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Abstract

Pre-trained foundation models have recently made
significant progress in table-related tasks such as
table understanding and reasoning. However, rec-
ognizing the structure and content of unstruc-
tured tables using Vision Large Language Models
(VLLMs) remains under-explored. To bridge this
gap, we propose a benchmark based on a hierarchi-
cal design philosophy to evaluate the recognition
capabilities of VLLMs in training-free scenarios.
Through in-depth evaluations, we find that low-
quality image input is a significant bottleneck in
the recognition process. Drawing inspiration from
this, we propose the Neighbor-Guided Toolchain
Reasoner (NGTR) framework, which is character-
ized by integrating diverse lightweight tools for vi-
sual operations aimed at mitigating issues with low-
quality images. Specifically, we transfer a tool se-
lection experience from a similar neighbor to the
input and design a reflection module to supervise
the tool invocation process. Extensive experiments
on public datasets demonstrate that our approach
significantly enhances the recognition capabilities
of the vanilla VLLMs. We believe that the bench-
mark and framework could provide an alternative
solution to table recognition. The code is available
at https://github.com/lqzxt/NGTR.

1 Introduction

Tables are ubiquitous for organizing and communicating
structured data across diverse domains, ranging from scien-
tific literature and business reports to web pages and financial
documents [Ye et al., 2024; Zheng et al., 2021]. They store
a wealth of information essential for applications such as
knowledge discovery, decision support, and data-driven ana-
lytics [Shwartz-Ziv and Armon, 2022; Wang et al., 2024a]. In
the context of intelligent table applications, one fundamental
yet challenging task is table recognition: converting image-
based table representations into structured data formats. Over
the years, substantial efforts [Salaheldin Kasem et al., 2024]
have been made to address this problem, introducing various
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approaches to address challenges, such as image segmenta-
tion techniques and cell object detection methods.

Recently, the advent of Large Language Models
(LLMs) [Chang et al., 2024] and Vision Large Lan-
guage Models (VLLMs) [Yin et al., 2024] has revolutionized
natural language processing and computer vision. For
LLMs, their powerful understanding and reasoning ca-
pabilities have facilitated numerous tabular data mining
tasks, such as table-to-text generation [Guo et al., 2024],
table question answering [Wang et al., 2024b; Mao et al.,
2024], and table semantic understanding [Deng et al., 2022;
Cheng et al., 2025a]. Meanwhile, several VLLM-based
methods have emerged to bypass traditional OCR pipelines
for visual table analysis and understanding [Hu er al., 2024].

Despite these advancements, our investigation reveals a no-
ticeable gap: the application of VLLMs to table recognition
remains underexplored. This task serves as a foundational
building block for table-related applications. Some existing
work [Luo et al., 2024; Zhang et al., 2024] has focused on
pre-training or fine-tuning VLLMs to accomplish this task.
However, fine-tuning VLLMs for specific tasks is often com-
putationally expensive and risks catastrophic forgetting of
general capabilities. To address this, we explore a generative
approach that does not require additional fine-tuning, specif-
ically leveraging a training-free paradigm using pre-trained
VLLMs for table recognition. Recognizing the absence of
dedicated benchmarks in this domain, we propose an evalu-
ation benchmark based on a hierarchical design philosophy
[Sui et al., 2024; Cheng et al., 2025b; Liu er al., 2024b],
comprising recognition tasks for table recognition. Through
extensive evaluations, we identify a critical bottleneck: low-
quality input images significantly hinder the table recognition
capabilities of the evaluated VLLMs.

To overcome this limitation, we propose the Neighbor-
Guided Toolchain Reasoner (NGTR) framework for effective
table recognition. One of the key features of the framework
is its integration of lightweight models and the strategy of
retrieval-augmented generation to improve image quality and
guide structured data recognition. Specifically, we propose a
preprocessing toolkit with various lightweight models to en-
hance input image quality. For each input instance, we re-
trieve a similar neighbor from the training data and use the
experience gained from that neighbor to guide the genera-
tion of tool invocation plans. Furthermore, we incorporate
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Figure 1: Comparison of modeling paradigms: domain-specific lightweight models vs. universal pre-trained VLLMs.

a reflection-driven tool selection module at each step to it-
eratively refine the table recognition output. This enables
VLLMs to produce more accurate structured data.

To validate the effectiveness of the proposed NGTR frame-
work, we conduct extensive experiments on multiple pub-
lic table recognition datasets. The key observations are as
follows: (1) Our NGTR framework significantly enhances
the table recognition performance of naive VLLM-based ap-
proaches; (2) While VLLMs achieve competitive accuracy
on specific datasets compared to traditional models, a notice-
able performance gap remains in favor of traditional models.
Nonetheless, we have preliminarily revealed the performance
boundaries of VLLMs in several representative table recogni-
tion datasets. As is shown in Figure 1, the VLLM-based table
recognition approach demonstrates the capability for univer-
sal modeling. This method facilitates a paradigm shift in de-
sign objectives from a model-centric to a data-centric focus,
presenting significant potential for further exploration. We
hope this work will inspire more research efforts in the future.
In summary, the contributions of this paper are as follows:

* We conduct a systematic investigation into VLLM-based
table recognition by introducing a hierarchical bench-
mark for evaluating their recognition capabilities.

* We propose the NGTR framework to address critical
bottlenecks in table recognition, such as low-quality in-
put images.

* We conduct extensive experiments to report the promis-
ing performance and potential of VLLMs for table
recognition, along with interesting observations that
highlight areas for future research.

2 Related Work

Table Recognition. Earlier table recognition (TR) methods
predominantly rely on heuristic rules [Kieninger and Dengel,
1999; Shigarov et al., 2016], these approaches rely heavily on
handcrafted features or implicit rules. In the era of deep learn-
ing, numerous studies have made impressive progress in han-
dling more intricate and heterogeneous table structures. Top-

down methods [Schreiber et al., 2017; Siddiqui e al., 2019;
Ma et al., 2023; Qin et al., 2024] predict table borders to in-
fer the structure information. Bottom-up methods [Zheng et
al., 2021; Qiao er al., 2021; Xing et al., 2023] first identify
table cells with object detection models [Ren et al., 2016;
Carion et al., 2020], and then predict the cell relations to
organize the row-column structures to form the overall ta-
bles. These methods follow an explicit two-stage learning
paradigm with relatively strong transferability and explain-
ability, yet the risks of ambiguous contents and boundless
structures may lead to unstable and incorrect prediction re-
sults. Recently, sequence-based methods [Zhong et al., 2020;
Nassar et al., 2022; Huang et al., 2023] have been widely
explored to directly generate markup sequences that define
structures with specific decoders. Although these approaches
require a massive of training data and computing resources,
they have demonstrated substantial potential to unify visual-
text parsing tasks [Wan er al., 2024].

Large Language Models. In recent years, LLMs have
demonstrated exceptional performance in tasks such as multi-
task learning [Chen er al., 2024], zero-shot learning [Ko-
jima et al., 2022], and text generation [Li et al., 2024].
LLMs have not only broken through the limitations of tra-
ditional technologies in processing natural language text, but
have also shown capabilities in reasoning [Wei er al., 2022]
and planning [Guan er al., 2023; Gou et al., 2023]. Mean-
while, VLLMs combine visual and language understand-
ing capabilities, enabling LLMs to process visual informa-
tion. For multimodal understanding scenarios (e.g., scene
text recognition [Wang et al, 2011], visual question an-
swering [Antol et al.,, 2015]), VLLMs have been widely
validated as effective [Guo et al., 2023; Ye et al., 2023;
Liu et al., 2024a]. With continuous progress in text-rich sce-
narios, some studies [Zheng et al., 2024; Zhao et al., 2024,
Chen et al., 2023] have also focused on enabling VLLMs to
handle multimodal table understanding tasks.

Despite their promising success in various domains,
VLLMs applied to TR remain under-evaluated and under-
explored. Our study presents a comprehensive benchmark
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Granularity  Recognition Task Description
Visual Table Size
Table-level . Get the number of rows and columns.
Detection
Row-level Row Index-based Get the content list of a specific row.

Data Recognition

Column Index-based

Column-level Get the content list of a specific column.

Data Recognition
Merged Cell
Detection
Content-based
Cell recognition
Index-based
Cell Recognition

Get contents of all merged cells.

Cell-level Get the location of specific cell content.

Get the cell content of specific location.

Table 1: Descriptions of the proposed hierarchical recognition tasks.

for VLLM-based TR evaluation. Subsequently, we propose
a novel framework to address the bottleneck of VLLMs,
thereby enhancing their capabilities in TR.

3 Preliminary and Proposed Benchmark

3.1 Problem Definition

We employ the generation paradigm of VLLMs to address
the table recognition (TR) task, which is formulated as a for-
mat mapping problem from images to sequences. Formally,
given a TR dataset D = {(I*, H*)}"_, with n samples, we
predict the corresponding structured form H* for each table
image I’. Specifically, we provide the image table I’ along
with a prompt P as input to the VLLMs, which generates the
structured data form H* = VLLM(P, I).

3.2 Benchmark Evaluation Setup

This section proposes an evaluation benchmark for TR based
on VLLMs, outlining the hierarchical recognition tasks to as-
sess their performance and the evaluation setup.

Recognition Task Design

We design several hierarchical recognition tasks to conduct
a more in-depth assessment of VLLMs’ table recognition ca-
pability, including the cell-level, row-level, column-level, and
global table-level. Table 1 presents the details of the hierar-
chical recognition tasks.

Cell-level. We evaluate the cell-level recognition capabil-
ity of VLLMs within three specific recognition tasks. Merged
cell detection task aims to recognize cells that span multiple
rows or columns in the table. Content/index-based cell recog-
nition tasks evaluate the structural and content recognition ca-
pabilities of VLLMs, which are crucial for assessing whether
VLLMs could perform well in fine-grained table recognition.

Row/Column-level. We evaluate the row/column-level
recognition capability of VLLMs within two specific recog-
nition tasks. Row/column index-based data recognition tasks
are designed to assess whether VLLMs can accurately iden-
tify row/column elements.

Table-level. We evaluate the overall table-level recogni-
tion capability of VLLMs. The visual table size detection
recognition task is designed to evaluate whether VLLMs can
comprehend the global structural information and accurately
determine the number of rows and columns in a table.
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Figure 2: Experimental results of VLLMs for the proposed hierar-
chical tasks. The tasks evaluated include the following: merged cell
detection (MCD), content/index-based cell recognition (CCR, ICR),
index-based row/column data recognition (IRDR, ICDR), and visual
table size detection (VTSD).
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Figure 3: Row-Column Sensitivity Analysis of VLLMs on Hierar-
chical Tasks with Gemini (Left) and GPT (Right).

Baselines

In this study, we evaluate the performance of six VLLMs. For
open-source VLLMs, we select Phi-3.5 (Phi) and Llama-3.2-
90B (Llama) for evaluation. For closed-source VLLMs, we
evaluat GPT-40-mini (GPT-mini), Qwen-VL-Max (Qwen),
GPT-40 (GPT) and Gemini-1.5-Pro (Gemini).

3.3 Benchmark Evaluation Results

Evaluation results of hierarchical recognition tasks are pre-
sented in Figure 2. Among all the VLLMs we selected, GPT
and Gemini demonstrate the strongest performance, consis-
tently outperforming the other VLLMs. Furthermore, the
open-source Llama demonstrates a significant performance
gap compared to the closed-source VLLMs. We give some
highlights associated with the benchmark results as follows:
Row-column Sensitivity Analysis. We found that all
models show inconsistent performance between row/column-
related tasks. To mitigate the influence of uneven distribu-
tions of rows and columns, leading to varying difficulty lev-
els, we further refine the experimental results by selecting
samples where the difference between the number of rows
and columns does not exceed three. As shown in Figure 3,
models perform better on column-related tasks, suggesting



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Challenge Scenario Description
Blur The image is out of focus, with details
appearing smeared or indistinct.
Visual The image is too dark, which may
L. Underexposure
Conditions cause the content to be unclear.
Overexposure The .in‘lage is over.ly bright, losing
detail in some regions.
Unclear The image’s table borders are faint,
Table Borders blending into the background.
Border Missing The table is without expected
. Borders borders or separators.
Quality Thickened
iexene The table borders are thickened.
Borders
Geometric Tilt 20° The image is tilted at 20° angle.
Deformation Tilt 40° The image is tilted at 40° angle.

Table 2: Specific description of the challenges and scenarios in low-
quality image inputs.

VLLMs tend to favor column-structured data. A likely reason
is that, in many cases, columns represent diverse attributes
while rows correspond to similar entities—making attribute-
based (column) tasks more amenable to accurate recognition.

Image Quality Analysis. We conduct in-depth experi-
ments and analysis on the TR task. The results demon-
strate that the VLLMs perform relatively well on the Sc-
iTSR dataset with higher image quality using simple prompts.
However, the performance gap is considerably more signifi-
cant when processing the PubTabNet dataset with lower im-
age quality, especially compared to traditional models. This
phenomenon indicates that the quality of the input image is a
key bottleneck limiting the performance of VLLMs. Section
3.4 provides a more in-depth analysis of this bottleneck.

3.4 Bottleneck Analysis

We further investigate the performance of VLLMs under
varying image quality conditions and assess their visual ro-
bustness to these conditions through empirical analysis.

Experimental Setup

To comprehensively evaluate the visual robustness of VLLM,
we focus on three distinct visual challenges: the image qual-
ity challenge, the table border quality challenge, and the geo-
metric deformation challenge. Details of these challenges are
provided in Table 2.

Visual Conditions. Visual conditions is a key factor affect-
ing the accuracy of VLLMs in table recognition. To assess it,
we systematically analyze the performance of VLLMs under
various visual conditions across three scenarios: blur, under-
exposure, and overexposure. These analyses demonstrate the
robustness of VLLMs in handling impaired visual conditions.

Table Border Quality. Table borders indicate structural
information in table elements. We evaluate the impact of bor-
der visibility and completeness on table recognition perfor-
mance by considering scenarios including unclear table bor-
ders and missing borders. Additionally, we explore the effect
of border changes in the table by thickened table borders.

Geometric Deformation. Geometric deformation caused
by viewing angles or operations can disrupt the geometric
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Figure 4: Evaluation results of bottleneck scenarios: abbreviations
UE (Underexposure), OE (Overexposure), MB (Missing Borders),
UB (Unclear Borders), TB (Thickened Borders).

consistency of tables. We evaluated the robustness of VLLMs
against geometric deformations by testing them under tilt
conditions of 20° and excessive tilt conditions of 40°.

Discussion and Analysis
As shown in Figure 4, while blurring and overexposure can
degrade text clarity to some extent, the distortion caused by
skewed tables severely disrupts structural integrity, signifi-
cantly affecting the recognition performance of VLLM.
Although table borders are often considered essential for
conveying structured information, fading or removing these
borders has minimal impact on the performance of VLLMs.
This result suggests that VLLMs do not heavily rely on bor-
ders. VLLMs only pay slight attention to the structural infor-
mation the borders provide when thickening.

4 Neighbor-Guided Toolchain Reasoner

Through our in-depth analysis of VLLMSs’ performance on
the benchmark, we have identified that improving input im-
age quality is essential for enhancing VLLMs’ capability to
recognize and interpret structured image data more effec-
tively. To address this, we propose the NGTR framework.

4.1 Framework Overview

NGTR enhances input image quality by applying various
tool combinations tailored to low resolution, overexposure,
and noise interference. As shown in Figure 5, we design a
similarity-based neighbor retrieval module to select a suitable
combination of tools. Subsequently, the tool invocation expe-
rience learning module executes each plan and generates the
corresponding structured data to evaluate the effectiveness of
different plans. Finally, we propose a reflection-driven tool
selection module to integrate iterative tool invocation and dy-
namic feedback to refine the processing flow. The optimized
image is then input into the VLLMs, which utilize their pow-
erful reasoning capabilities to generate structured data.

4.2 Toolkit Preparation

Inspired by the conclusions of the Bottleneck Analysis (Sec-
tion 3.4), we employ five distinct tools to address various sce-
narios and potential issues that may arise in the table recog-
nition task. These tools are shown in Table 3. By combining
different tools, NGTR effectively addresses various challeng-
ing situations. For example, when the table border is faint, the
VLLMs can invoke the border enhancement tool to strengthen
the structural information by thickening the table border.
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Figure 5: Illustration of a pipeline for table image preprocessing leveraging a toolkit of lightweight vision models.

Tool Descriptions

The border enhancement tool improves the

Border En-  legibility of tables and their structures by thickening
hancement the border lines in the image. This process enhances
the structural information features of tabular data.
Image Image upscaling optimizes image resolution to
U sca%in improve visual quality. This technique is commonly
p g employed to repair and enhance blurry images.
Noise The noise reduction tool enhances image quality by
Reduction adjusting brightness and contrast to mitigate noise
interference and underexposure issues.
Binarization This tool converts images to black and white,
highlighting key features for easier extraction.
Detection This tool identifies table regions within an image
and and crops them into independent segments. It is
Cropping particularly suitable for processing images of tables

embedded in complex backgrounds.

Table 3: Specific descriptions of built tools in the toolkit.

4.3 Similarity-based Neighbor Retrieval

Neighbor retrieval methods enable VLLM:s to retrieve similar
neighbor samples, providing richer contextual information.
In the NGTR framework, we hypothesize that images with
similar features exhibit similar results after being processed
by the same image preprocessing toolchain. Consequently,
the processing results of neighbor samples could guide the
selection of a potentially optimal toolchain for test samples.
We first retrieve images that are similar to the target task im-
ages from a sample set. Subsequently, we employ a prompt-
ing template to leverage the VLLM’s planning capabilities to
generate tool invocation plans. The retrieval process can be
formally described as follows:

Retrieval (', D', f) = arg max [f (Ite“, Ii)}zl‘ , (D
where I' represents an image from the test set, D’ denotes
a subset of the training dataset, and f is the similarity mea-

surement function. In this paper, we combine the ORB (Ori-
ented FAST and Rotated BRIEF) algorithm with the Ham-
ming distance as f to measure the similarity between images.
Then, we guide the VLLMs to generate multiple tool invo-
cation plans for the image. The generation process can be
formally expressed as follows:

VLLM(T7N(IteSt)) — {p17p27 N apn}v (2)

where T represents the description information set of all
available image preprocessing tools, including their func-
tions, applicable scenarios, invocation identifiers, and other
relevant details; A/ (1*) denotes the neighbor image samples
of the test sample I'*, along with their associated features,
retrieved from the training set; and {pi,ps,...,pn} repre-
sents the generated candidate set of plans, which are then used
to select an appropriate tool invocation plan.

4.4 Tool Invocation Experience Learning

In this module, we follow a sequential workflow to evaluate
the multiple tool invocation plans. First, we execute each tool
invocation plan generated by the previous module to obtain
multiple processed images:

Ipi :fpi(l)7 (&S {1727"'an}7 (3)
where f,, denotes the image preprocessing tools. Next, we
employ a prompt template to guide the VLLMs in generating
a markup sequence. Subsequently, we evaluate the prediction
results based on the example labels. The evaluation process
employs the tree edit distance-based similarity (TEDS) met-
rics to quantify the accuracy of the VLLMs output. By fol-
lowing this process, we calculate a quantitative score for each
toolchain, enabling the selection of a suitable plan.

4.5 Reflection-driven Tool Selection

Although the tool invocation experience learning module pro-
vides a high-quality plan, mindlessly applying the tool invo-
cation plan to new samples may result in the loss of critical
information in the image, thereby affecting the accuracy of
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| Lightweight OCR Model | Prompt Tuning in VLLMs
Dataset Metrics ‘ ‘ Gemini GPT-40
EDD LGPMA LORE Phi GPT-mini Qwen Llama
\ \ direct NGTR A direct NGTR A
SCITSR TEDS - 95.08 - 66.18 87.18 89.40 8724 90.15 91.07 4092 90.70 92.58  +1.88
“l TEDS-Struct - 96.24 97.22 | 71.56 92.03 93.06 9231 9373 95.09 +1.36 9420 95.78 +1.58
PubTabNet TEDS 89.67 94.63 - 49.92 58.68 52.53 79.04 81.00 8480 +3.80 7446 85.03 +10.57
TEDS-Struct - 96.70 96.94 | 57.65 73.00 6390 87.64 8528 89.30 +4.02 8491 9231 +7.40
WTW TEDS-Struct ‘ - - 93.86 ‘ - 31.72 - 32.87 4262 4468 +2.06 40.01 52.03 +12.02
Table 4: Performance comparison of methods on the SciTSR, PubTabNet, and WTW datasets. - indicates the method’s lack of results

(specific reasons are provided in the implementation details). Best scores in the lightweight OCR model category are highlighted in blue ,
while best scores in the prompt tuning in VLLMs category are highlighted in green .

the final result. To address this, we introduce the reflection-
driven tool selection module during the execution phase to re-
fine the processing flow, reduce information loss, and thereby
improve recognition accuracy. The formalized expression of
the reflection module is as follows:

Let 7t~V denote the image before the ¢-th operation and
I® denote the image after the ¢-th operation. The VLLMs
computes 7(*) to determine whether to accept the operation:

7 ® = reflect(1¢Y, 1), 4)

where v(*) is a binary decision indicating the quality change
between the before and after images. The function reflect(-)
evaluates the difference in quality. If 4(*) = 1, the operation
is considered successful; otherwise, if 7(t) = 0, the operation
is rejected, and the process proceeds to the next step.

This step-by-step module enhances the interaction between
the VLLMs and the target image, ensuring the accuracy of
the final task outcome. More importantly, introducing this
module enables downstream researchers and developers to
flexibly customize and expand the toolkit without worrying
about the impact of poorly performing expanded tools on the
final results, thereby significantly improving the versatility
and transferability of our framework. In the last step, we de-
sign a simple prompt template to instruct VLLM to generate
a markup sequence and obtain the result of table recognition.

S Experiments

5.1 Experimental Setup

Datasets

In this study, we utilize three widely-used table recognition
datasets: SciTSR [Chi ef al., 2019], PubTabNet [Zhong et al.,
2020], and WTW [Long er al., 20211, each offering unique
characteristics and challenges. SciTSR is a dataset compris-
ing tables extracted from the scientific literature, and the im-
age quality in this dataset is relatively high. In contrast, the
image resolution of PubTabNet is 72 pixels per inch, and its
overall image quality is relatively low. WTW contains im-
ages collected from the wild, introducing a variety of extreme
cases, such as tilt, blur, and table curvature. These datasets
encompass diverse table types and various unique visual chal-
lenges, providing a robust foundation for benchmarking.

Baselines

We select six Vision Large Language Models (VLLMs), in-
cluding Phi', Llama?, GPT-mini, Qwen3, GPT*, and Gem-
ini®, as baseline models for comparison. Additionally, we
select three representative deep learning-based methods as
baselines for comparison: EDD [Zhong et al., 2020] based
on sequence modeling, LGPMA [Qiao er al., 2021] based on
cell bounding box detection, and LORE [Xing et al., 2023]
based on cell point center detection.

Evaluation Metrics

As for the evaluation metrics of TR, we use a similarity metric
based on Tree-Edit Distance (TEDS) [Zhong et al., 2020] and
the TEDS-Struct metric. We employ two evaluation metrics
for the hierarchical tasks described in Section 3.2: accuracy
(ACC) and micro-averaged F1 score (F1-score). Specifically,
ACC is used to evaluate cell-level tasks (excluding merged
cell detection) and table-level tasks; the F1-score is utilized
for row- and column-level tasks and merged cell detection.

Implementation Details

For the PubTabNet dataset, We randomly select 1,500 images
from the validation set. For the SciTSR and WTW datasets,
we use their complete test sets for evaluation. Since the WTW
dataset does not provide content information for table recog-
nition, we do not report its TEDS scores.

For LORE, since it is mainly aimed at table structure recog-
nition but not table content recognition, we only report its per-
formance scores for table structure recognition. As for EDD,
since its model training requires a large amount of end-to-
end annotated data, and SciTSR and WTW lack correspond-
ing labeled data, its performance on these datasets has not
been evaluated. LGPMA depends on table content for train-
ing, but since WTW lacks content labels, its performance on
this dataset was not assessed.

"https://azure.microsoft.com/en-us/products/phi/
*https://www.llama.com/
3https://qwenlm.github.io/blog/qwen-vl/
“https://openai.com/index/hello- gpt-4o/
Shttps://deepmind.google/technologies/gemini/pro/
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SciTSR PubTabNet
Method
TEDS TEDS-Struct TEDS TEDS-Struct
NGTR  92.56 95.43 85.03 92.31
w/o EXP  90.33 93.68 80.57 88.40
w/o REF  91.53 94.77 82.08 91.85

Table 5: Ablation study results on key components of the frame-
work. "EXP” denotes the tool invocation experience learning mod-
ule, "REF” represents the reflection-driven tool selection module.

5.2 Main Results Analysis

Tables 4 show our benchmark results on the table recognition
and table structure recognition tasks. Based on the experi-
mental results, we draw the following insights:

Performance Analysis of NGTR

As shown in Table 4, the experimental results compare our
NGTR framework with baseline methods. The main results
show that our framework achieves significant performance
improvements on the PubTabNet dataset, mainly attributed to
our framework’s enhanced VLLMS robustness when dealing
with low-quality inputs. On the SciTSR dataset, our frame-
work also outperforms all VLLMs baselines, further verify-
ing our framework’s effectiveness.

Open-source and Closed-source VLLMs

The advanced open-source VLLMs demonstrate capabilities
comparable to closed-source VLLMs in this task. As a rep-
resentative of open-source models, Llama exhibits outstand-
ing performance, particularly in the table structure recogni-
tion task (TEDS-Struct) on the PubTabNet dataset. Llama
achieves a relatively better result, surpassing GPT by 2.73
points and Gemini by 2.36 points. These results confirm the
potential of open-source VLLMs for further research.

WTW Dataset: A Challenge for VLLMs

Table 4 presents the experimental results on the WTW
dataset. These results indicate that prompt-tuning based
VLLMs methods still exhibit significant gaps compared to
traditional lightweight OCR methods, highlighting the chal-
lenges VLLMs face when processing datasets with wild sce-
narios. Further analysis of the outputs suggests that perfor-
mance declines notably when VLLMs process tables with nu-
merous empty cells, unevenly distributed text, and skewed,
rotated, or densely packed text. Further analysis of the out-
puts suggests that VLLMs tend to ignore cells lacking seman-
tic content. While this behavior helps avoid processing irrel-
evant data, it also limits their ability to effectively capture the
structural information of tables with many blank cells.

5.3 Ablation Study w.r.t Key Components

Effectiveness of Tool Invocation Experience Learning. We
performed an ablation study by removing the tool invocation
experience learning module. In this experiment, we only led
the VLLMs to generate a tool invocation plan and applied it
directly to the test samples. As shown in Table 5, while the
VLLMSs could generate a valid tool invocation plan, the lack
of effective validation of the generated plan led to a signifi-
cant performance decline. This further validates the critical
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Figure 6: The impact of the number of tools (shown on the left) and
the number of multi-paths (shown on the right) on performance.

3

role of the tool invocation experience learning module in im-
proving the NGTR framework performance.

Effectiveness of Reflection-driven Tool Selection. We per-
formed an ablation study by removing the reflection-driven
tool selection module. We apply all the tools to the task im-
ages in a single pass. The results are presented in Table 5,
without the reflection module for stepwise backtracking val-
idation, VLLMs cannot effectively supervise the processing
procedure, which may lead to the incorporation of unsuitable
tools for the current sample, thereby affecting performance.

5.4 Hyperparameter Sensitivity Analysis

The NGTR framework contains two core parameters: the
maximum length of the toolchain execution plan L and the
number of plans generated each time N. As shown in Figure
6, a moderate toolchain length achieves an adequate balance
between complexity and performance, as excessive toolchain
length increases combinatorial complexity and limits pro-
cessing performance, thereby affecting the framework’s abil-
ity to generate high-quality solutions. Similarly, generating
a moderate number of execution plans effectively balances
solution quality and generation efficiency, whereas generat-
ing too few or too many plans slightly reduces performance.
Therefore, a moderate toolchain length and number of exe-
cution plans can balance complexity and performance well,
providing valuable guidance for the tool invocation.

6 Conclusion and Limitation

This paper addressed the under-explored challenge of table
recognition using VLLMSs in a training-free paradigm. We
proposed the NGTR framework, which enhanced input image
quality through lightweight models and neighbor-guided tool
invocation strategies. Extensive experiments demonstrated
that NGTR significantly improved VLLM-based table recog-
nition performance. This work not only established a bench-
mark for table recognition but also highlighted the potential
of VLLMs in advancing table understanding, paving the way
for future research and applications.

Limitation. Despite the strengths of our framework, we ac-
knowledge several limitations that warrant further investi-
gation. Firstly, its performance depends on the underlying
toolkit. Secondly, when the available set of neighbor candi-
dates does not sufficiently cover a wide range of scenarios,
selecting an inappropriate neighbor may lead to suboptimal
performance. Nevertheless, we believe the NGTR frame-
work demonstrates strong generalizability, serving as a ver-
satile approach for tool invocation for various domains.
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