Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Learning Optimal Oblique Decision Trees with (Max)SAT

Florent Avellaneda

Université du Québec a Montréal (UQAM), Montréal, Canada
avellaneda.florent@uqgam.ca

Abstract

Decision trees are widely used in machine learning
for their interpretability and effectiveness in clas-
sification tasks. Traditional axis-parallel decision
trees partition data using single-feature thresholds
at each node, but they often struggle to represent
complex, non-axis-aligned decision boundaries ef-
ficiently. This limitation can result in unnecessar-
ily large and less interpretable trees. Oblique de-
cision trees address this limitation by using lin-
ear combinations of features at each node, allow-
ing a more natural representation of complex de-
cision boundaries while maintaining interpretabil-
ity through sparse linear combinations. How-
ever, learning optimal oblique decision trees poses
a significant computational challenge, as existing
methods predominantly rely on suboptimal greedy
heuristics. In this paper, we propose a novel ap-
proach to learning globally optimal oblique de-
cision trees by reformulating the problem as a
(Max)SAT instance. By leveraging state-of-the-art
(Max)SAT solvers, our method efficiently explores
the solution space to identify optimal trees. Exper-
iments on benchmark datasets demonstrate that our
approach generates optimal oblique decision trees
within reasonable computational time for small to
medium-sized datasets.

1 Introduction

Decision trees are one of the most widely used models in
machine learning, valued for their interpretability, simplicity,
and competitive performance on various classification tasks
[Breiman et al., 1984; Quinlan, 1986]. A decision tree parti-
tions the input space into regions by iteratively applying sim-
ple rules. Each leaf corresponds to a class, and the path from
the root to a leaf represents a conjunction of conditions that
leads to that classification.

Traditional decision tree learning methods, such as ID3
[Quinlan, 1986], C4.5 [Quinlan, 1993], and CART [Breiman
et al., 1984], employ an axis-parallel splitting approach,
where each decision node tests a single feature against a
threshold, resulting in splits that are perpendicular to one of
the feature axes. In these methods, each internal node splits

the data based on a single feature and a threshold. While ef-
fective and computationally efficient, axis-parallel trees have
inherent limitations. Specifically, when the decision bound-
ary between classes is not aligned with the feature axes, these
trees may require numerous splits to approximate the bound-
ary, resulting in larger, less interpretable, and potentially less
accurate models.

Oblique decision trees overcome this limitation by allow-
ing internal nodes to split the data using a linear combina-
tion of features rather than relying on single-feature splits
[Heath ef al., 1993]. This flexibility enables the trees to
naturally capture non-axis-parallel decision boundaries, of-
ten leading to smaller, more accurate models. Early work on
oblique decision trees, such as the OC1 algorithm [Murthy et
al., 1994], employed randomized searches to identify hyper-
planes. While these approaches offered improvements over
axis-parallel trees, they relied on greedy heuristics, lacking
guarantees of global optimality.

Recent advances in optimal decision tree learning have high-
lighted the potential of combinatorial optimization tech-
niques. Mixed-integer linear programming [Bertsimas and
Dunn, 2017; Verwer and Zhang, 2019], SAT solving [Avel-
laneda, 2020a; Verwer and Zhang, 2019; Shati et al.,
2021; Narodytska er al., 2018], and dynamic programming
[Demirovié er al., 2022; Aglin er al., 2020; Nijssen and
Fromont, 2007] have been successfully applied to derive
provably optimal axis-parallel trees. However, extending
these methods to oblique decision trees presents unique chal-
lenges due to the continuous nature of hyperplane parameters
and the combinatorial complexity of optimizing tree struc-
tures. Although some progress has been made using linear
programming for this task [Zhu et al., 2020; Bertsimas and
Dunn, 2017], to the best of our knowledge, the potential of
(Max)SAT encoding remains unexplored.

In this paper, we introduce a novel approach for learning op-
timal oblique decision trees using (Max)SAT solvers. Our
method encodes the learning problem as a (Max)SAT in-
stance, enabling modern solvers to find globally optimal so-
lutions. This approach combines guaranteed optimality with
practical efficiency for reasonably sized datasets.

The paper is structured as follows. Section 2 introduces back-
ground on oblique decision trees. Section 3 describes our en-
coding and solving approach. Section 4 reports experimental
results. Finally, Section 5 concludes the paper.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

2 Preliminaries

Let E = {eo,...,en—1} be a set of n examples. Each exam-
ple e; € R™ is a vector representing the values of m features
F ={fo,..., fm—1}. For an example e € E and a feature
f € F, we use the notation e[f] to represent the value of
feature f for the example e. The label class for each exam-
ple e is given by the true label function v : E —), where
Y ={0,...,c— 1} is the set of possible class labels.

Definition 1 (Binary Tree Structure). A binary tree structure
T is a tuple (N, N1,8,p,1,7) where:

* Np and Ny are disjoint finite sets of branching nodes
and leaf nodes, respectively.

e § € N UN7 is the root node.

e p: (NgUNL)\ {6} — Np is the parent function,
mapping each non-root node to its parent.

o [: Ng — N UN7 is the left child function.
e r: Ng — N UNT is the right child function.
Additionally, the following conditions must hold:

* (Parent-Child Consistency) For every branching node
n € Np, we have p(l(n)) = n and p(r(n)) = n.

* (Tree Structure) Every node n € Ng UN7, is reachable
from the root through a unique path. Formally, there
exists a unique sequence of nodes ng, . ..,ny such that
ng =9, np =n, andforalli € {0,...,k =1}, nj41 =
l(n;) or nig1 = r(n;).

We define the depth of a binary tree structure 7 as the length
of the longest path from the root to a leaf node.

Definition 2 (Oblique Decision Tree). An oblique decision
tree D is a tuple D = (T, 0,), where:

o T = (N, Ni,0,p,1,7) is a binary tree structure.

e 0: Ng — (R™ x R) is a function that assigns to each
branching node n € N'g a decision rule, represented by
the tuple 0(n) = (wp,t,). Here, w, € R™ is a weight
vector and t,, € R is a threshold.

* \: Ny — Yis afunction that assigns to each leaf node
n € Ny, a prediction \(n) €).

To classify an example e using an oblique decision tree D, we
denote the resulting classification as D(e). This classification
is determined by the function cl(D, 4, €), where 0 represents
the root node of the tree. The function cl is defined recur-
sively as follows:

ifn e Ny,
ifw, -e>t,,
e) otherwise.

cd(D,l(n),e)

An)
I(n),
c(D,r(n),

cd(D,n,e) = {

The accuracy of an oblique decision tree D on a set of exam-
ples E with true labels + is formally defined as:

Accuracy(D. E.7) =t 3 LD(e) = (e)

ecE

Definition 3 (Optimal Oblique Decision Tree). Given a max-
imum depth d € N, a set of examples F, and a true label func-
tion y, an oblique decision tree D* is optimal with respect to
depth d if the depth of D* is equal or less than d and for
any other oblique decision tree D' such that depth(D') < p,
Accuracy(D', E,~) < Accuracy(D*, E,~)

In this paper, we focus on sparse oblique decision trees where
each decision rule 8(n) = (w,, t,) is constrained such that
the weight vector w,, contains at most two non-zero compo-
nents.

3 Constraint-Based Learning of Decision
Trees

Given a set of examples E and a true label function «y :
E —), our objective is to learn an optimal oblique decision
tree D* that minimizes classification error while respecting
a maximum depth constraint d. Building on the SAT encod-
ing for non-binary features proposed in [Shati et al., 2021],
we introduce a novel encoding for learning optimal oblique
decision trees.

To formalize the problem, we define the following set of
Boolean variables:

* Scn: True if the example e is directed towards the left
child, if it passes through branching node n.

* Z n: True if the example e terminates at leaf node n.
* (¢t True if the leaf node n is assigned to the class c.

* A, t,.1,¢ True if the feature f; and f> are selected for
the split at branching node n.

For each each n € Np and every f1, fa, f1, f4 € F such that
(f1, f2) # (f1, f5) , we add the clause:

A V2 An g (1)

These clauses ensure that each branching node selects at most
one pair of features for splitting.
For each n € N, we add the clause:

\V Ausp)

fi,f2€F

These clauses ensure that each branching node selects at least
one pair of features for splitting.
For eachn € N, each e € F and each n’ € A;(n), we add
the clause:

_‘Ze;n \ Se,n’ (3)

With A;(n) the set of ancestors of the leaf node n such that n
is a descendant of their left branch.
For eachn € N, eache € F and each n’ € A,.(n), we add
the clause:

_‘Ze,n \ _‘Se,n’ “4)

With A,.(n) the set of ancestors of the leaf node n such that
n is a descendant of their right branch.
For each n € N, and each e € F, we add the clause:

Zen V' \/ —Sem v/

n’€A;(n) n’'€A,(n)

Se,n’ (5)

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

The clauses (3) and (4) ensure that if an example e reaches
a leaf node n, it must have followed the correct path from
the root to n, as dictated by the variables .S. Conversely, the
clauses (5) ensure that if an example e does not terminate at a
leaf node n, then at least one of its ancestor nodes must have
redirected e to a different path.

For every c1,co € Y and each n € N7, we add the clause:

_‘Cn,cl \ _‘Cn,cQ (6)

These clauses ensure that each leaf node is assigned to a sin-
gle class.
For each example e € E and eachn € N, we add the clause:

jZe,n \ C’n,,'y(e) @)

These clauses ensure that if an example e reaches a leaf node
n, the leaf node n must be assigned the correct class as spec-
ified by the true label function ~.

Note that if clauses (7) are treated as hard clauses, then we
construct a SAT formula that seeks a decision tree fully con-
sistent with the dataset, i.e., achieving 100% accuracy. If such
a tree does not exist and we aim to find the tree that minimizes
classification errors, we can switch to MaxSAT by treating
clauses (7) as soft clauses. The same applies to the SMT set-
ting: we can use MaxSMT to minimize classification errors
when no perfectly consistent tree exists.

At this point, we need to add constraints to S and A to en-
sure that, given the features present at each branching node,
the partition represented by S can be achieved via linear sep-
aration using only two features. We propose two solutions
to implement these constraints. The first approach utilizes an
(Max)SMT solver to encode them directly, while the second
involves encoding them natively in (Max)SAT.

3.1 Linear separation with (Max)SMT

Satisfiability Modulo Theories (SMT) is an extension of SAT
that allows for solving satisfiability problems with constraints
from specific theories, such as linear arithmetic. By employ-
ing an SMT solver, we can encode the linear separation con-
straints directly within the theory of linear arithmetic, which
simplifies the process and leverages the solver’s built-in ca-
pabilities for handling such theories. Its extension, MaxSMT,
further allows for the inclusion of soft clauses.

To encode the possible splits at each branching node, we in-
troduce real variables x,, 1, T, 2, and x,, 3 for each branching
node n € Np. These variables represent the coefficients of
the linear inequality that defines the split at node n.
Specifically, if the variable A, r, s, is true, indicating that
features f1 and f> are used at node n, then the split at node n
is defined by the linear inequality:

xn,lFfl N xn’gFfz + Tn,3 Z 0.

Here, Fy, and FY, represent the values of features f; and fo,
respectively. This linear equation determines how data points
are partitioned at the branching node based on the selected
features and the learned coefficients.

Thus, for each branching node n € A/, each pair of features
f1, fo € F, and each example e € E, we add the following
constraints:

A g2V SenV(Tn1e[fi] + Tnoe[fo] + 20z > 0) (8)

ﬁ147l,f1,fz \ Se,n \ (xn,le[fl} + xn,Ze[fQ] + Tn,3 < 0) (9)

These constraints ensure that if the pair of features f; and fo
is selected for the split at branching node n, then example e
is directed to the left child if the linear inequality is satisfied,
and to the right child otherwise.

3.2 Linear Separation with (Max)SAT

At each branching node n, if A, y, r, is true, the split at this
node, represented by S, ,,, must correspond to a linear sepa-
ration of the examples based on features f; and f5. This re-
duces to finding a linear separator in a 2D plane, where each
example is a point with coordinates given by its values of f;
and f. A naive approach would consider all possible linear
cuts and add constraints to ensure each example is directed to
the correct child node based on the chosen cut. However, this
method is inefficient due to the excessive number of variables
and constraints required.

To address this, we propose an alternative approach that re-
duces the number of variables and constraints needed to en-
code the problem. We introduce two fictitious points at in-
finity in the projective plane, defined as P4 = (1,1,0) and
Pg = (—1,—1,0). In the projective plane, a point is rep-
resented by a triplet (z,y, z). When z # 0, the point corre-
sponds to the Euclidean coordinates (z/z,y/z). When z = 0,
the point is considered to lie “at infinity” in a specific di-
rection. Given three points p;, pe and p3, we denote by
triangle(p1, p2, p3) the convex hull of these three points.
Then, our method relies on the following theorem:

Theorem 1. Let A and B be two sets of points. These sets are
linearly separable if and only if the following two conditions
are satisfied:

o For every triplet of points (p1,p2,ps) with p1,ps € A
and p3 € B, ps ¢ triangle(p1,pa, Pa).

o For every triplet of points (p1,p2,ps) with p1,p2 € B
and p3 € A, p3 ¢ triangle(p1,p2, Pp).

Where P4 and Pp are two points at infinity in the projective
plane, defined as Py = (1,1,0) and Pg = (—1,-1,0), or

vice versa.

Proof. (=) Suppose that A and B are linearly separable.
Then, there exist real coefficients a, b, and ¢ such that:

V(z,y) € A,ax+by+c >0 and V(z,y) € B,ax+by+c < 0.

Since P4 and Pg are points at infinity in opposite directions,
only one of them lies in the half-plane ax + by + ¢ > 0.
Without loss of generality, assume P4 lies in this half-plane.
Consider any triplet (p1, p2, p3) with p1,p2 € A and p3 € B.
The triangle formed by p1, p2, and P4, is entirely contained
within the half-plane ax + by + ¢ > 0. Since p3 lies in B
and the half-plane ax + by + ¢ < 0, it cannot lie within
triangle(p1,p2, Pa). Therefore, ps ¢ triangle(py, pa, Pa).
A similar argument applies for B and Pp.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

(«=) Conversely, suppose the conditions hold but A and B
are not linearly separable. This means their convex hulls in-
tersect. Consequently, there exists a point p that belongs to
both Conv(A) and Conv(B).

This implies that there exist points p1,ps € A and p3,ps €
B such that p lies within both triangle(pi,p2, Pa) and
triangle(ps, p4, Pg). Since the sides leading to P4 and Pp
are parallel (as P4 and Pp are points at infinity in opposite
directions), and the triangles have a non-empty intersection,
this intersection must contain at least one of the points p;, pa,
ps3, or py. This contradiction implies that A and B must be
linearly separable. O

This theorem allows us to encode the linear separation prob-
lem by stating that if two points p; and ps belong to the same
class A, then any point p3 that lies within the triangle formed
by p1, p2, and the point at infinity P4 must also belong to
class A. A similar reasoning applies for class B with the
point at infinity Pg.

Therefore, for each branching node n € Ap, each pair of
features f1, fo € F, and every triplet of examples e1, e2, €3 €
E such that ps lies inside the triangle formed by p1, p2, and
Py, with pr = (e1[fi],e1[fa]),p2 = (e2[f1], e2[f2]), and
ps = (es[f1], es[f2]), we add the clause:

ﬁAn,fl,f2 v ﬁSelm \ _'562,71 \ Ses,n' (10)

Similarly, each branching node n € MNp, every pair
of features fy,fo € F, and every triplet of examples
e1,ea,e3 € FE such that p3 € triangle(py, p2, Pg), with
pr = (elfil.eilfa]),p2 = (e2lfi],e2[f2]), and ps =
(e3[f1], es[f2]), we add the clause:

_'A”,f'17f2 \ Sehn v Sezm V 2Ses,n- (11)

Equations (10) and (11) ensure that if the pair of features
f1, f2 is chosen for separation at branching node n, S will
split the examples such that a linear separation exists.

Minimizing the Number of Clauses

Equations (10) and (11) can introduce a substantial number of
clauses into our model, potentially increasing computational
complexity. To enhance efficiency, we aim to minimize the
number of clauses by eliminating redundant constraints.

Let p1 = (eilfi],eilfo]), p2 = (e2[fi], e2[fo]), ps =
(es[f1], es[f2]), and p3 = (e3[f1], e3[f2]), four points such
that ps € triangle(p1, p2, Pa), p5 € triangle(p1, p2, Pa), and
ph € triangle(p1, ps, Pa) (see Figure 1). In this configura-
tion, if we have already added the constraints (10) for the
triplets (e, ez, e3) and (e1, es, €5), it becomes unnecessary
to add the same constraints for the triplet (eq, ez, e5). The
reason is that the constraints for (ey, es, %) are implied by
those for (e1, €2, e3) and (ey, e3, €%). A similar argument ap-
plies when pf € triangle(pz, ps, Pa), as well as for the cor-
responding case involving the point Pg.

Similarly, examples sharing identical values for features f;
and f> cannot be separated by a linear decision boundary
based on these features. Thus, it suffices to retain a single
representative example from each group of duplicates for our
constraints.

Figure 1: Example for constraints simplification.

To formalize this reduction, we define two functions based
on a total order < on the set of examples E. The func-
tion firsts(f1, f2) selects, for each unique combination of fea-
ture values (v1,v2), the minimal example according to the
total order. Formally, firsts(fi,f2) = {e € E | Ve’ €
E,e'[f1] = el[fi] A €[f2] = e[fe] = € > e} For each
e € firsts(f1, f2), the function doublons(e) returns the set
of examples that share the same feature values as e but are
greater than e in the total order. Formally: doublons(e) =
{e/ e E|e'[f1] = elf1], €'[f2] = e[f2], ' > e}.

Using these functions, we can now replace (10) and (11) by
the following constraints.

For each branching node n € Np, each pair of features
fi, fo € F, and each example e € firsts(fi, f2), we add
the clauses:

N ~AnsifaVSen VS (12)

e’ €doublons(e)

/\ _‘An,fl,fz \ Se,n \ _‘Se’,n (13)

e’ €doublons(e)

These constraints ensure that examples with identical values
for features f; and f, are directed toward the same child.
We define the projection 7y, r,(e) = (e[fi],e[fz2]). For
each branching node n € B, each pair of features
f1, fo € F, and each pair of examples e, e5 € firsts(f1, f2),
we select only one example e3 € firsts(f1, f2) such
that 7y, r,(e3) € triangle(my, f,(€1), 7f 5o (€2), Pa),
and for all ef € firsts(fy, f2), if mp . p(ef) €
triangle(my, f,(€1), s, 1, (e2), Pa), then
7Tf1>f2(e?3) € triangle(”fl,fz(eﬁv7Tf1,f2(63)’PA) U
triangle(ﬂ-fhfz (62)’ Tf1,f2 (63)’ PA)'

We then add the clause:

_‘An,fhfz Vo e1,n \ _|S62,7L \ Seg,n (14)

For each branching node n € Np, each pair of features
f1, fo € F, and each pair of examples e, e5 € firsts(f1, f2),
we select only one example e3 € firsts(f1, f2) such
that 7y, ¢, (63) € triangle(ﬂ-fhfz (61)’7Tf17f2 (62)’PB)7
and for all ef € firsts(fi, f2), if 7y p(e) €
triangle(my, f,(e1), 7¢, . (e2), PB), then
7Tf1yf2(eg’)) € triangle(ﬂ-fhfz(el)?7Tf17f2(e3)7PB) U

triangle(my, 1, (€2), 7s, 1, (e3), Pp).
We then add the clause:

_‘An7f1»f2 \ Sel,n \ S€2,n \ ﬁSe3,n (15)

The clauses (14) and (15) ensure that if the pair of features
f1, f2 is chosen for splitting at node n, then the assignment
of examples to the left or right child by .S corresponds to a
linear separation based on these features.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Datasets # Exemples # Features # classes
Balance-scale 625 4 3
BreastCancer 116 9 3
Car 1727 6 2
Cryptotherapy 90 6 2
Heart_60+ 309 13 2
Heart 1025 13 2
Immunotherapy 90 7 2
Iris 150 4 3
Mouse 70 5 2
Person ... Index 500 3 6
SIRTUING6 100 6 2
Wine 178 13 3
Z00 101 16 7

Table 1: Characteristics of real-world datasets used.

3.3 Decoding Decision Trees from Solutions

The solutions obtained from the (Max)SMT or (Max)SAT en-
codings allow us to construct an oblique decision tree that
minimizes classification errors. However, translating these
solutions into an explicit tree is nontrivial. While it is rel-
atively easy to determine which examples reach each node,
identifying a linear separation equations at the branching
nodes presents a challenge.

In the SAT-based approach, the linear separation equations at
the branching nodes are not explicitly provided. The SMT-
based approach produces valid equations but does not neces-
sarily optimize the separation between classes.

To address this, we employ a hard-margin Support Vec-
tor Machine (SVM) to compute optimal separating hyper-
planes at each branching node [Vapnik, 2013]. Hard-margin
SVMs find the hyperplane that maximizes the margin be-
tween classes, reducing the risk of misclassification on un-
seen data.

Reconstructing the oblique decision tree involves two steps.

Step 1. Identifying Examples at Each Node

The variables S, ,, from the solution indicate the path each
example e takes through the tree. For a node n, we deter-
mine the examples that reach it by examining the values of
Se,n. An example reaches node n if it satisfies the branch-
ing decisions along the path from the root to n. This step is
straightforward and involves tracing the decisions encoded by
Se n for each example.

Step 2. Computing Optimal Separating Hyperplanes

For each branching node n, we compute the optimal separat-
ing hyperplane using a hard-margin SVM. Examples reaching
node n are labeled +1 if directed to the left child, and —1 if
directed to the right. Then, using these labeled examples and
the selected features F'y, and F'y, at node n, we compute the
optimal separating hyperplane defined by:

xn,lFfl + xn,2Ff2 + Tn,3 = 07

where ,,1,2,,2, and x, 3 are SVM-derived coefficients.
This hyperplane represents the decision boundary at node 7.

4 Experimentation

Our experimental evaluation assesses the computational fea-
sibility and effectiveness of our proposed (Max)SAT and
(Max)SMT encodings for learning optimal oblique decision
trees. While oblique decision trees are known for their su-
perior accuracy and more compact model sizes compared to
axis-parallel trees, particularly on datasets with non-linear
decision boundaries [Bertsimas and Dunn, 2017], our re-
search specifically addresses the challenge of finding prov-
ably optimal solutions. We focused on two key aspects: the
computational complexity of achieving optimality and the
structural characteristics of the resulting optimal trees. We
implemented our methods in C++! and utilized the Eval-
MaxSAT solver [Avellaneda, 2020b] for MaxSAT, the Z3
solver [De Moura and Bjgrner, 2008] for SMT and LibSVM
[Chang and Lin, 2011] to compute the hard-margin SVM.

4.1 Experimental Setup

All experiments were conducted under controlled conditions
using a single thread of a AMD EPYC 7532 (Zen 2) processor
(2.4 GHz) with 32 GB of RAM. To ensure practical feasibil-
ity, we imposed a maximum runtime limit of three hours per
experiment. In our results tables, experiments exceeding this
time limit are denoted by “-”.

4.2 Scope and Limitations

Our evaluation deliberately focuses on the fundamental chal-
lenge of learning optimal oblique decision trees rather than on
techniques for enhancing generalization performance. Con-
sequently, we did not perform exhaustive comparisons of test
set accuracy against heuristic methods. Advanced techniques
such as pruning, regularization of oblique splits, and ensem-
ble methods were beyond the scope of our research.

4.3 Real-World Datasets

We evaluated our approach using 13 small to medium-sized
real-world datasets from the UCI Machine Learning Reposi-
tory [Kelly et al., 2023], as detailed in Table 1. These datasets
represent diverse classification tasks, exhibiting variations in
the number of instances, features, and classes.

To evaluate our optimal oblique tree learning methods, we
compared them with three distinct approaches:

 Optimal ADT [Shati et al., 2021]: The current state-of-
the-art method for learning optimal axis-parallel deci-
sion trees using (Max)SAT solvers. This comparison al-
lows us to isolate the computational overhead introduced
by learning oblique splits while maintaining optimality.

e HHCART [Wickramarachchi et al., 2016]: A heuris-
tic algorithm for learning oblique decision trees, imple-
mented in the scikit-obliquetree Python pack-
age [ECNU, 2021]. This serves as a reference against a
practical and fast heuristic approach.

o JAI [Interpretable AL, 2024]: A commercial implemen-
tation based on the optimal decision tree framework
[Bertsimas and Dunn, 2017]. While IAI’s theoretical

'https://github.com/FlorentAvellaneda/InferOptimalObliqueDT

https://github.com/FlorentAvellaneda/InferOptimalObliqueDT

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

framework addresses optimal trees, their implementa-
tion employs heuristic approximations for practical run-
time considerations. We acknowledge IAI’s provision of
an academic license for our experimental work.

Although we originally planned to include comparisons with
the mixed-integer programming approach for optimal oblique
decision tree learning [Zhu et al., 2020], we were unable to
obtain access to their implementation.

Our experimental results, presented in Table 2, demonstrate
that both our SMT-based and MaxSAT-based encodings con-
sistently achieve superior training accuracy, validating our
theoretical guarantee of discovering globally optimal oblique
decision trees. Notably, the MaxSAT encodings solved with
EvalMaxSAT demonstrated markedly better runtime perfor-
mance compared to the SMT encodings solved with Z3.

To address scalability limitations with larger datasets, we
conducted additional experiments using the incomplete
MaxSAT solver NuWLS [Chu et al., 2023], configuring it
with timeouts of 5 minutes and 1 hour. Although these con-
figurations do not guarantee optimality, NuWLS provided
high-quality solutions within the specified time limits. The
results closely approximated those of the complete methods
and, crucially, NuWLS successfully processed larger datasets
where exact methods exceeded the 3-hour timeout threshold.
In these cases, NuWLS solutions frequently outperformed
heuristic approaches in terms of training accuracy.

Our comparative analysis revealed that our prototype con-
sistently produced decision trees with superior training ac-
curacy compared to both heuristic methods and the optimal
axis-parallel method. However, HHCART and IAI, while sig-
nificantly faster (typically completing in under one second)
traded off solution quality for speed, as evidenced by their
lower training accuracies.

Notably, IAI’s implementation includes non-optional heuris-
tic optimizations for runtime performance, which prevents di-
rect measurement of the time required to find provably opti-
mal decision trees. Moreover, in their original research [Bert-
simas and Dunn, 2017], which focused primarily on demon-
strating superior out-of-sample accuracy rather than com-
putational efficiency, they reported that finding an optimal
oblique decision tree of depth 2 for the Wine dataset required
approximately 5 minutes. By contrast, our method achieves
the same result in 40 seconds.

4.4 Synthetic Datasets

To complement our real-world dataset analysis with con-
trolled evaluations, we conducted systematic experiments us-
ing synthetic datasets generated through a structured proto-
col. This approach allowed us to precisely measure the per-
formance of our encodings under specific, controlled condi-
tions.

In our first experimental series, illustrated in Figure 2, we
examined the relationship between dataset size and computa-
tional efficiency. We generated synthetic datasets using ran-
dom oblique decision trees with consistent parameters: four
features, each with 100 possible values, two classes, and a
tree depth of three. The dataset sizes varied to observe how
computational time scales with the number of examples. The

1000 *SMT oSAT 449 #SMT - SAT
100 T T B »
=== i 5 e
®10 . 5 bt [-
£ £ ' I
E1 . . = .
= . = " -*
S [14

01,0 .

& 01 .

0.01 | ==

»
10 100 1000 R 4 6 8

Number of Examples Depth, #Features+1

Figure 2: Time to find an optimal oblique decision tree using SMT
and SAT encodings on synthetic datasets (average over 10 runs):
(Left) as a function of the number of training examples; (Right) as a
function of the depth (number of features + 1).

results demonstrated a polynomial growth in execution time
as the dataset size increased. Notably, the SAT encoding con-
sistently outperformed the SMT encoding by several orders
of magnitude in terms of runtime efficiency.

In the second experimental series, presented in Figure 2, we
investigated the impact of tree depth on computational com-
plexity. We maintained a constant training dataset size of 64
examples and systematically increased the tree depth from
low to higher values. Correspondingly, we adjusted the num-
ber of features to be equal to the tree depth plus one (i.e.,
number of features = depth 4 1) for each iteration. The ex-
periments revealed an exponential growth in execution time
for both encodings as tree depth increased. However, the SAT
encoding exhibited a significantly slower growth rate com-
pared to the SMT encoding, indicating better scalability with
respect to tree depth.

5 Conclusion

In this paper, we presented a novel approach for learning op-
timal oblique decision trees by formulating the problem as
instances of (Max)SAT and SMT. Our novel contributions
are a theoretical framework encoding the oblique decision
tree learning problem as (Max)SAT or SMT, an efficient SAT
encoding that uses geometric properties of linear separabil-
ity, and empirical validation showing our method finds prov-
ably optimal oblique decision trees on small to medium-sized
datasets. Notably, our SAT encoding significantly outper-
forms the SMT encoding in computational efficiency, often
by several orders of magnitude.

Despite these advancements, computational complexity re-
mains a significant challenge, especially for larger datasets
and deeper trees. While our SAT-based approach scales better
than SMT, both exhibit exponential growth in execution time
with increasing tree depth due to the combinatorial nature of
finding globally optimal decision trees. To mitigate scala-
bility issues, we used incomplete MaxSAT solvers, which,
although not guaranteeing optimality, provided high-quality
solutions within practical time bounds for larger datasets. Our
experiments show that incomplete MaxS AT solvers often out-
perform heuristic methods in training accuracy while operat-
ing within reasonable computational times.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Depth HHCART TIAI Optimal ADT Our SMT Our SAT

EvalMaxSAT (3h) 73 (3h) NuWLS (5min) NuWLS (1h) EvalMaxSAT (3h)
Person Gender Height Weight Index
d=1 46.2% 64.2% 51.6% (< 1s) 64.8% (59s) 64.8% 64.8% 64.8% (15s)
d=2 58.8% 84.2% 61.0% (540s) 90.6 % (5800s) 90.6 % 90.6 % 90.6% (98s)
d=3 67.2% 90.0% - - 98.0% 98.0 % 98.0% (350s)
d=4 77.6% 96.4% - - 99.6 % 99.6 % 99.6% (340s)
Balance-scale
d=1 63.5% 70.0% 63.5% (0.64s) 70.1% (38s) 70.1% 70.1% 70.1% (2.8s)
d=2 63.5% 82.9% 71.7% (56s) - 82.9% 82.9% 82.9% (2800s)
d=3 75.2% 87.2% - - 89.3% 89.3% -
BreastCancer
d=1 67.2% 71.6% 71.6% (0.11s) - 79.3% 79.3% 79.3% (22s)
d=2 73.3% 87.8% 82.8% (12s) - 90.5% 90.5 % -
d=3 75.0% 79.3% 91.4% (260s) - 98.3% 98.3% -
Car
d=1 71.3% 70.0% 71.3% (2.5s) 84.1% (100s) 84.1% 84.1% 84.1% (45s)
d=2 82.4% 89.3% 85.5% (160s) - 90.4% 90.7 % -
d=3 85.5% 95.8% 89.5% (7900s) - 96.4% 96.9 % -
Cryptotherapy
d=1 82.2% 91.1% 85.6% (0.015s) 91.1% (7.2s) 91.1% 91.1% 91.1% (0.22s)
d=2 82.2% 96.7% 94.4% (0.20s) 97.8% (1800s) 97.8% 97.8 % 97.8% (2.1s)
d=3 86.6% 97.8% 98.9% (0.51s) 100% (15s) 100% 100% 100% (1.3s)
Heart_60+
d=1 75.4% 80.6% 75.4% (0.43s) 80.9% (3000s) 80.9% 80.9% 80.9% (63s)
d=2 79.0% 87.1% 81.9% (110s) - 87.1% 90.0 % -
d=3 82.3% 92.6% 90.6% (2200s) - 99.0% 99.0% 100% (290s)
Heart
d=1 76.0% 78.4% 76.0% (8.0s) - 78.4% 78.4% 78.4% (3100s)
d=2 76.0% 85.2% 79.6% (4500s) - 85.2% 85.2% -
d=3 82.0% 88.7 % - - 85.6% 85.9% -
Immunotherapy
d=1 78.9% 88.9% 86.7% (0.025s) 88.9% (52s) 88.9% 88.9% 88.9% (0.64s)
d=2 78.9% 86.7% 91.1% (0.82s) - 95.6% 95.6 % 95.6% (67s)
d=3 86.7% 86.7% 95.6% (2.5s) 100% (2200s) 100% 100% 100% (2.2s)
Iris
d=1 66.7 % 66.7 % 66.7% (0.039s) 66.7% (7.4s) 66.7 % 66.7 % 66.7% (0.53s)
d=2 94.7% 96.0% 96.0% (0.15s) 98.7% (190s) 98.7 % 98.7 % 98.7% (1.5s)
d=3 96.0% 98.0% 99.3% (0.17s) 100% (3.2s) 100% 100% 100% (0.70s)
Mouse
d=1 94.3% 94.3% 94.3% (0.0045s) 97.1% (0.33s) 97.1% 97.1% 97.1% (0.014s)
d=2 94.3% 94.3% 97.1% (0.026s) 98.6% (6.65) 98.6 % 98.6 % 98.6% (0.11s)
d=3 97.1% 94.3% 98.6% (0.031s) 100% (0.72s) 100% 100% 100% (0.047s)
SIRTUIN6
d=1 79.0% 86.0% 86.0% (0.039s) 89.0% (1700s) 89.0% 89.0% 89.0% (1.3s)
d=2 79.0% 90.0% 92.0% (0.89s) - 95.0% 95.0% 95.0% (130s)
d=3 86.0% 90.0% 96.0% (5.0s) - 100% 100% 100% (14s)
Wine
d=1 59.0% 71.3% 69.7% (0.22s) - 71.3% 71.3% 71.3% (660s)
d=2 83.7% 96.6% 96.6% (1.1s) - 99.4% 99.4 % 99.4% (41s)
d=3 83.7% 98.3% 100% (0.42s) - 100% 100% 100% (39s)
Zoo
d=1 45.5% 60.4 % 60.4% (0.067s) 60.4% (1.2s) 60.4% 60.4% 60.4% (0.094s)
d=2 73.3% 82.2% 82.2% (0.36s) 83.2% (91s) 83.2% 83.2% 83.2% (0.50s)
d=3 85.1% 92.1% 94.1% (1.1s) 100% (3.1s) 100% 100% 100% (0.49s)

Table 2: Evaluating training accuracy and construction time of decision trees on real-world datasets.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

We gratefully acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC) [funding reference number RGPIN-2023-04468]
and Fonds de recherche du Québec - Nature et tech-
nologies (FRQNT) [funding reference number 345904 :
https://doi.org/10.69777/345904]. The benchmarks were car-
ried out with support from Calcul Québec (calculquebec.ca)
and the Digital Research Alliance of Canada (alliancecan.ca).

References

[Aglin et al., 2020] Gaél Aglin, Siegfried Nijssen, and Pierre
Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages
3146-3153, 2020.

[Avellaneda, 2020a] Florent Avellaneda. Efficient inference
of optimal decision trees. In Proceedings of the AAAI con-

ference on artificial intelligence, volume 34, pages 3195—
3202, 2020.

[Avellaneda, 2020b] Florent Avellaneda. A short descrip-
tion of the solver evalmaxsat. MaxSAT Evaluation, 8:364,
2020.

[Bertsimas and Dunn, 2017] Dimitris Bertsimas and Jack
Dunn. Optimal classification trees. Machine Learning,
106:1039-1082, 2017.

[Breiman et al., 1984] L. Breiman, J. Friedman, C.J. Stone,
and R.A. Olshen. Classification and Regression Trees.
Taylor & Francis, 1984.

[Chang and Lin, 2011] Chih-Chung Chang and Chih-Jen
Lin. Libsvm: a library for support vector machines. ACM

transactions on intelligent systems and technology (TIST),
2(3):1-27, 2011.

[Chu et al., 2023] Yi Chu, Shaowei Cai, and Chuan Luo.
Nuwls: improving local search for (weighted) partial
maxsat by new weighting techniques. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
pages 3915-3923, 2023.

[De Moura and Bjgrner, 2008] Leonardo De Moura and
Nikolaj Bjgrner. Z3: An efficient smt solver. In In-
ternational conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340.
Springer, 2008.

[Demirovié et al., 2022] Emir Demirovié, Anna Lukina,
Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christo-
pher Leckie, Kotagiri Ramamohanarao, and Peter J
Stuckey. Murtree: Optimal decision trees via dynamic
programming and search. Journal of Machine Learning
Research, 23(26):1-47, 2022.

[ECNU, 2021] ECNU. Oblique decision tree in python.
https://github.com/zhenlingcn/scikit-obliquetree, 2021.

[Heath et al., 1993] David Heath, Simon Kasif, and Steven
Salzberg. Induction of oblique decision trees. In IJCAI,
volume 1993, pages 1002-1007. Citeseer, 1993.

[Interpretable AI, 2024] LLC Interpretable Al Interpretable
ai documentation, 2024.

[Kelly et al., 2023] Markelle Kelly, Rachel Longjohn, and
Kolby Nottingham. The uci machine learning repository.
URL https://archive. ics. uci. edu, 2023.

[Murthy et al., 1994] Sreerama K Murthy, Simon Kasif, and
Steven Salzberg. A system for induction of oblique deci-

sion trees. Journal of artificial intelligence research, 2:1—
32, 1994.

[Narodytska ef al., 2018] Nina Narodytska, Alexey Ignatiev,
Filipe Pereira, and Joao Marques-Silva. Learning opti-
mal decision trees with sat. In International Joint Con-
ference on Artificial Intelligence 2018, pages 1362—1368.
Association for the Advancement of Artificial Intelligence
(AAAI), 2018.

[Nijssen and Fromont, 2007] Siegfried Nijssen and Elisa
Fromont. Mining optimal decision trees from itemset lat-
tices. In Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-

ing, pages 530-539, 2007.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees.
Machine learning, 1:81-106, 1986.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann Publishers Inc., 1993.

[Shati er al., 2021] Pouya Shati, Eldan Cohen, and Sheila
Mcllraith. Sat-based approach for learning optimal deci-
sion trees with non-binary features. In 27th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2021). Schloss-Dagstuhl-Leibniz Zentrum
fiir Informatik, 2021.

[Vapnik, 2013] Vladimir Vapnik. The nature of statistical
learning theory. Springer science & business media, 2013.

[Verwer and Zhang, 2019] Sicco Verwer and Yinggian
Zhang. Learning optimal classification trees using a
binary linear program formulation. In Proceedings of the
AAAI conference on artificial intelligence, volume 33,
pages 1625-1632, 2019.

[Wickramarachchi et al., 2016] Darshana Chitraka Wickra-
marachchi, Blair Lennon Robertson, Marco Reale,
Christopher John Price, and Jennifer Brown. Hhcart: an
oblique decision tree. Computational Statistics & Data
Analysis, 96:12-23, 2016.

[Zhu et al., 2020] Haoran Zhu, Pavankumar Murali, Dzung
Phan, Lam Nguyen, and Jayant Kalagnanam. A scalable
mip-based method for learning optimal multivariate deci-

sion trees. Advances in neural information processing sys-
tems, 33:1771-1781, 2020.

https://github.com/zhenlingcn/scikit-obliquetree

