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Abstract
Multimodal sentiment analysis (MSA) has shown
promising results but often poses significant chal-
lenges in real-world applications due to its depen-
dence on the complete and aligned multimodal se-
quences. While existing approaches attempt to
address missing modalities through feature recon-
struction, they often neglect the complex interplay
between homogeneous and heterogeneous relation-
ships in multimodal features. To address this prob-
lem, we propose Decoupled-Adaptive Reconstruc-
tion (DAR), a novel framework that explicitly ad-
dresses these limitations through two key com-
ponents: (1) a mutual information-based decou-
pling module that decomposes features into com-
mon and independent representations, and (2) a re-
construction module that independently processes
these decoupled features before fusion for down-
stream tasks. Extensive experiments on two bench-
mark datasets demonstrate that DAR significantly
outperforms existing methods in both modality re-
construction and sentiment analysis tasks, particu-
larly in scenarios with missing or unaligned modal-
ities. Our results show improvements of 2.21% in
bi-classification accuracy and 3.9% in regression
error compared to state-of-the-art baselines on the
MOSEI dataset.

1 Introduction
As an important research direction in artificial intelligence,
multimodal emotion recognition aims to achieve more accu-
rate and comprehensive emotional understanding through the
integration and analysis of information from different modal-
ities (such as speech, text, vision, etc.)[Liang et al., 2021;
Lv et al., 2021a]. With the rapid development of deep learn-
ing technologies and the increasing abundance of multimodal
data([Zhang et al., 2024b]; [Liu et al., 2023]), significant
progress has been made in this field.

Compared to laboratory environments where high-quality
data samples can be artificially selected for training, data col-

∗Corresponding author.

Figure 1: (a) shows an example of incomplete data entry, with the
gray overlay indicating invisibility. (b) shows an illustration of fea-
ture reconstruction, where blank parts are missing features and col-
ors represent modal-independent features, textures represent modal-
common features.

lected in real scenarios may face varying degrees of missing
issues, leading to otherwise well-performing multimodal sen-
timent classification models to face severe performance loss
when dealing with real-world incomplete data.

Recently, research trends have shifted from laboratory con-
ditions to modeling data from natural scenarios. This shift
creates a wider application space for MSA in the real world,
despite concerns due to issues such as sensor failure and au-
tomatic speech recognition (ASR), which lead to inconsis-
tencies such as incomplete data in real-world deployments.
Many influential solutions have been proposed to address
the major problem of incomplete data in multimodal senti-
ment analysis. For example, [Yuan et al., 2021] introduced
a transformer-based feature reconstruction mechanism, TFR-
Net, which aims to improve the robustness of the model in
dealing with random deletions in unaligned multimodal se-
quences by reconstructing the missing data. Zhang intro-
duced a model (LNLN)[Zhang et al., 2024a], the Language
Dominated Noise Resistant Learning Network, to improve
the robustness of MSA to incomplete data. It aims to enhance
the completeness of linguistic mood features, which are con-
sidered dominant moods due to their richer emotional cues
and supported by other auxiliary moods.

The previous methods have the following problems: the
process of reconstructing complete inputs does not take into
account the redundancy and complementarity that exists be-
tween different modal data, resulting in the model failing to
achieve the desired reconstruction effect; at the same time, the
inclusion of reconstruction loss may cause the model to pay
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too much attention to the consistency between the complete
data and the missing data after feature extraction, resulting in
the degradation of the encoder effect and the failure to effec-
tively extract key features.

To solve the above problems, we propose a feature
decoupling-reconstructing approach for multimodal feature
fusion. As shown in Figure 1, we first decompose modal fea-
tures into modal-independent and modal-common features by
methods of mutual information-based approach. Then we re-
construct features corresponding to two complete inputs ac-
cording to the respective properties of the two types of fea-
tures. We also use a specialized neural network for the out-
put from complete data to guide the supervised feature recon-
struction of the model features for the downstream task. The
contributions of this work can be summarized as:

• We propose a new approach that is suitable for feature
reconstruction to decouple sequence features based on
mutual information.

• We propose a missing feature reconstruction method
based on decoupled features, which intuitively reflects
the redundancy and complementary relationship be-
tween different modal data.

• We validate our approach on two widely used multi-
modal sentiment analysis datasets and compare it with
other robust and non-robust fusion methods. The re-
sults demonstrate that our approach outperforms other
existing models on several metrics and achieves the best
overall performance.

2 Related Work
2.1 Robust Representation Learning in MSA
Multimodal Sentiment Analysis (MSA) methods can be cat-
egorized into Context-based MSA and Noise-aware MSA,
depending on the modeling approach[Zhang et al., 2024a].
Most of previous works ([Zadeh et al., 2017]; [Tsai et al.,
2019]; [Mai et al., 2020]; [Hazarika et al., 2020]; [Liang et
al., 2020]; [Rahman et al., 2020]; [Yu et al., 2021]; [Han et
al., 2021]; [Lv et al., 2021b]; [Yang et al., 2022]; [Guo et al.,
2022]; [Zhang et al., 2023]; [Zhang et al., 2019]; [Zhang et
al., 2021]; [Zhang et al., 2022a];[Zhang et al., 2022b]) can be
classified to Context-based MSA. This line of work primar-
ily focuses on learning unified multimodal representations by
analyzing contextual relationships within or between modali-
ties. For example, [Zadeh et al., 2017] explore computing the
relationships between different modalities using the Carte-
sian product. [Tsai et al., 2019] utilize pairs of Transform-
ers to model long dependencies between different modali-
ties. [Yu et al., 2021] propose generating pseudo-labels for
each modality to further mine the information of consistency
and discrepancy between different modalities. Despite these
advances, context-based methods are usually suboptimal un-
der varying levels of noise effects (e.g. random data miss-
ing). Several recent works ([Mittal et al., 2020];[Yuan et al.,
2021];[Yuan et al., 2024];[Li et al., 2025]) have been pro-
posed to tackle this issue.

In concrete terms, [Hazarika et al., 2020] and [Yang et al.,
2022] apply feature disentanglement to each modality, mod-

eling multimodal representations from multiple feature sub-
spaces and perspectives. [Yu et al., 2021] and [Liang et al.,
2021] explore self-supervised learning and semi-supervised
learning to enhance multimodal representations, respectively.
[Tsai et al., 2019] and [Rahman et al., 2020] introduce Trans-
former to learn the long dependencies of modalities. [Zhang
et al., 2023] devise a language-guided learning mechanism
that uses modalities with more intensive sentiment cues to
guide the learning of other modalities. Noise-aware MSA fo-
cuses more on perceiving and eliminating the noise present in
the data. For example, [Mittal et al., 2020] design a modality
check module based on metric learning and Canonical Corre-
lation Analysis (CCA) to identify the modality with greater
noise. [Yuan et al., 2021] design a feature reconstruction
network to predict the location of missing information in se-
quences and reconstruct it. [Yuan et al., 2024] introduce ad-
versarial learning to perceive and generate cleaner represen-
tations. [Zhang et al., 2024a] proposed LNLN, explored the
capability of language-guided mechanisms in resisting noise
and provide new. perspectives for the study of MSA in noisy
scenarios.

2.2 Multimodal Feature Decoupling
One of the more important features of multimodal tasks,
compared to unimodal tasks, is the redundancy and com-
plementarity of the modal information prior. A lot of work
has been done to explore the decoupling of modal features
into irrelevant classifications and apply them to downstream
tasks, starting from the commonalities and differences of in-
formation between different modalities. Currently, multi-
modal feature decoupling can be categorized into two kinds:
spatial-based and mutual information-based, among which
the spatial-based work is [Hazarika et al., 2020] and [Li et al.,
2023], The degree of similarity and dissimilarity of features
is measured using the vanilla cosine distances between fea-
ture vectors, respectively. And the mutual information-based
approach is [Yang et al., 2023] and [Xia et al., 2024]. The
former defines similar and dissimilar features by constructing
positive and negative examples, and the latter optimizes the
loss of mutual information by constructing time-series ver-
sions of the upper and lower bounds on the use of mutual
information approximations.

Inspired by works on mutual information-based feature
decomposition([Yang et al., 2023];[Xia et al., 2024]), the se-
quence feature decoupling module proposed in this paper em-
ploys a similarity measure based on both mutual information
and spatial properties, which assumes that similar features
have high mutual information between them, while mutual in-
formation between dissimilar features should be minimized.

3 The DAR Model
3.1 Task Setup
In this paper, we consider three modalities, i.e., language (l),
visual(v), acoustic (a). These modalities are represented as
Ul ∈ RTl×dl , Uv ∈ RTv×dv , and Ua ∈ RTa×da respec-
tively. Here Tm denotes the length of the utterance, such as
number of tokens (Tl), for modality m and dm denotes the
respective feature dimensions.
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Figure 2: The overall architecture of our proposed model. white blocks on the left side indicate complete inputs, dark gray blocks indicate
missing inputs, and blanks indicate missing parts. The model consists of three main components: (a) decouple module, (b) reconstruct
module, and (c) Fusion-Output module, where the marker s denotes modal independent features, c denotes modal common features and
two-way arrows represent comparative losses.

Given these sequences Um∈{l,v,a}, the primary task is to
predict the affective orientation of utterance U from either a
predefined set of C categories y ∈ RC or as a continuous
intensity variable y ∈ R.

3.2 Overview

The general structure of the model is shown in Figure
2. It first obtains incomplete multimodal data through the
datamissing operation. Model DAR first uses an alignment
layer to adjust the input features of all modalities to the same
dimension to ensure data consistency. Then, for each modal
input, we use independent modal-common feature encoder
and modal-independent feature encoder to obtain modal-
common representation and modal-independent representa-
tion of the features. Next, the modal reconstruction mod-
ule corrects the decomposed two feature reconstructions to
restore the feature representation corresponding to the full
input. Finally, the feature fusion module utilizes the self-
attention mechanism and the cross-attention mechanism to
process the two kinds of features, fuse them, and output the
classification results through the output layer.

3.3 Input Construction and Multimodal Input

Following the previous method ([Zhang et al., 2024a]), for
each modality, we randomly erase changing proportions of
information (from 0% to 90%). These pre-processed inputs
are represented as sequences, denoted by Um ∈ RTm×dm ,
m ∈ {l, v, a} representing language, visual and acoustic fea-
tures respectively where Tm denotes the length of the se-
quence for modality m (such as number of tokens for m = l),
and dm denotes the respective feature dimensions . With ob-
tained Um, we apply random data missing to Um, thus form-
ing the noise-corrupted multimodal input Ũm .

(a) (b)

Figure 3: Method of dividing positive and negative examples. (a)
represents the modal-common features pairing; (b) represents the
modal-independent features pairing.

3.4 Decouple Module
It is essential to standardize the feature representations across
modalities for ease of further processing. To achieve this, we
apply 1D convolutions followed by a simple nonlinear layers
to process the input features. Given features corresponding to
complete input data and random missing data be represented
as Um ∈ RTm×dm and Ũm ∈ RTm×dm , m ∈ {l, v, a}. Af-
ter the alignment operation, the output feature U1

m ∈ Rt×d

and Ũ1
m ∈ Rt×d have unified length of utterance, t and fea-

ture dimension d across all modalities, making it suitable for
subsequent model processing.

Given the incomplete sequence Ũ1
m ∈ Rt×d for modal-

ity m, we employ common feature extractors and indepen-
dent feature extractors to extract the modal-common features
H̃com

m and modal-independent features H̃spec
m using the encod-

ing functions.

H̃com
m = Ec(Ũ

1
m; θcm), H̃spec

m = Es(Ũ
1
m; θsm) (1)

Similarly, for the complete input corresponding to feature
U1

m we also use the same encoder to obtain the corresponding
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modal-common input and modal-independent inputs Hcom
m

and Hspec
m . We reserve two types of features for the gener-

ation of restoration features under supervision.
Based on the characteristics of the modal-common and

modal-independent features, we aim to ensure that the com-
mon features from the same sample across different modali-
ties exhibit high consistency, while the independent features
within the same modality show high consistency as well. Si-
multaneously, we seek to reduce the information redundancy
between the two types of features. To achieve this, we define
a decoupling loss function Ldecouple as:

Ldecouple = λ(Lsim + Ldiff) + Lre (2)
Where λ is a hyperparameter, Lre is the restoration loss that
reduces the decomposed feature to the original feature and I
for mutual information. The mutual information between the
two distributions is represented as follows:

I(z1; z2) =

∫ ∫
p(z1, z2) log

p(z1, z2)

p(z1)p(z2)
dz1dz2 (3)

where:p(z1, z2) is the joint probability distribution of z1 and
z2,p(z1) and p(z2) are the marginal distributions of z1 and
z2, respectively.

Specifically, for sets of data in batches B we have:

Lsim = − I(H̃com
a ; H̃com

v ; H̃com
l )

−
M∑
m

I(H̃spec
m,i; H̃

spec
m,j) (4)

where i, j represent two different batches of data.

Ldiff =
M∑
m

I(H̃spec
m ; H̃com

m ) (5)

where H̃com
m and H̃spec

m represent the modal-common fea-
tures and modal-independent features, respectively, m ∈
M and M = {l, v, a}. The objective is to maximize the mu-
tual information between the common features of different
modalities for the same sample and the independent features
of different batches within the same modality, while mini-
mizing the mutual information between the common and in-
dependent features of the same sample.

For the similarity loss, we use the noise comparison lower
bounds of the mutual information for optimization; for the
dissimilarity loss, we use the CLUB upper bounds of the mu-
tual information for optimization, and we achieve the min-
imization of decoupling loss by optimizing the upper and
lower bounds of the mutual information.
InfoNCE-based Mutual Information Maximization:
InfoNCE([Oord et al., 2018]) is a commonly used lower
bound for mutual information loss, contrastive methods
enhance this by utilizing sample pairs from positive set P
and negative set N . The goal is to pull positive pairs closer in
the representation space while pushing negative pairs apart.
The commonly used InfoNCE loss is defined as:

Lsim =− 1

|P|
∑

(z1,z2)∈P

log[exp(sim(z1, z2)/τ)/

∑
(z1,zi)∈N

exp(sim(z1, zi)/τ)] (6)

where: sim(·, ·) is a similarity function, in this paper, we
use the cosine similarity, and τ is a temperature parame-
ter. |P| denotes the cardinality of the positive pair set. We
maximize the mutual information between positive examples
by constructing positive and negative examples, chosen as
shown in Figure 3. According to 3a, 3b in Figure 3, we com-
pute the Lcom

sim and Lspec
sim corresponding to the common and

independent features respectively, and add the two together
to obtain the final Lsim.

Lsim = Lcom
sim + Lspec

sim (7)

We average the original time series features in the time di-
mension as the sample features, obtain the corresponding fea-
ture z, calculate the InfoNCE as the loss of the lower bound
of the mutual information.

CLUB-based MI Minimization: CLUB can effectively
optimize the MI upper bound, demonstrating superior advan-
tages in information disentanglement [Cheng et al., 2020].
Given two variables x and y, the objective function of CLUB
is defined as:

IvCLUB(x;y) := Ep(x,y)[log qθ(y|x)]
−Ep(x)Ep(y)[log qθ(y|x)], (8)

where qθ is the variational approximation of ground-truth
posterior of y given x and can be parameterized by a network
θ. We use CLUB to optimize the MI upper bound between
the common features H̃com

m and modal-specific features H̃spec
m .

To better measure the mutual information between the two
temporal features, we use a combination of a bidirectional
lstm([Huang et al., 2015]) and a nonlinear fully connected
layer as a variational approximation network qθ, we modify
IvCLUB into following:

Ldiff =
1

N

N∑
i=1

[log qθ(H̃
com
m |H̃spec

m )

− 1

N

N∑
j=1

log qθ(H̃
com
m |H̃spec

m )], (9)

The approximation network and the main networks are opti-
mized alternatively during training process.

Restoration Loss: To distinguish the differences between
H̃com

m and H̃spec
m and mitigate the feature ambiguity, we syn-

thesize the vanilla coupled features Ũ1
m in a self-regression

manner. Mathematically speaking, for each modality m, we
concatenate the features from the other two modalities with
H̃spec

m and exploit a private decoder Dm to produce the cou-
pled feature. Specifically: For modality l:

Ll
re = ∥Ũ1

l −Dl(Concat(H̃com
v , H̃com

a , H̃spec
l ))∥2F (10)

For the other two modalities, we also use the same way to
get the losses Lv

re and La
re. Adding up these losses, we get the

overall restoration loss Lre:

Lre = Ll
re + Lv

re + La
re (11)
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3.5 Reconstruct Module
We hypothesize that the independent features of a complete
modality can be predicted through the corresponding inde-
pendent features of the missing modality feature, while the
common features of a complete modality can be predicted by
the common features of all the input missing modalities fea-
ture.

To implement this, we propose two distinct feature recon-
struction modules for each modality: the Independent Fea-
ture correction module and the Common Feature reconstruc-
tion module. The Independent Feature reconstruction module
takes as input the decoupled independent features and out-
puts the corrected independent features Ĥspec

m . In contrast, the
Common Feature Reconstruction module uses the combined
common features from all modalities as input and generates
the reconstructed features Ĥcom

m as output. Finally, after ob-
taining the two features, we use a specially set up private de-
coder Dm to reconstruct the coupled complete input U1

m.

Ĥcom
m = Em

com(Concat(H̃com
l , H̃com

v , H̃com
a ), θmcom), (12)

Ĥspec
m = Em

spec(H̃
spec
m , θmspec), (13)

Û1
m = Dm(Concat(H̃com

m , H̃spec
m ) (14)

where θcom denotes the parameters of the common feature
reconstruction module Ecom and θspec denotes the parame-
ters of the independent feature reconstruction module Espec.

Finally, we combine reconstructed features with original
input features to obtain features for downstream tasks.

g = σ(Wg[Ĥ, H̃] + bg) (15)

Hfused = g ⊙ Ĥ+ (1− g)⊙ H̃ (16)

To ensure that the reconstructed features are consistent
with the common and independent features obtained from the
complete input through the encoder, hereafter referred to as
the complete common and complete independent features, we
construct the alignment loss minimizing the loss between the
corrected features and the complete features as following:

Lrecon = ∥Ĥ−H∥2F + ∥Û1 −U1∥2F (17)

3.6 Fusion-Output Module
For the modal-common features, which exhibit relatively
similar distributions, we apply a multi-layer self-attention
model for further refinement. In contrast, for the modal-
independent features, where there are significant distribu-
tional differences between features, we employ a cross-
attention mechanism.

Modal-common Features Fusion Module. Given the
modified modal-common feature Hcom

fused, we perform feature
fusion in the temporal dimension using a multilayer self-
attention module for each modal counterpart, while using the
features of the last frame of the output of the last layer as the
overall feature output hfused.

hcom = SelfAttention(Hcom
fused)[−1] (18)

Modal-independent Features Fusion Module. For
modal-independent features, we use a cross-attention mech-
anism to fuse different modal information. The core of the
multimodal transformer is the crossmodal attention unit
(CA), which receives features from a pair of modalities
and fuses cross-modal information. Take the language
modality Hspec

fused-L as the source and the visual modality
Hspec

fused-V as the target, the cross-modal attention can be
defined as: QV = Hspec

fused-VPq , KL = Hspec
fused-LPk, and

VL = Hspec
fused-LPv , where Pq , Pk, Pv are the learnable

parameters, formulated as:

hspec
L→V = softmax

(
QV K

⊤
L√

d

)
VL[−1], (19)

where hspec
L→V is the enhanced features from Language to

Visual, d means the dimension of QV and KL. For the three
modalities in MER, feature of each modality hspec

m will be re-
inforced by the two others and the resulting features will be
concatenated. Take visual modality as an example the for-
mula is expressed as follows:

hspec
V = Concat(hspec

L→V ,h
spec
A→V ) (20)

Prediction/Inference. Finally, we splice the obtained fused
features and input the nonlinear fully connected layer to gen-
erate predictions ŷ, we also use the bootstrap module to pre-
dict the results ŷboot using common features generated from
the complete information, ensuring that the encoder learns
features that facilitate classification.

ŷ = MLP(Concat(hcom,hspec)) (21)

ŷboot = MLP(H) (22)
The task loss Ltask and overall model loss Ltotal are formu-

lated as follows:

Ltask = Loss(y, ŷ) + Loss(y, ŷboot) (23)

Ltotal = Ltask + αLdecouple + βLrecon (24)
where α and β are hyperparameters.

4 Experiments and Analysis
In this section, we provide a comprehensive and fair compar-
ison between the proposed DAR and previous representative
MSA methods on MOSI ([Zadeh et al., 2016]) and MOSEI
([Bagher Zadeh et al., 2018]) datasets.

4.1 Datasets
MOSI The dataset includes 2,199 multimodal samples, in-
tegrating visual, audio, and language modalities. It is divided
into a training set of 1,284 samples, a validation set of 229
samples, and a test set of 686 samples. Each sample is given
a sentiment score, varying from -3, indicating strongly nega-
tive sentiment, to 3, signifying strongly positive sentiment.
MOSEI The dataset consists of 22,856 video clips sourced
from YouTube. The sample is divided into 16,326 clips for
training, 1,871 for validation, and 4,659 for testing. Each clip
is labeled with a score, ranging from -3, denoting the strongly
negative, to 3, denoting the strongly positive.
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Method MOSI MOSEI

Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr

MISA 28.90 31.67 69.15 / 70.74 68.50 / 70.23 1.092 0.508 38.92 39.28 76.21 / 72.12 70.76 / 65.50 0.800 0.490
Self-MM 30.78 34.03 68.75 / 70.89 65.47 / 67.90 1.070 0.518 46.40 46.78 71.18 / 72.75 70.45 / 70.99 0.695 0.498
MMIM 31.51 34.92 69.22 / 71.08 67.34 / 69.42 1.077 0.511 44.04 44.42 75.99 / 71.47 70.63 / 64.97 0.739 0.459
CENET 29.78 33.23 66.41 / 69.47 62.65 / 65.38 1.088 0.496 47.18 47.93 75.96 / 74.10 73.28 / 70.51 0.685 0.525
TETFN 29.89 33.20 68.66 / 70.89 65.11 / 67.64 1.087 0.512 46.31 47.03 71.63 / 71.84 68.91 / 68.14 0.714 0.508
TFR-Net 29.54 34.67 68.15 / 66.35 61.73 / 60.06 1.200 0.459 46.83 34.67 73.62 / 77.23 68.80 / 71.99 0.697 0.489
ALMT 30.35 32.92 68.27 / 70.55 64.47 / 67.07 1.083 0.506 42.01 42.58 76.75 / 72.96 72.00 / 67.16 0.754 0.511
LNIN 32.80 36.12 71.11 / 72.22 71.33 / 72.34 1.066 0.505 45.42 46.17 75.27 / 76.98 74.97 / 77.39 0.692 0.530

Ours 34.47 38.65 71.60 / 73.18 71.51 / 73.15 1.069 0.520 47.01 48.02 77.48 / 78.14 77.44 / 77.51 0.665 0.583

Table 1: Performance comparison on MOSI and MOSEI datasets.

4.2 Evaluation Settings and Criteria
For each sample in the dataset, we incorporate data from
three modalities: language, audio, and visual data. Consis-
tent with previous works ([Zhang et al., 2023]), each modal-
ity is processed using widely-used tools: language data is
encoded using BERT([Devlin, 2018]), audio features are ex-
tracted through Librosa ([McFee et al., 2015]), and visual
features are obtained using OpenFace ([Baltrusaitis et al.,
2018]). Specifically, for visual and audio modalities, we fill
the erased information with zeros. For language modality, we
fill the erased information with [UNK] which indicates the
unknown word in BERT ([Devlin, 2018]).

Following the previous works ([Zhang et al., 2024a]), we
report our results in classification and regression with the
average of 3 runs of different seeds and 10 missing rates
from 0.0 to 0.9 at 0.1 intervals. For classification, we re-
port the multiclass accuracy and weighted F1 score. We cal-
culate the accuracy of 2-class prediction, 5-class prediction
(Acc-5) and 7-class prediction (Acc-7) for MOSI and MO-
SEI. Besides, Acc-2 and F1-score of MOSI and MOSEI have
two forms: negative/non-negative (non-exclude zero) ([Zadeh
et al., 2017]) and negative/positive (exclude zero) ([Tsai et
al., 2019]1). For regression, we report Mean Absolute Er-
ror (MAE) and Pearson correlation (Corr). Except for MAE,
higher values indicate better performance for all metrics.

In training process, for hyperparameters, we choose that
λ = 0.7, α = 0.1, β = 0.1. On the mosi dataset, we choose
the missing rate k = 0.3, and on the mosei dataset, we choose
k = 0.4.

Compared with the baseline LNLN([Zhang et al., 2024a])
which uses the best model under different metrics for test-
ing, we use the same model with the smallest overall loss as
the optimal model for testing, and at the same time, in order
to ensure the stability of the results, we randomly test three
times and take the average value as the final result following
the baseline settings.

Inaddition, the result of MISA, Self-MM, MMIM, CENET,
TETFN, ALMT is reproduced by the authors from open
source code in the MMSA([Mao et al., 2022]),which is a
unified framework for MSA, using default hyperparameters,
LNLN([Zhang et al., 2024a]) model is implemented using the
author’s open source code and for TFR-Net, We use the re-
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Figure 4: Variation of acc2 and acc5 of the model with training data
of different missing rates

sults reported in the LNLN article, and since that article uses
the best modeling results under the corresponding metrics, we
consider this comparison to be fair.

4.3 Robustness Comparison
Table 1 shows the robustness evaluation results on the MOSI
and MOSEI datasets. As shown in Table 1, DAR achieves
state-of-the-art performance on most metrics, demonstrating
the robustness of DAR in the term of different noise effects.
For seven categorical metrics on the mosi dataset MAE versus
the mosei dataset, our model is able to achieve sub-optimal
results. Considering the unpredictability of the impact of
stochastic factors on the quality of missing data, and some
of the extremes of the data have a huge impact on the overall
results, in this case, given the inherent instability of missing
data, we can assume that DAR achieves the optimal overall
performance on both datasets compared to the other models
compared.

Figure 4 shows the performance of all models under two
of the most commonly used binomial and multiclassification
metrics, non0acc2 and acc5, at different missing rates. The
results show that although DAR loses part of its performance
compared to other models when facing complete inputs, its
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Method Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr
w/o Lsim 34.14 38.42 71.50 / 72.71 71.30 / 72.62 1.084 0.505
w/o Ldiff 34.28 38.27 71.54 / 72.85 71.48 / 72.62 1.089 0.507
w/o Lsim&Ldiff 34.15 38.35 71.32 / 72.46 71.10 / 72.35 1.113 0.504
w/o Lrecon 33.57 38.31 71.02 / 72.20 70.45 / 71.13 1.123 0.493
w/o Lboot 33.03 36.93 70.50 / 72.26 69.90 / 71.80 1.123 0.475

Ours 34.47 38.65 71.60 / 73.18 71.51 / 73.15 1.069 0.520

Table 2: Effects of different component. Where Lboot denotes the
task loss corresponding to the boot module.

performance under other missing rates is significantly im-
proved compared to other models without missing data, and
also compared to TFR-Net and LNLN trained with missing
data, which proves the effectiveness of our method.

4.4 Ablation Experiment
To evaluate the effectiveness of our proposed approach, we
conduct a series of ablation experiments. These experi-
ments systematically remove or modify key components of
our model to assess their individual contributions to perfor-
mance. By comparing the results of these ablations with the
full model, we are able to quantify the impact of each design
choice. This analysis provides a deeper understanding of the
strengths and limitations of our method.

The effect of the ablation experiment is shown in Table 2.
The results of the ablation experiments demonstrate the effec-
tiveness of our proposed multimodal fusion framework based
on the decomposition-reconstruction idea. Compared to the
complete model, eliminating either similarity or dissimilarity
loss causes information redundancy in the feature correction
reconstruction process, which reduces the performance of the
model to varying degrees.

Besides, we also verified the effect of eliminating the align-
ment loss and bootstrap loss in the incomplete feature recon-
struction process on the model effectiveness, and the elimina-
tion of the alignment loss increases the uncertainty in the in-
complete feature reconstruction process and affects the model
performance. While eliminating the bootstrap loss causes the
model to focus too much on the effect of the incomplete fea-
ture reconstruction, in order to minimize the difference losses
between the incomplete input and the complete input after en-
coding. This leads to the degradation of the encoder’s ability
to extract features, the reduction of the variability of the ex-
tracted features, and ultimately impairing the model’s ability.

4.5 Missing Rates Sensitivity Experiment
During the training of the model, we found that the manually
selected missing rate of the multimodal data has a critical im-
pact on the training process, and the following demonstrates
the specific impact of the missing rate on the model output re-
sults. We tested the performance of the model under different
missing training sets constructed with different missing rates
k. The results are shown in Table 3.

Analyzing the experimental results, it can be seen that the
performance of the model appears to increase and then de-
crease overall as the missing rate increases. After analyzing
the results, we believe that too low missing rate will lead to

Method Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr
k=0.0 31.84 35.45 68.99 / 71.03 66.39 / 63.10 1.069 0.514
k=0.2 33.18 37.88 70.57 / 71.06 70.57 / 70.56 1.160 0.502
k=0.4 32.95 36.39 71.22 / 72.73 70.98 / 72.62 1.078 0.515
k=0.6 30.12 32.58 70.63 / 71.99 70.27 / 71.75 1.118 0.475
k=0.8 24.56 24.64 69.16 / 70.96 67.50 / 69.51 1.173 0.460

Table 3: Performance of the model at different missing rates k in
training process.

the missing data is not distinct enough from the original com-
plete input data, and the model degenerates into an ordinary
multimodal fusion model. In this case,the DAR model is un-
able to learn the ability of feature reconstruction, while too
high missing rate will lead to the features being corrupted
seriously, especially for the modal common features, which
may lead to the fact that all the modal features corresponding
to all modal features are after alignment under too high miss-
ing rate. The model is therefore unable to learn the ability to
reconstruct complete features from incomplete features.

5 Conlusion

In this paper, we propose a novel method for multi-
modal sentiment analysis called Decoupled-Adaptive Re-
construction (DAR). The framework uses a reconstruction
method based on feature decoupling, and adopts differ-
ent reconstruction methods for the modal-common features
and modal-independent features of the missing data accord-
ing to their own properties, and achieves a more obvious
improvement in the robustness test of the mosi and mo-
sei datasets compared with the existing methods. In ad-
dition, we validate the effectiveness of our proposed fea-
ture decomposition-reconstruction framework through abla-
tion experiments, showing that our method can alleviate prob-
lems such as information redundancy in the feature recon-
struction process.

Finally, we explore the performance of the trained mod-
els with different levels of data missing rates, and the results
show that choosing the appropriate data missing rate has an
extremely important impact on the robust performance of the
models. In this experiment, we only discuss the case of the
same missing rate for multiple modalities, however, in prac-
tice, due to the different quality and noise immunity of differ-
ent modalities, choosing different missing rates for different
modalities or using methods that can adapt the missing rate is
a more promising direction for future improvement.
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