
Few-shot
Encoder

Support Images

N-way K-shot

Visual
Prototype

Figure 3: The pipeline of the proposed Visual-Semantic Bridging
(VSBird) module.

In this module, the classifier weights fΦ are treated as vi-
sual embeddings encoding distinctive visual knowledge. We
then use the corresponding semantic descriptors to facili-
tate the visual-semantic bridging. Specifically, let Wbase =
{wc}c∈Cbase

denote the classifier weights and Tbase =
{tc}c∈Cbase

the semantic descriptors. Our goal is to learn a
mapping ΨV

S : S → V , where S and V represent the seman-
tic and visual spaces, respectively. The VSBird architecture
consists of two encoder-decoder subnetworks: the visual en-
coder VE : V → Z , the semantic encoder SE : S → Z ,
the visual decoder VD : Z → V , and the semantic decoder
SD : Z → S , with Z as the latent space. These com-
ponents define the desired semantics-to-weights mapping as
ΨV

S (t
c) = VD(SE(t

c)). To avoid bias towards base classes,
we introduce self- and cross-reconstruction objectives. These
ensure both modalities preserve their structures within their
respective spaces while also aligning the latent spaces. The
self-reconstruction objectives minimize the following terms:

Lw
V→V = cos

(
ΨV

V (wc) ,wc
)
= cos (VD (VE(w

c)) ,wc) ,

Lt
S→S = cos

(
ΨS

S (tc) , tc
)
= cos (SD (SE(t

c)) , tc) .
(3)

Here, cos(·, ·) denotes the cosine distance function. While the
two autoencoders preserve structure within their respective
spaces, they do not ensure alignment between the two latent
spaces. To address this, we introduce two additional cross-
reconstruction objectives in a symmetric manner:

Lw
S→V = cos

(
ΨV

S (tc) ,wc
)
= cos (VD (SE(t

c)) ,wc) ,

Lt
V→S = cos

(
ΨS

V (wc) , tc
)
= cos (SD (VE(w

c)) , tc) .
(4)

The final objective of VSBird is a balanced combination of
these reconstruction terms:

Lw
t = α∗(Lw

V→V +Lt
S→S)+(1−α)∗(Lw

S→V +Lt
V→S), (5)

where α is a weight coefficient used to control the balance
between self-reconstruction and cross-reconstruction.

During inference, for a novel class u ∈ Cnovel, the seman-
tic encoder SE and visual decoder VD infer the semantic-
derived classifier weight:

wu
s′

= ΨV
S (t

u) = VD(SE(t
u)), (6)

and for a unseen visual prototype wu, the visual encoder VE

and semantic decoder SD infer the visual-derived classifier
weight:

wu
v′ = ΨS

V (w
u) = SD(VE(w

u)). (7)

3.6 Multi-modal Knowledge Fusion

In the knowledge fusion stage, we create N -way K-shot
meta-tasks from the base training set Dbase to mimic the few-
shot scenario during testing. The main goal is to develop a vi-
sual weight generator and a semantic weight reconstructor to
combine visual-based and semantic-based classifier weights,
forming robust multimodal classifiers for FSL tasks.

Given the pre-trained few-shot vision encoder fs
I , we cal-

culate the visual-based classifier weight wm
v for each class m

in the support set S as: wm
v = 1

∥∑K
i=1 fs

I (xi)∥
2

∑K
i=1 f

s
I (xi),

where K is the number of samples per class m. Next, simi-
lar to Equations (6) and (7), we transfer visual and semantic
knowledge from SynMine to generate visual-derived classi-
fier weight wm

v′ and semantic-derived classifier weight wm
s′

for each class m ∈ S . These weights complement each other:
the visual-based weight wm

v and semantic-derived classi-
fier weight wm

s′
complement one another, and similarly, the

semantic-based weight wm
s and visual-derived weight wm

v′

complement each other.
To facilitate visual-semantic weight fusion, we introduce

the visual weight generator G and semantic weight recon-
structor R. The generator G, consisting of a fully connected
layer followed by a sigmoid function, adaptively produces
a weight coefficient as β = 1

1+exp
(
−G

(
wm

s
′

)) , with val-

ues restricted to the range [0, 1]. This coefficient β is used
to balance the contributions of wm

s′
and wm

v in the visual-
dominated classifier as wm

V = β · wm
s′

+ (1 − β) · wm
v .

Similarly, the semantic-based weight wm
s and visual-derived

weight wm
v′ are concatenated and passed through the re-

constructor R to form the semantic-dominated classifier as

wm
S = R

(
wm

s ,wm
v′

)
= σ

([
wm

s ·wm
v′

]⊤
W1

)
W2, where

σ is an activation function, and W1 and W2 are learn-
able weights. Afterward, we generate multimodal classi-
fiers for the N -way K-shot meta-task: WV = {wm

V }Nm=1

and WS = {wm
S }Nm=1. Given an image q from the query

set, we compute the probabilities Pv and Ps using cosine
similarity as Pv =

exp(cos(fs
I (q),w

m
V ))∑N

m′=1
exp(cos(fs

I (q),w
m′
V ))

and Ps =

exp(cos(fφ(fs
I (q)),w

m
S ))∑N

m′=1
exp(cos(fφ(fs

I (q)),w
m′
S ))

. We use the softmax cross-

entropy loss function to train the generator G and reconstruc-
tor R.
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Method Backbone MiniImageNet TieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

V
is

ua
l-B

as
ed

MatchNet [Vinyals et al., 2016] ResNet-12 65.64 ± 0.20 78.72 ± 0.15 68.50 ± 0.92 80.60 ± 0.71
ProtoNet [Snell et al., 2017] ResNet-12 62.29 ± 0.33 79.46 ± 0.48 68.25 ± 0.23 84.01 ± 0.56
MAML [Finn et al., 2017] ResNet-12 58.05 ± 0.21 58.05 ± 0.10 67.92 ± 0.17 72.41 ± 0.20
MetaOptNet [Lee et al., 2019] ResNet-18 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
FEAT [Ye et al., 2020] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
Meta-Baseline [Chen et al., 2021] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
CVET [Yang et al., 2022b] ResNet-12 70.19 ± 0.46 84.66 ± 0.29 72.62 ± 0.51 86.62 ± 0.33
FGFL [Cheng et al., 2023] ResNet-12 69.14 ± 0.80 86.01 ± 0.62 73.21 ± 0.88 87.21 ± 0.61
SUN [Dong et al., 2022] ViT-S 67.80 ± 0.45 83.25 ± 0.30 72.99 ± 0.50 86.74 ± 0.33
SMKD [Lin et al., 2023] ViT-S 74.28 ± 0.18 88.82 ± 0.09 78.83 ± 0.20 91.02 ± 0.12
FewTURE [Hiller et al., 2022] Swin-T 72.40 ± 0.78 86.38 ± 0.49 76.32 ± 0.87 89.96 ± 0.55

Se
m

an
tic

-B
as

ed

KTN [Peng et al., 2019] ResNet-12 61.42 ± 0.72 70.19 ± 0.62 68.01 ± 0.73 79.06 ± 0.70
AM3 [Xing et al., 2019] ResNet-12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31
PC-FSL [Zhang et al., 2021] ResNet-12 69.68 ± 0.76 81.65 ± 0.54 74.19 ± 0.90 86.09 ± 0.60
SEGA [Yang et al., 2022a] ResNet-12 69.04 ± 0.26 79.03 ± 0.18 72.18 ± 0.30 84.28 ± 0.21
LPE-CLIP [Yang et al., 2023] ResNet-12 71.64 ± 0.40 79.67 ± 0.32 73.88 ± 0.48 84.88 ± 0.36
KSTNET [Li et al., 2023] ResNet-12 71.51 ± 0.73 82.61 ± 0.48 75.52 ± 0.77 85.85 ± 0.59
4S-FSL [Lu et al., 2023] ResNet-12 72.64 ± 0.70 84.73 ± 0.50 - -
SP-CLIP [Chen et al., 2023] Visformer-T 72.31 ± 0.40 83.42 ± 0.30 78.03 ± 0.46 88.55 ± 0.32
SemFew [Zhang et al., 2024] Swin-T 78.94 ± 0.66 86.49 ± 0.50 82.37 ± 0.77 89.89 ± 0.52

SYNTRANS ResNet-12 76.20 ± 0.69 86.12 ± 0.54 79.69 ± 0.81 87.78 ± 0.60
SYNTRANS ViT-S 81.30 ± 0.61 89.96 ± 0.42 84.31 ± 0.54 91.73 ± 0.44

Table 1: Comparison with state-of-the-art methods on MiniIma-
geNet and TieredImageNet.

Inference. During inference, the visual-dominated classi-
fier and the semantic-dominated classifier are complementary
to each other. Therefore, we propose a fusion mechanism to
obtain the final class logits. Given a test image xt, the predic-
tion is made as follows:

y∗ = argmax (⟨[fs
I (xt), fφ(f

s
I (xt))] , [WV , λWS ]⟩) , (8)

where λ is a positive balancing coefficient, empirically set to
1
K in our SYNTRANS.

4 Experiments
4.1 Datasets
Following the settings in [Zhang et al., 2024], we evaluate
the performance of the proposed SYNTRANS framework on
four widely used benchmarks in FSL. Two of these datasets
are derived from the ImageNet dataset [Russakovsky et al.,
2015]: MiniImageNet [Vinyals et al., 2016] and TieredIma-
geNet [Ren et al., 2018]. Another two dataset are CIFAR-
FS [Lee et al., 2019] and FC100 [Oreshkin et al., 2018].

4.2 Implementation Details
Architecture. In all experimental setups, we utilize
ResNet-12 and ViT-Small (ViT-S) as the few-shot vision en-
coders. Specifically, the ResNet-12 encoder is pretrained
using the training strategy described in IER [Rizve et al.,
2021], while the ViT-S encoder follows the strategy reported
in SMKD [Lin et al., 2023]. For the ResNet-12 encoder, vi-
sual features are obtained by averaging the outputs from the
final residual block, resulting in a feature dimension of 640.
For the ViT-S encoder, visual embeddings are computed by
averaging the hidden states from the last transformer block,
yielding a feature dimension of 384. During the visual knowl-
edge distillation stage, we use both the vision and text en-
coders from Res50x4 CLIP [Radford et al., 2021] as a strong
teacher and employ two linear layers to construct the linear
projector fφ. In the SynMine module, we leverage the GPT-
3.5-turbo model as the large language model and Res50x4
CLIP [Radford et al., 2021] as the visual-language model.
The SynMine module facilitates the alignment of features
across vision and language modalities. The encoders and de-
coders of the VSBird module consist of single-layer linear

Method Backbone CIFAR-FS FC100
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [Snell et al., 2017] ResNet-12 72.20 ± 0.73 83.50 ± 0.50 41.54 ± 0.76 57.08 ± 0.76
MetaOptNet [Lee et al., 2019] ResNet-12 72.80 ± 0.70 84.30 ± 0.50 47.20 ± 0.60 55.50 ± 0.60
RFS [Tian et al., 2020] ResNet-12 71.50 ± 0.80 86.90 ± 0.50 42.60 ± 0.70 59.10 ± 0.60
SUN [Dong et al., 2022] ViT-S 78.37 ± 0.46 88.84 ± 0.32 - -
SMKD [Lin et al., 2023] ViT-S 80.08 ± 0.18 90.63 ± 0.13 50.38 ± 0.16 68.37 ± 0.16
FewTURE [Hiller et al., 2022] Swin-T 77.76 ± 0.81 88.90 ± 0.59 47.68 ± 0.78 63.81 ± 0.75

SEGA [Yang et al., 2022a] ResNet-12 78.45 ± 0.24 86.00 ± 0.20 - -
LPE-CLIP [Yang et al., 2022a] ResNet-12 80.62 ± 0.41 86.22 ± 0.33 - -
4S-FSL [Lu et al., 2023] ResNet-12 74.50 ± 0.84 88.76 ± 0.53 - -
SP-CLIP [Chen et al., 2023] Visformer-T 82.18 ± 0.40 88.24 ± 0.32 48.53 ± 0.38 61.55 ± 0.41
SemFew [Zhang et al., 2024] Swin-T 84.34 ± 0.67 89.11 ± 0.54 54.27 ± 0.77 65.02 ± 0.72

SYNTRANS ResNet-12 82.58 ± 0.75 89.42 ± 0.56 52.30 ± 0.75 64.91 ± 0.59
SYNTRANS ViT-S 84.64 ± 0.65 90.81± 0.41 56.38 ± 0.69 69.45± 0.54

Table 2: Comparison with state-of-the-art methods on CIFAR-FS
and FC100.

mappings, with ReLU activation following the encoder map-
pings. A simple fully connected layer serves as the learnable
weight generator G. The weight reconstructor R combines
visual and textual features using two fully connected layers
followed by a LeakyReLU activation function. The hidden
layer has a dimension of 2048.

Training Details. During the visual knowledge distillation
stage, we freeze both the few-shot vision encoder and CLIP’s
vision encoder, focusing on optimizing the linear projector
and cosine classifier. For ResNet-12, we follow the methods
in [Li et al., 2023] and resize the input images to 84 × 84.
For ViT-S, we resize the input image to 320 × 320 for Mini-
ImageNet and TieredImageNet, and to 224×224 for CIFAR-
FS and FC100, maintaining consistency with SMKD [Lin et
al., 2023]. In the knowledge transfer stage, we freeze all pa-
rameters in the SynMine module and only train the param-
eters of the VSBird module. In the meta-training stage, we
train only the parameters of the weight generator and weight
reconstructor. For both stages, we employ the Adam opti-
mizer [Kingma and Ba, 2015] with an initial learning rate
of 0.0001 and weight decay of 5 × 10−4. In particular, the
VSBird module is trained for 50 epochs with the hyperpa-
rameter α set to 0.7, while the weight generator and weight
reconstructor are trained for 10 epochs.

Evaluation protocol. The proposed method is evaluated
under 5-way 1/5-shot settings on the novel dataset, with 600
few-shot tasks randomly sampled from it. Each task consists
of 15 query samples per class. We report the average accuracy
(%) with 95% confidence intervals.

4.3 Benchmark Comparisons and Evaluations
Tables 1 and 2 summarize the performance of recent state-
of-the-art FSL methods on the MiniImageNet, TieredIma-
geNet, CIFAR-FS, and FC100 datasets, focusing on the 5-
way 1/5-shot tasks. The experimental results demonstrate
that the SYNTRANS framework achieves outstanding perfor-
mance across all datasets, particularly when visual informa-
tion is limited. In the 5-way 1-shot scenario, SYNTRANS
outperforms the most relevant semantic-based method, Sen-
Few [Zhang et al., 2024], by a margin of 2.98% due to its
flexible knowledge transfer framework that mines rich knowl-
edge from diverse large models. Notably, SYNTRANS shows
greater improvement in the 1-shot setting compared to the
5-shot setting. In the 5-way 5-shot scenario, SYNTRANS
still maintains an advantage over all state-of-the-art methods,
though the improvements are less pronounced than in the 1-
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Knowledge Source Knowledge Encoder ResNet-12
5-way 1-shot 5-way 5-shot

Class Names Word2vec 72.66 ± 0.70 84.68 ± 0.50
Class Names VLMs 72.87 ± 0.71 84.67 ± 0.50
Short Definitions (WordNet) Word2vec 72.03 ± 0.73 84.18 ± 0.52
Short Definitions (WordNet) VLM 73.52 ± 0.73 85.26 ± 0.51
Rich Descriptions (LLM) Word2vec 74.41 ± 0.70 85.76 ± 0.51
Rich Descriptions (LLM) VLM 76.20 ± 0.69 86.12 ± 0.54

Table 3: Ablation study about knowledge quality on MiniImageNet.

(a) 5-way 1-shot (b) 5-way 5-shot

Figure 4: Influence of weight coefficient α on MiniImageNet.

shot setting. This suggests that even with more visual data,
high-quality semantic knowledge from large models can still
enhance performance. Overall, the results highlight the effec-
tiveness of SYNTRANS in various scenarios, demonstrating
its ability to leverage both semantic and visual knowledge.

4.4 Ablation Studies
Influence of Semantic Knowledge Quality. As shown in
Table 3, we evaluate the impact of knowledge quality us-
ing different sources and encoders. First, we compare com-
mon semantics (class names) with generic descriptions from
WordNet (i.e., “Short Definitions”) and richer descriptions
from LLMs via SynMine (i.e., “Rich Descriptions”). Re-
sults show that LLM-generated descriptions yield the best
performance. This suggests that rich descriptions provide
deeper semantic understanding, adding nuanced attributes to
the classifier weights that simple class names cannot. Next,
we compare Word2Vec models with VLMs for encoding se-
mantic knowledge. VLMs outperform Word2Vec in both 1-
shot and 5-shot settings, benefiting from their multi-modal
training, which enhances semantic understanding. The strong
performance of VLMs, particularly when paired with LLM-
generated descriptions, highlights the effectiveness of com-
bining large models for optimal knowledge transfer.

Influence of Hyper-parameter α. The VSBird module is
essential for bridging visual and semantic spaces, where
the dual autoencoder architecture encourages both self-
reconstruction within each space and cross-reconstruction be-
tween spaces. Figure 4 shows the performance of the visual-
dominated classifier WV on MiniImageNet with varying
weight coefficients α in Equation (5). A larger α enhances the
significance of self-reconstruction loss during VSKB module
training. When α is too small, self-reconstruction loss is sup-
pressed by cross-reconstruction loss, leading to lower accu-
racy. This suggests that while cross-reconstruction is crucial
for aligning latent spaces, preserving the individual structures
of visual and semantic spaces is equally important. How-
ever, beyond α = 0.7 for the 1-shot setting and α = 0.8
for the 5-shot setting, accuracy slightly decreases, indicating

60 40 20 0 20 40 60

40

20

0

20

40

60

(a) 5-way 1-shot (b) 5-way 1-shot

(c) 5-way 5-shot (d) 5-way 5-shot

Figure 5: t-SNE visualization of the classification weights for all
novel categories in Mini-ImageNet. (a) 1-shot visual-based classi-
fier. (b) 1-shot multi-modal based classifier. (c) 5-shot visual-based
classifier. (d) 5-shot multi-modal based classifier.

that excessive self-reconstruction diminishes the benefits of
cross-reconstruction. Thus, balancing self-reconstruction and
cross-reconstruction is crucial for optimal performance, with
α = 0.7 achieving the best trade-off across settings.
Effect of Multi-modal Knowledge Fusion. As shown in
Figure 5, we utilize t-SNE visualization to present classifier
weights for all novel categories of MiniImageNet. Figure 5(a)
illustrates classifier weights derived solely from visual data
in the 1-shot setting, revealing loosely defined clusters with
significant category overlap. Conversely, Figure 5(b) shows
the 1-shot results with fused visual and semantic knowledge,
where clusters are more compact and distinct. This highlights
the substantial benefit of semantic knowledge in scenarios
with limited samples. Figure 5(c) shows the 5-shot classi-
fier weights based solely on visual data, showing more tightly
grouped clusters with less overlap. Figure 5(d) presents the 5-
shot results with multi-modal knowledge fusion, where clus-
ters are even more distinct and compact. This demonstrates
that rich knowledge still improves FSL performance even
with a higher number of samples.

5 Conclusion
In this paper, we delve into the previously unexplored po-
tential of harnessing the extensive knowledge available in
large multimodal models to empower the pre-trained few-shot
learner. As a result, we propose a Synergistic Knowledge
Transfer (SYNTRANS) framework that effectively transfers
diverse and complementary knowledge from both visual- and
large-language models to address FSL tasks. The essence of
SYNTRANS lies in its proficient capability to distill and trans-
form explict visual knowledge and implicit semantic knowl-
edge from these large models into practical classifier weights,
thereby significantly improving FSL performance through a
multimodal knowledge fusion manner. Experimental results
on four benchmark datasets demonstrate the superior efficacy
of SYNTRANS compared to the state-of-the-art methods.
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