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Abstract
Over the past decades, researchers have primarily
focused on improving the generalization abilities of
models, with limited attention given to regulating
such generalization. However, the ability of mod-
els to generalize to unintended data (e.g., harmful
or unauthorized data) can be exploited by malicious
adversaries in unforeseen ways, potentially result-
ing in violations of model ethics. Non-transferable
learning (NTL), a task aimed at reshaping the gen-
eralization abilities of deep learning models, was
proposed to address these challenges. While nu-
merous methods have been proposed in this field,
a comprehensive review of existing progress and
a thorough analysis of current limitations remain
lacking. In this paper, we bridge this gap by pre-
senting the first comprehensive survey on NTL
and introducing NTLBench, the first benchmark to
evaluate NTL performance and robustness within
a unified framework. Specifically, we first intro-
duce the task settings, general framework, and cri-
teria of NTL, followed by a summary of NTL ap-
proaches. Furthermore, we emphasize the often-
overlooked issue of robustness against various at-
tacks that can destroy the non-transferable mecha-
nism established by NTL. Experiments conducted
via NTLBench verify the limitations of existing
NTL methods in robustness. Finally, we discuss the
practical applications of NTL, along with its future
directions and associated challenges.

1 Introduction
Throughout much of deep learning (DL) history, researchers
have primarily focused on improving generalization abilities
[Liu et al., 2021a; Zhuang et al., 2020]. With advancements
in novel techniques, the availability of high-quality data, and
the expansion of model sizes and computational resources,
DL models have demonstrated increasingly strong general-
ization, extending from in-distribution to out-of-distribution
(OOD) scenarios [Wang et al., 2022a; Radford et al., 2021;
Kaplan et al., 2020]. This facilitates the application of DL
in complex real-world scenarios. However, limited attention
has been given to regulating models’ generalization abilities,

while strong-enough yet unconstrained generalization abili-
ties may pose misuse risks. Specifically, the generalization of
deep models to unintended data (e.g., unauthorized or harm-
ful data) can be exploited by malicious adversaries in unex-
pected ways. This raises concerns regarding the regulating
of powerful DL models, including issues related to model
ethic [Li et al., 2023], safety alignment [Ouyang et al., 2022;
Huang et al., 2024], model privacy and intellectual property
[Sun et al., 2023; Jiang et al., 2024], among others.

Non-transferable learning (NTL) [Wang et al., 2022b], a
task aimed at reshaping the generalization abilities of DL
models, was proposed to address these challenges. Its goal
is to prevent the model’s generalization to specific target do-
mains or tasks (such as harmful or unauthorized domains)
while preserving its normal functionality on a source domain.
Although numerous NTL methods have been proposed re-
cently (e.g., Wang et al. [2023b], Hong et al. [2024b]), a
comprehensive summary of existing progress in this field and
an thorough analysis of current limitations is still lacking.

In this paper, we bridge this gap by presenting the first
comprehensive survey of NTL. We first introduce the task
settings, general framework and criteria of NTL (Section 2),
followed by a summary of existing NTL approaches accord-
ing to their strategies to implement non-transferability in two
settings (Section 3). Then, we highlight the often-overlooked
robustness against diverse attacks that can destroy the non-
transferable mechanism established by NTL (Section 4).

In addition, we propose the first benchmark (NTLBench)
to integrate 5 state-of-the-art (SOTA) and open-source NTL
methods and 3 types of post-training attacks (15 attack meth-
ods) in a unified framework, as illustrated in Figure 1. Our
NTLBench supports running NTL and attacks on 9 datasets
(more than 116 domain pairs), 5 network architecture fami-
lies, providing overall at least 40,000 experimental configu-
rations for comprehensive evaluation. Main results obtained
from NTLBench verify the unsatisfactory robustness of ex-
isting NTL methods in dealing with various post-training at-
tacks (Section 5). Finally, we discuss applications, related
work and future directions and challenges (Sections 6 to 8).

We believe that our survey and NTLBench can drive the
development of robust NTL methods and facilitate their ap-
plications in trustworthy model deployment scenarios. Our
major contributions are summarized as three folds: (i) Com-
prehensive review: We conduct a systematic review of ex-
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Figure 1: We systematically review non-transferable learning (NTL) and introduce NTLBench, an unified framework for benchmarking
NTL. This figure compares 5 methods (NTL, CUTI-domain, H-NTL, SOPHON, CUPI-domain) on CIFAR & STL with VGG-13, evaluating
pre-training performance and robustness against 5 source domain fine-tuning attacks, 4 target domain fine-tuning attacks, and 6 source-free
domain adaptation attacks (higher value means better robustness). NTLBench is released at https://github.com/tmllab/NTLBench.
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Figure 2: Comparison of (a) supervised learning (SL), (b) target-
specified non-transferable learning (NTL), and (c) source-only NTL.

isting NTL works, including settings, framework, criteria,
approaches, and applications. We emphasize the robustness
challenges of NTL from three aspects, according to the data
accessibility of different attackers. (ii) Codebase: We pro-
pose NTLBench to benchmark 5 SOTA and open-source
NTL methods, covering standard assessments (5 networks
and 9 datasets) and examining robustness against 15 attacks
from 3 attack settings. (iii) Evaluation and analysis: We use
NTLBench to fairly evaluate 5 SOTA NTL methods, cover-
ing the performance and robustness against diversity attacks.
Our results identify the limitation of existing NTL methods
in dealing with complex datasets and diverse attacks.

2 Preliminary
2.1 Problem Setup
In NTL, we generally consider a source domain and a tar-
get domain, where we want to keep the performance on the
source domain (similar to supervised learning (SL) perfor-
mance) and degrade performance on the target domain, thus
implementing the resistance of generalization from the source
domain to the target domain.

According to whether the target domain is known in the
training stage, NTL could be divided into two settings [Wang
et al., 2022b]: (i) target-specified NTL, which assumes the
target domain is known and aims to restrict the model gener-
alization toward the pre-known target domain, and (ii) source-
only NTL, which assumes the target domain is unknown and

aims to restrict the generalization toward all other domains
except the source domain. The comparison between SL and
the two NTLs is shown in Figure 2.

2.2 General Framework of NTL
We use a classification task for illustration, as most existing
NTL methods aim at image classification tasks. Let Ds =
{(xi, yi)}Ns

i=1 and Dt = {(xi, yi)}Nt
i=1 represent the source

domain and the target domain, respectively. Note that we here
assume Ds and Dt share the same label space, as considered
in [Wang et al., 2022b]. Considering a neural network fθ
with parameters θ, NTL aims to train the fθ to maximize the
risk on the target domain Dt and simultaneously minimize
the risk on the source domain Ds. To reach this goal, a basic
NTL framework is to impose a regularization term on the SL
to maximize the target domain error:

min
θ

{
Lntl :=E(xs,ys)∼Ds

[Lsrc(fθ(xs), ys)]︸ ︷︷ ︸
Tsrc

−λ E(xt,yt)∼Dt
[Ltgt(fθ(xt), yt)]︸ ︷︷ ︸
Ttgt

}
,

(1)

where λ is a trade-off weight, Lsrc and Ltgt represent the loss
function (e.g., Kullback-Leibler divergence) for the source
and target domain, respectively. The learning objective con-
tains two tasks: a source domain learning task Tsrc to maintain
the source domain performance, and a non-transferable task
Ttgt to degrade the target domain performance.

Existing works generally can be seen as variants to Equa-
tion (1), where they may focus on different fields (modal,
task), data assumptions (label space, target supervision,
source data dependent), and use different approaches to con-
duct Ttgt. The statistics of these aspects considered in existing
works are shown in Table 1. More details for each NTL ap-
proach are illustrated in Section 3.

2.3 NTL Criteria
Non-transferability performance. After training, an NTL
model usually be evaluated in two aspects:
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Method Venue
Field ¬ Data ­ Non-Transferable Approach ® Robustness ¯

Modal Task Label Space Target Data Source Data Feature Space Output Space Source Target

NTL [Wang et al., 2022b] ICLR’22 CV CLS Close-Set Labeled Dependent max MMD(Φ(xs), Φ(xt)) max KL(f(xt), yt)

UNTL [Zeng and Lu, 2022] EMNLP’22 NLP CLS Close-Set Unlabeled Dependent max MMD(Φ(xs), Φ(xt))
+ min CE(Ωd(Φ(x)), yd)

—

CUTI-domain [Wang et al., 2023b] CVPR’23 CV CLS Close-Set Labeled Dependent — max KL(f(xt), yt)

DSO [Wang et al., 2023a] ICCV’23 CV CLS Close-Set Unlabeled Dependent — min KL(f(xt), ys + 1)

H-NTL [Hong et al., 2024b] ICLR’24 CV CLS Close-Set Labeled Dependent — min KL(f(xt), fsty(xt))

ArchLock [Zhou et al., 2024] ICLR’24 CV Cross Open-Set Labeled Dependent — max CE(f(xt), yt)

TransNTL [Hong et al., 2024a] CVPR’24 CV CLS Close-Set Labeled Dependent — —

MAP [Peng et al., 2024] CVPR’24 CV CLS Close-Set Unlabeled Free — max KL(f(xt), ŷt)

SOPHON [Deng et al., 2024] IEEE
S&P’24

CV CLS Open-Set Labeled Dependent — min CE(f(xt), 1− yt)
or min KL(f(xt),U)

CV GEN Open-Set Labeled Dependent — min MSE(f(xt), 0)

CUPI-domain [Wang et al., 2024] TPAMI’24 CV CLS Close-Set Labeled Dependent — max KL(f(xt), yt)

NTP [Ding et al., 2024] ECCV’24 CV CLS Close-Set Labeled Dependent min FDA(Φ(xt), yt) max KL(f(xt), yt)

¬ In Field column, “CV”: computer vision. “NLP”: natural language processing. “CLS”: classification task. “GEN”: generation task. “Cross”: cross task.
­ In Data column: “Close-Set”: source and target domain share the same label space. “Open-Set”: source and target domain have different label space. “Labeled”: using labeled

targeted data. “Unlabeled”: do not need labeled targeted data. “Dependent”: using source data. “Free”: without source data.
® In Non-Transferable Approach, we split the model f into a feature extractor Φ and a classifier Ω, i.e., f(x) = Ω(Φ(x)). Ωd means an additional domain classifier. xs and
ys: source-domain data and label. xt and yt: target-domain data and label. yd: domain label. ŷt: target-domain pseudo label predicted by the model. fsty(·): the style mapping
function trained in H-NTL [Hong et al., 2024b]. U : uniform distribution. 0: zero vector. KL(·, ·): Kullback-Leibler divergence. CE(·, ·): Cross-Entropy loss. MMD(·, ·):
Maximum Mean Discrepancy. MSE(·, ·): Mean Squared Error. FDA(·, ·): Fisher Discriminant Analysis (larger value indicates better feature clustering [Shao et al., 2022]).

¯ In Robustness column, (or ) represent the robustness have (or haven’t) been evaluated in their original paper.

Table 1: Summary of NTL methods according to Field (modal, task), Data (label space, target supervision, source data dependent), Non-
Transferable Approach (feature or output space), and Robustness (whether source and target domain robustness have been evaluated).

• Source domain maintenance: Whether the NTL model is
able to achieve normal performance (i.e., the same level as
the SL model) on the source domain.

• Target domain degradation: The extent to which the NTL
model can reduce performance on the target domain.

We review how existing methods achieve both the source do-
main maintenance and the target domain degradation in Sec-
tion 3. Specifically, we focus on the setting that the target
domain is known (i.e., target-specified NTL) in Section 3.1
and unknown (i.e., source-only NTL) in Section 3.2.

Post-training robustness. NTL models are expected to
keep the non-transferability after malicious attacks, while not
all existing works consider or evaluate the comprehensive ro-
bustness of their proposed method. We summarize the ro-
bustness considered in existing works into the following two
parts, based on which domain is accessible to attackers. The
statistics on which aspects have been evaluated for each NTL
method are shown in Table 1 (Robustness column).
• Robustness against source domain attack: It has been veri-

fied that fine-tuning the NTL model with a small amount
of source domain data is a potential risk to break non-
transferability [Hong et al., 2024a]. Thus, the robustness
against source domain attacks measures how well an NTL
model can resist fine-tuning attacks on the source domain.

• Robustness against target domain attack: If malicious at-
tackers have access to a small amount of labeled target do-
main data, they can fine-tune the NTL model to re-activate
target domain performance [Deng et al., 2024]. The ro-
bustness against target domain attack evaluates how well
an NTL model can defend against attack from the target
domain, such as fine-tuning using target domain data.

We review robustness in existing NTL methods in Section 4.

3 Approaches for NTL
Target-specified NTL approaches contain fundamental solu-
tions for NTL, and thus, we first review them in Section 3.1.
Then, in Section 3.2, we review how existing works imple-
ment source-only NTL in the absence of a target domain.

3.1 Target-Specified NTL
Briefly, in target-specified setting, the target domain is known
and we aim to restrict the generalization of a deep learning
model from the source domain toward the certain target do-
main. Existing methods perform target-domain regularization
either on the feature space or the output space, as we summa-
rized in Table 1 (Non-Transferable Approach column). For
more details, we introduce existing strategies as follows:

Output space regularization. Output-space regulariza-
tions directly manipulate the model logits on the target do-
main. More specifically, these operations can be catego-
rized into untargeted regularization and targeted regular-
ization. Untargeted regularization [Wang et al., 2022b;
Wang et al., 2023b; Zhou et al., 2024; Peng et al., 2024]
could usually be formalized as a maximizing optimization
problem, where existing methods implement this regulariza-
tion by maximizing the KL divergence between the model
outputs and the real labels, thus disturbing the model predic-
tions on the target domain. However, such untargeted regular-
ization may face convergence issues [Deng et al., 2024]. Tar-
geted regularization [Wang et al., 2023a; Deng et al., 2024]
found a proxy task on the target domain (i.e., modify the la-
bels), thus converting the maximization objective in untar-
geted regularization to a minimization optimization problem.
DSO [Wang et al., 2023a] transforms the correct labels to
error labels without overlap (e.g., yerr = y + 1) and uses er-
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ror labels as the target-domain supervision. H-NTL [Hong
et al., 2024b] first disentangle the content and style factors
via a variation inference framework [Blei et al., 2017], and
then, they learn the NTL model by fitting the contents of the
source domain and the style of the target domain. Due to the
assumption that the style is approximately to be independent
to the content representations, the non-transferability could
be implemented. SOPHON [Deng et al., 2024] aims at both
image classification and generation tasks. For classification,
they propose to modify the cross-entropy (CE) loss to its in-
verse version (i.e., modify the label y to 1−y) or calculate the
KL divergence between the model outputs and a uniform dis-
tribution. For generation, SOPHON proposes to use a Denial
of Service (DoS) loss, i.e., let the diffusion model fit a zero
matrix at each step. Compared to untargeted regularizations,
targeted regularizations always have better convergence.

Feature space regularization. Feature-space regulariza-
tions reduce the similarity between feature representations
from different domains, thus restricting the transferability
on the feature space. Feature-space regularizations can also
be categorized into untargeted and targeted strategies, de-
pending on whether they directly enlarge the distribution gap
through a maximization objective or convert it to a min-
imization problem by finding a proxy target. For untar-
geted regularization, existing methods [Wang et al., 2022b;
Zeng and Lu, 2022] propose to maximize the maximum mean
discrepancy (MMD) loss between the feature representations
from different domains, where MMD measures the distribu-
tion discrepancy. For targeted regularization, UNTL [Zeng
and Lu, 2022] proposes to build an auxiliary domain clas-
sifier with feature representations from different domains as
inputs. By minimizing the domain-classification loss, the
domain classifier could help the NTL model learn domain-
distinct representations. NTP [Ding et al., 2024] aims to min-
imize the Fisher Discriminant Analysis (FDA) term [Shao et
al., 2022] in the target domain. Specifically, a smaller FDA
value indicates a reduced difference in class means and in-
creased feature variance within each class, which is associ-
ated with poorer target domain performance.

3.2 Source-Only NTL
Under the assumption that only source domain data is avail-
able, existing works take various data augmentation methods
to obtain auxiliary domains from the source domain and see
them as the target domain. Thus, the source-only NTL prob-
lem can be solved by target-specified NTL approaches. These
augmentation methods can be split into the following three
categories:

Adversarial domain generation. Wang et al. [2022b] use
generative adversarial network (GAN) [Mirza and Osindero,
2014; Chen et al., 2016] to synthesize fake images from the
source domain and see them as the target domain. They train
the GAN by controlling the distance and direction of the syn-
thetic distributions to the real source domain, thus enhancing
the diversity of synthetic samples and improving the degrada-
tion of any distribution with shifts to the real source domain.
CUTI-domain [Wang et al., 2023b] and CUPI-domain [Wang
et al., 2024] add Gaussian noise to the GAN-based adap-

tive instance normalization (AdaIN) [Huang and Belongie,
2017] to obtain synthetic samples with random styles. They
use both the synthetic samples from AdaIN and Wang et al.
[2022b] as the target domain. MAP [Peng et al., 2024] also
follows the GAN framework. They additionally add a mutual
information (MI) minimization term to enhance the variation
between synthetic samples and the real source domain sam-
ples, ensuring more distinct style features.

Strong image augmentation. H-NTL [Hong et al., 2024b]
conducts strong image augmentation [Cubuk et al., 2020] on
real source domain data. Strong image augmentations (e.g.,
blurring, sharpness, solarize) do not influence the contents
but significantly change the image styles, thus imposing in-
terventions [Von Kügelgen et al., 2021] on the style factors in
images. Then, all augmented images are treated as the target
domain for training source-only NTL.

Perturbation-based method. DSO [Wang et al., 2023a]
proposes to minimize the worst-case risk on the uncertainty
set [Sagawa et al., 2019] over the source domain distribution,
where the risk is empirically calculated through a classifica-
tion loss between the model predictions and the error label.

4 Post-Training Robustness of NTL
NTL models are expected to keep the non-transferability after
malicious attacks. However, not all existing works evaluate
the robustness of their method, as we listed in Table 1 (the
last column). In this section, we review the robustness of the
source and target domains as considered in previous works.

Robustness against source domain attack. Earlier evalu-
ations in [Wang et al., 2022b; Wang et al., 2023b] show that
NTL models are still resistant to SOTA watermark removal
attacks when up to 30% source domain data are available
for attack. Hong et al. [2024a] further investigate the ro-
bustness of NTL and propose TransNTL, demonstrating that
non-transferability can be destroyed using less than 10% of
the source domain data. Specifically, they find NTL [Wang
et al., 2022b] and CUTI-domain [Wang et al., 2023b] in-
evitably result in significant generalization impairments on
slightly perturbed source domains. Accordingly, they pro-
pose TransNTL to fine-tune NTL models under an impair-
ment repair self-distillation framework, where the source-
domain predictions are used to teach the model itself how
to predict on perturbed source domains. As a result, the
fine-tuned model is just like a SL model without the non-
transferability. They also propose a defense method to fix
this loophole by pre-repairing the generalization impairments
in perturbed source domains. Specifically, they add a defense
regularization term on existing NTL and CUT-domain train-
ing. Minimizing the defense regularization term enables NTL
models to exhibit source-domain consistent behaviors on per-
turbed source-domain data, thus resisting TransNTL attack.

Robustness against target domain attack. If malicious at-
tackers have access to some labeled target domain data, a
more direct strategy to break the non-transferability is fine-
tuning NTL models using target domain data. However, most
existing methods [Wang et al., 2022b; Wang et al., 2023b;
Zeng and Lu, 2022; Wang et al., 2023a; Hong et al., 2024b;
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Peng et al., 2024] ignore the robustness of their methods
against target-domain fine-tuning attacks. SOPHON [Deng et
al., 2024] formally proposes the problem of non-fine-tunable
learning, which aims at ensuring the target-domain perfor-
mance could still be poor after being fine-tuned using target
domain data. Their main idea is to involve the fine-tuning
process in training stage. Specifically, they leverage model
agnostic meta-learning (MAML) [Finn et al., 2017] to sim-
ulate multiple-step fine-tuning for the current model on the
target domain. Then, they add per-step risk of the target do-
main as the total target-domain risk. By maximizing the total
target-domain risk, the robustness against target-domain at-
tacks can be enhanced. ArchLock [Zhou et al., 2024] aims
to find the non-transferable network architectures [Liu et al.,
2018], where they implicitly consider the robustness on the
target domain. Specifically, they maximize the minimum risk
of an architecture on the target domain in searching the non-
transferable architectures. The minimum risk is found by
searching the optimal parameters of the architecture with the
minimum task loss on the target domain.

However, labeled target domain data being available to ma-
licious attackers is a strong assumption. A more realistic sce-
nario is that attackers only has access to unlabeled target do-
main data. Whether NTL can resist attacks driven by unla-
beled target domain data has not yet been studied.

5 Benchmarking NTL
The post-training robustness has not been well-evaluated in
NTL, which motivates us to build a comprehensive bench-
mark. In this section, we first demonstrate the framework of
our NTLBench (Section 5.1). Then, we present main results
by conducting our NTLBench (Section 5.2), including pre-
trained performance and robustness against different attacks.

5.1 NTLBench
We propose the first NTL benchmark (NTLBench), which
contains a standard and unified training and evaluation pro-
cess. NTLBench supports 5 SOTA NTL methods, 9 datasets
(more than 116 domain pairs), 5 network architectures fami-
lies, and 15 post-training attacks from 3 attack settings, pro-
viding more than 40,000 experimental configurations.
Datasets. Our NTLBench is compatible with: Digits (5
domains) [Deng, 2012; Hull, 1994; Netzer et al., 2011;
Ganin et al., 2016; Roy et al., 2018], RotatedMNIST (3
domains) [Ghifary et al., 2015], CIFAR and STL (2 do-
mains) [Krizhevsky and others, 2009; Coates et al., 2011],
VisDA (2 domains) [Peng et al., 2017], Office-Home (4
domains) [Venkateswara et al., 2017], DomainNet (6 do-
mains) [Peng et al., 2019], VLCS (4 domains) [Fang et
al., 2013], PCAS (4 domains) [Li et al., 2017], and Ter-
raInc (5 domains) [Beery et al., 2018]. Different domains in
any dataset share the same label space, but have distribution
shifts, thus being suitable for evaluating NTL methods.
NTL baselines. NTLBench involves all open-source NTL
methods: NTL [Wang et al., 2022b], CUTI-domain [Wang et
al., 2023b], H-NTL [Hong et al., 2024b], SOPHON [Deng
et al., 2024], CUPI-domain [Wang et al., 2024]. Besides, we
also add a vanilla supervised learning (SL) as a reference.

Network architecture. The proposed NTLBench is com-
patible with multiple network architectures, including but
not limited to: VGG [Simonyan and Zisserman, 2015],
ResNet [He et al., 2016], WideResNet [Zagoruyko, 2016],
ViT [Dosovitskiy et al., 2021], SwinT [Liu et al., 2021b].

Threat I: source domain fine-tuning (SourceFT). Attack-
ing goal: SourceFT tries to destroy the non-transferability by
fine-tuning the NTL model using a small set of source domain
data. Attacking method: NTLBench involves 5 methods, in-
cluding four basic fine-tuning strategies1: initFC-all, initFC-
FC, direct-FC, direct-all [Deng et al., 2024] and the special
designed attack for NTL: TransNTL [Hong et al., 2024a].

Threat II: target domain fine-tuning (TargetFT). Attack-
ing goal: TargetFT tries to directly use labeled target domain
data to fine-tune the NTL model, thus recovering target do-
main performance. Attacking method: NTLBench use 4 ba-
sic fine-tuning strategies1 leveraged in [Deng et al., 2024] as
attack methods: initFC-all, initFC-FC, direct-FC, direct-all.

Threat III: source-free domain adaptation (SFDA). At-
tacking goal: We introduce SFDA to test whether using un-
labeled target domain data poses a threat to NTL. Attack-
ing method: NTLBench involves 6 SOTA SFDA meth-
ods: SHOT [Liang et al., 2020], CoWA [Lee et al., 2022],
NRC [Yang et al., 2021], PLUE [Litrico et al., 2023], Ada-
Contrast [Chen et al., 2022], and DIFO [Tang et al., 2024].

Evaluation metric. For source domain, we use source do-
main accuracy (SA) to evaluate the performance. Higher SA
means lower influence of non-transferability to the source do-
main utility. For target domain, we use target domain accu-
racy (TA) to evaluate the performance. Lower TA means bet-
ter performance of non-transferability. Besides, we calculate
the overall performance (denoted as OA) of an NTL method
as: OA = (SA + (100% − TA))/2, with higher OA repre-
senting better overall performance of an NTL method. These
evaluation metrics are applicable for both non-transferability
performance and robustness against different attacks.

5.2 Main Results and Analysis
Due to the limited space, we present main results obtained
from our NTLBench. We first show the key implementation
details, and then we present and analyze our results.

Implementation details. Briefly, in pre-training stage, we
sequentially pair i-th and (i+1)-th domains within a dataset
for training. Each domain is randomly split into 8:1:1 for
training, validation, and testing. The results for each dataset
are averaged across domain pairs. NTL methods and the ref-
erence SL method are pretrained by up to 50 epochs. We
search suitable hyper-parameters for each method by setting
5 values around their original value and choose the best value
according to the best OA on validation set. All the batch size,
learning rate, and optimizer are follow their original imple-
mentations. Following the original NTL paper [Wang et al.,
2022b], we use VGG-13 without batch-normalization. All in-
put images are resize to 64×64. In attack stage, we use 10%

1initFC: re-initialize the last full-connect (FC) layer. direct: no
re-initialize. all: fine-tune the whole model. FC: fine-tune last FC.
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Digits RMNIST CIFAR & STL VisDA Office-Home DomainNet VLCS PCAS TerraInc Avg.

SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓

SL 97.7 56.0 99.2 62.4 88.2 65.7 86.8 37.7 66.4 36.9 45.6 9.9 79.9 56.9 89.5 47.3 93.6 14.9 83.0 43.0

NTL
[Wang et al., 2022b]

95.6
(-2.1)

12.2
(-43.8)

98.7
(-0.5)

12.3
(-50.1)

83.9
(-4.4)

9.9
(-55.8)

82.0
(-4.8)

10.9
(-26.8)

64.8
(-1.6)

32.4
(-4.5)

7.6
(-38.0)

1.4
(-8.6)

78.0
(-1.9)

27.1
(-29.8)

85.8
(-3.7)

18.0
(-29.2)

90.0
(-3.6)

8.8
(-6.1)

76.3
(-6.7)

14.8
(-28.3)

CUTI-domain
[Wang et al., 2023b]

97.0
(-0.8)

9.5
(-46.5)

99.2
(-0.1)

15.5
(-46.9)

85.1
(-3.2)

10.7
(-55.0)

85.3
(-1.5)

8.9
(-28.8)

56.7
(-9.7)

17.8
(-19.1)

14.0
(-31.7)

2.0
(-7.9)

78.3
(-1.6)

26.7
(-30.1)

88.4
(-1.1)

18.3
(-28.9)

87.9
(-5.7)

0.8
(-14.1)

76.9
(-6.1)

12.2
(-30.8)

H-NTL
[Hong et al., 2024b]

97.5
(-0.2)

9.6
(-46.4)

99.0
(-0.2)

10.8
(-51.5)

87.2
(-1.0)

9.9
(-55.8)

86.5
(-0.3)

8.6
(-29.0)

51.1
(-15.2)

17.0
(-19.8)

33.3
(-12.3)

2.1
(-7.8)

79.2
(-0.8)

42.7
(-14.2)

89.1
(-0.3)

22.1
(-25.1)

88.4
(-5.2)

14.6
(-0.2)

79.0
(-4.0)

15.3
(-27.8)

SOPHON
[Deng et al., 2024]

95.2
(-2.5)

9.9
(-46.1)

96.6
(-2.6)

38.8
(-23.6)

69.5
(-18.7)

24.8
(-40.9)

77.3
(-9.5)

10.9
(-26.8)

45.9
(-20.4)

17.6
(-19.3)

30.1
(-15.6)

2.5
(-7.4)

79.4
(-0.6)

29.5
(-27.4)

86.7
(-2.8)

21.6
(-25.7)

88.8
(-4.8)

7.1
(-7.7)

74.4
(-8.6)

18.1
(-25.0)

CUPI-domain
[Wang et al., 2024]

96.7
(-1.0)

8.8
(-47.2)

98.8
(-0.4)

21.0
(-41.3)

86.0
(-2.3)

11.3
(-54.4)

84.6
(-2.2)

8.2
(-29.5)

11.6
(-54.7)

2.3
(-34.6)

0.8
(-44.9)

0.3
(-9.7)

77.5
(-2.5)

29.5
(-27.4)

87.8
(-1.7)

11.5
(-35.8)

82.4
(-11.1)

1.3
(-13.6)

69.6
(-13.4)

10.4
(-32.6)

Table 2: Comparison of SL and 5 NTL methods on multiple datasets. We report the source-domain accuracy (SA) (%) in blue and target-
domain accuracy (TA) (%) in red. The best results of overall performance (OA) are highlighted in blue background. The accuracy drop
compared to the pre-trained model is shown in brackets. The average performance of 9 datasets are shown in the last column (Avg.).

amount of the training set to perform attack. All attack results
we reported are run on CIFAR & STL. Attack training is up
to 50 epochs. We run all experiments on RTX 4090 (24G).
Non-transferability performance. The non-transferability
performance are shown in Table 2, where we compare 5 NTL
methods and SL on 9 datasets. From the results, all NTL
methods generally effectively degrade source-to-target gen-
eralization, leading to a significant drop in TA compared to
SL. However, in more complex datasets such as Office-Home
and DomainNet, existing NTL methods fail to achieve a sat-
isfactory balance between maintaining SA and degrading TA,
highlighting their limitations. From the Avg. column, CUTI-
domain reaches the overall best performance.
Post-training robustness. For SourceFT attack (Table 3),
fine-tuning each NTL model by using basic fine-tuning strate-
gies on 10% source domain data cannot directly recover the
source-to-target generalization. However, all NTL methods
are fragile when facing the TransNTL attack. For TargetFT
attack (Table 4), all NTL methods cannot fully resist super-
vised fine-tuning attack by using target domain data. In par-
ticular, fine-tuning all parameters usually results in better at-
tack effectiveness. For SFDA (Table 5), although the target
domain data are unlabeled, advanced source-free unsuper-
vised domain adaptation, leveraging self-supervised strate-
gies, can still partially recover target domain performance.
All these results verify the fragility of existing NTL methods.

6 Applications of NTL
NTL supports different applications, depending on which
data are used as source and target domain. We introduce two
applications in model intellectual property (IP) protection and
then the application of harmful fine-tuning defense.
Ownership verification (OV). OV is a passive IP protec-
tion manner, which aims to verify the ownership of a deep
learning model [Lederer et al., 2023]. NTL solves owner-
ship verification by triggering misclassification on data with
pre-defined triggers [Wang et al., 2022b]. For example, when
training, we add a shallow trigger (only known by the model
owner) on the original dataset data and see them as the tar-
get domain, while the original data without the trigger is re-
garded as the source domain. Then, target-specified NTL is

NTL CUTI H-NTL SOPHON CUPI

SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓

Pre-train 83.9 9.9 85.1 10.6 87.2 9.9 69.5 24.8 86.0 11.3

initFC-all 84.0
(+0.2)

9.8
(-0.1)

84.2
(-0.9)

10.6
(+0.0)

87.8
(+0.6)

16.2
(+6.3)

82.2
(+12.7)

38.1
(+13.3)

85.3
(-0.7)

11.4
(+0.1)

initFC-FC 84.2
(+0.3)

10.0
(+0.1)

85.4
(+0.3)

10.6
(+0.0)

87.2
(-0.1)

10.2
(+0.3)

71.9
(+2.4)

23.3
(-1.6)

85.9
(-0.1)

11.3
(+0.0)

direct-FC 84.0
(+0.2)

9.9
(+0.0)

85.2
(+0.2)

10.6
(+0.0)

87.3
(+0.1)

9.9
(+0.0)

74.3
(+4.8)

23.8
(-1.1)

86.1
(+0.1)

11.3
(+0.0)

direct-all 84.7
(+0.8)

9.8
(-0.1)

85.3
(+0.3)

10.9
(+0.3)

88.0
(+0.8)

10.1
(+0.2)

83.4
(+13.9)

32.2
(+7.4)

85.5
(-0.5)

11.3
(+0.0)

TransNTL 81.7
(-2.2)

44.3
(+34.4)

81.3
(-3.8)

61.0
(+50.3)

86.3
(-1.0)

63.7
(+53.8)

83.8
(+14.3)

60.1
(+35.3)

83.1
(-2.9)

60.6
(+49.3)

Table 3: NTL robustness against source domain fine-tuning (Source-
FT). We show source-domain accuracy (SA) (%) and target-domain
accuracy (TA) (%). The most serious threat (worst OA) to each NTL
is marked as red. Accuracy drop from the pre-trained model is in (·).

NTL CUTI H-NTL SOPHON CUPI

SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓

Pre-train 83.9 9.9 85.1 10.7 87.2 9.9 69.5 24.8 86.0 11.3

initFC-all 23.9
(-60.0)

37.8
(+27.9)

13.3
(-71.8)

15.9
(+5.3)

19.0
(-68.3)

10.4
(+0.5)

59.0
(-10.5)

68.5
(+43.7)

41.2
(-44.8)

53.1
(+41.8)

initFC-FC 33.9
(-50.0)

9.6
(-0.4)

30.2
(-54.9)

9.7
(-1.0)

19.1
(-68.1)

9.7
(-0.2)

21.6
(-48.0)

16.8
(-8.1)

21.8
(-64.2)

12.1
(+0.8)

direct-FC 64.2
(-19.7)

10.2
(+0.3)

38.0
(-47.1)

10.6
(-0.1)

87.1
(-0.1)

10.0
(+0.1)

70.5
(+1.0)

24.5
(-0.4)

78.6
(-7.4)

11.0
(-0.4)

direct-all 13.9
(-70.0)

17.6
(+7.7)

10.1
(-75.0)

8.8
(-1.9)

84.7
(-2.5)

53.3
(+43.4)

68.0
(-1.6)

72.9
(+48.1)

51.9
(-34.1)

58.4
(+47.1)

Table 4: NTL robustness against target domain fine-tuning (Target-
FT). We report source-domain accuracy (SA) (%) and target-domain
accuracy (TA) (%). The most serious threat (best TA) to each NTL
is marked as red. Accuracy drop from the pre-trained model is in (·).

used to train a model. Therefore, the ownership can be veri-
fied via observing the performance difference of a model on
the original data and the data with the pre-defined trigger.
For SL model, the shallow trigger has minor influence on the
model performance, and thus, the model shows similar per-
formance on original data and data with triggers. In contrast,
the NTL model specific to this pre-defined trigger has high
performance on the original data but random-guess-like per-
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NTL CUTI H-NTL SOPHON CUPI

SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓ SA ↑ TA ↓

Pre-train 83.9 9.9 85.1 10.7 87.2 9.9 69.5 24.8 85.5 11.3

SHOT 63.0
(-20.9)

29.6
(+19.7)

35.3
(-49.8)

34.7
(+24.0)

86.6
(-0.6)

41.9
(+32.0)

64.8
(-4.8)

56.7
(+31.9)

85.8
(+0.3)

11.3
(+0.0)

CoWA 81.1
(-2.8)

12.4
(+2.5)

84.0
(-1.1)

12.7
(+2.1)

87.2
(+0.0)

10.1
(+0.2)

69.2
(-0.4)

26.1
(+1.3)

85.7
(+0.2)

11.3
(+0.0)

NRC 57.7
(-26.2)

19.8
(+9.9)

39.4
(-45.7)

35.5
(+24.8)

87.3
(+0.1)

12.1
(+2.2)

66.6
(-3.0)

55.6
(+30.8)

86.0
(+0.5)

12.2
(+0.9)

PLUE 71.5
(-12.4)

52.8
(+42.9)

76.1
(-9.0)

63.8
(+53.1)

85.5
(-1.8)

20.1
(+10.2)

75.5
(+6.0)

41.1
(+16.3)

82.4
(-3.2)

43.6
(+32.3)

Ada-
Contrast

9.4
(-74.5)

9.8
(-0.1)

9.3
(-75.8)

10.0
(-0.7)

86.3
(-1.0)

12.1
(+2.2)

64.5
(-5.1)

33.4
(+8.6)

47.2
(-38.3)

11.3
(+0.0)

DIFO 9.2
(-74.7)

9.2
(-0.7)

9.2
(-75.9)

9.2
(-1.5)

85.0
(-2.2)

42.1
(+32.2)

56.3
(-13.2)

51.3
(+26.5)

48.4
(-37.1)

10.4
(-1.0)

Table 5: NTL robustness against source-free domain adaptation
(SFDA). We show source-domain accuracy (SA) (%), target-domain
accuracy (TA) (%), and accuracy drop from the pre-trained model is
in (·). The most serious threat (highest TA) to each NTL is in red.

formance on data with the trigger. This provides evidence for
verifying the model’s ownership.

Applicability authorization (AA). AA is an active IP pro-
tection approach that ensures models can only be effective
on authorized data [Wang et al., 2022b; Xu et al., 2024;
Si et al., 2024]. NTL solves AA by degrading the model
generalization outside the authorized domain. Basic solution
is to add a pre-defined trigger on original data (seen as source
domain), and the original data without the correct triggers is
regarded as the target domain. After training by NTL, the
model will only perform well on authorized data (i.e., the data
with the trigger). Any unauthorized data will be randomly
predicted by the NTL model. Thus, AA can be achieved.

Safety alignment and harmful fine-tuning defense. Fine-
tuning large language models (LLMs) with user’s own data
for downstream tasks has recently become a popular online
service [Huang et al., 2024; OpenAI, 2024]. However, this
practice raises concerns about compromising the safety align-
ment of LLMs [Qi et al., 2023; Yang et al., 2023], as harm-
ful data may be present in users’ datasets, whether inten-
tionally or unintentionally. To address the risks of harmful
fine-tuning, various defensive solutions [Huang et al., 2025;
Rosati et al., 2024] have been proposed to ensure that fine-
tuned LLMs can effectively refuse harmful queries. Specif-
ically, these defense methods aim to limit the transferability
of LLMs from harmless queries to harmful ones, which tech-
niques are variants of the objectives of NTL. Actually, all ex-
isting NTL approaches can be applied to this task by regard-
ing the alignment data as the source domain and the harmful
data as the target domain. Then, target-specified NTL can be
conducted to defend against harmful fine-tuning attacks.

7 Related Works
Machine unlearning (MU). Both MU [Xu et al., 2023]
and NTL serve purposes in model capacity control, albeit
with differences in their applications and methodologies. MU
primarily aims to forget specific data points from training
datasets [Xu et al., 2023] (the model behaviors are consis-

tent to never training on the selected data points), while NTL
aims at resist the generalization from the training domain to a
specific target domain or task. Particularly, MU and NTL
share some overlapping applications such as safety align-
ment of LLMs. However, MU more focus on eliminating
harmful data influence (e.g., sensitive or illegal information)
and the associated model capabilities [Barez et al., 2025;
Maini et al., 2024], while NTL more focus on preventing
harmful and unauthorized fine-tuning [Huang et al., 2024].
Transfer learning (TL). TL [Zhuang et al., 2020] aims at
improving model performance on a different but related do-
main or task. It can be categorized into several subfields,
such as domain adaptation (DA) [Venkateswara et al., 2017;
Liang et al., 2020] and domain generalization (DG) [Wang et
al., 2022a]. TL is closely related to NTL, but the overall ob-
jectives is opposite to NTL. In general, TL techniques gener-
ally can be used in a reversed way to achieve NTL. Moreover,
TL can also be seen as post-training attacks against NTL.

8 Future Directions and Challenges
Improving robustness. We highlight the shortcoming of
NTL on post-training robustness. Existing defense attempts
(e.g., SOPHON [Deng et al., 2024]) require extensive re-
sources, such as an extremely high number of training epochs,
yet they may still fail to remain robust against unseen fine-
tuning. This raises an open challenge: how to effectively en-
hance the robustness of NTL against various attacks.
Identifying more threat. There are other potential attacks
that could pose risks to NTL under weaker assumptions. For
example, if an attacker is unable to re-train the NTL model,
can they still bypass the non-transferability constraints? In
addition, attackers may have access to a large amount of data
from the wild, distinct from both the source and target do-
mains. Can they leverage these unseen domain data to break
non-transferability? We believe identifying these threats can
further promote the robustness of NTL.
Cross-modal non-transferability. Existing NTL works
primarily focus on single modality, while the cross-modal
non-transferability remains an important yet underexplored
challenge. A related finding in large models suggests that the
safety alignment of LLMs can be compromised through vi-
sual instruction tuning [Zong et al., 2024; Liu et al., 2024].
However, a deep investigation of robust cross-modal non-
transferability mechanisms remains lacking.

9 Conclusion
In this paper, we conduct the first systematic review of NTL
by summarizing existing approaches and highlighting the of-
ten overlooked robustness challenges. In addition, we in-
troduce the first benchmark, NTLBench, which systemat-
ically evaluates five state-of-the-art NTL methods through
comprehensive assessments of pretraining performance and
robustness against 15 attacks across multiple datasets and
network architectures. Main results from NTLBench ver-
ify the limitation of existing NTLs on robustness. We believe
NTLBench can drive the development of robust NTL and fa-
cilitate their applications in practical scenarios.
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[Von Kügelgen et al., 2021] Julius Von Kügelgen, Yash
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