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Abstract
Real-world datasets usually contain multiple at-
tributes, making it essential to ensure fairness
across all of them simultaneously. However, dif-
ferent attributes may vary in difficulty, and no ex-
isting approaches have effectively addressed this
issue. Consequently, an attribute-adaptive strat-
egy is needed to achieve fairness for all attributes.
Multi-task Learning (MTL) leverages shared in-
formation to optimize multiple tasks concurrently,
while Sparsely-Gated Mixture-of-Experts (SMoE)
can dynamically allocate computational resources
to the most needed tasks. In this work, we formu-
late multi-attribute fairness issue as an MTL prob-
lem and employ SMoE to achieve desirable perfor-
mance across all attributes simultaneously.
We first analyze the feasibility and find the poten-
tiality by formalizing multi-attribute fairness prob-
lem into a MTL problem and mitigating it by using
SMoE. However, vanilla SMoE could lead to over-
utilization problem which causes sub-optimal per-
formance. We then proposed an innovative SMoE
framework for multi-attribute fair image classifi-
cation, which further improves multi-attribute fair-
ness by redesigning the MoE layer and routing pol-
icy with fairness consideration. Extensive exper-
iments demonstrated the effectiveness. Taking a
DeiT-Small as the backbone, we achieve 77.25%
and 86.01% accuracy on the ISIC2019 and CelebA
dataset respectively with Multi-attribute Predictive
Quality Disparity (PQD) score of 0.801 and 0.787,
beating current state-of-the-art methods Muffin, In-
foFair and MultiFair.

1 Introduction
As AI democratization advances, machine learning (ML) has
been increasingly utilized in a variety of applications, includ-
ing image or video generation [Wu et al., 2022b; Zhan et al.,
2021; Zhan et al., 2024a; Shen et al., 2025b; Li et al., 2025;

Shen et al., 2025c], autonomous driving [Li et al., 2023a;
Yang et al., 2023c; Zhang et al., 2022; Li et al., 2022; Shen
et al., 2025a], and language translation [Zhao et al., 2024;
Zhan et al., 2024b; Shen et al., 2024; Shen et al., 2025b;
Shen et al., 2025d]. Fairness has emerged as a significant
and fundamental concern in these applications. Studies have
found unfair ML models exhibiting worse performance to-
ward sensitive attributes, such as race [Nanda et al., 2021;
Puyol-Antón et al., 2022], gender [Puyol-Antón et al., 2022]
and skin tone [Yang et al., 2023b; Yang et al., 2023a], leading
to discrimination and undermining the trustworthiness of ML
[Li et al., 2023b; Li et al., 2024] from the public.
Many research efforts are devoted to improving fairness

in ML, which include two common categories: (1) Mitigat-
ing unbalanced data by generation synthetic data or adopt-
ing data augmentation techniques [Sattigeri et al., 2019;
Xu et al., 2018]; (2) Revisiting training procedure by uti-
lizing adversarial training [Karkkainen and Joo, 2021; Wang
and Deng, 2020], discriminate training [Tao et al., 2022]
or training with fair objectives [Karkkainen and Joo, 2021].
Although these methods are effective in improving single-
attribute fairness, in practice, an individual may have mul-
tiple sensitive attributes, and models optimized for just one
attribute can still make unfair predictions.
Recently, a few studies have started to investigate multi-

attribute fairness optimization. Data pre-processing [Tian et
al., 2024] is considered to ensure statistical parity among
multiple sensitive attributes, while other works [Hwang et al.,
2020; Deng et al., 2023] extend single-attribute fairness op-
timization techniques to multi-attribute protections by intro-
ducing additional constraints or prediction heads for multi-
ple attributes. However, directly adapting existing methods
for multi-attribute protection has several limitations. Firstly,
as the number of attributes increases, the computational cost
rises accordingly. Consequently, current approaches only
consider a small number of sensitive attributes. Secondly,
extending these methods may inherit or aggravate their draw-
backs. For example, adversarial approaches require elaborate
tuning to guarantee training convergence due to the inverse
gradient updating [Wang and Deng, 2020].
To tackle these challenges, one solution is to formulate
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the multi-attribute fairness problem as a multi-task learn-
ing (MTL) problem. Multi-attribute fairness naturally de-
composes into multiple “tasks,” each linked to a sensitive
attribute or intersection of attributes. By adopting a MTL
framework, the model can simultaneously learn shared repre-
sentations across attributes while preserving each attribute’s
unique features. To increase model capacity while maintain-
ing similar computational cost, the Sparse Mixture of Experts
(SMoE) is particularly suited because it can dynamically al-
locate specialized experts to each task [Chen et al., 2023;
Chen et al., 2022]. This methodology optimizes fairness for
all tasks, improves computational efficiency, and avoids the
instability of other architectural approaches.
However, several challenges must be addressed to build an

effective MTL framework for multi-attribute fairness. First,
conventional MTL setups use a fixed number of experts per
task, which can lead to suboptimal performance due to the
varying difficulty of optimizing different sensitive attributes.
Second, without proper regularization, the router may de-
velop deterministic patterns when dealing with multi-attribute
fairness problem. This leads to over-utilization of certain ex-
perts, hindering the capacity and reducing the efficiency of
SMoE. Moreover, from the perspective of training dynamics,
when certain experts are rarely used, the gradients flowing
back to update their parameters are somewhat sparse, mean-
ing that these experts are updated very slowly or not at all,
which destabilizes the entire training process. Thus, appro-
priate regularization is required to balance expert utilization
and maintain fairness across multiple attributes.
Our contributions are summarized below:

• We target multi-attribute fairness optimization problem
and first formalize the problem as a MTL problem. We
further analyze the feasibility and potentiality of using
SMoE in this problem and tackle the challenge of unbal-
anced utilization of experts and task difficulties.

• We propose an innovative SMoE framework for multi-
attribute fair image classification to improve fairness
by redesigning the SMoE layer with fairness consider-
ations. We regulate experts with fairness constraints and
dynamically allocate expert numbers for each task.

• Extensive experiments demonstrated our effectiveness.
Taking a DeiT-Small as the backbone, FairSMoE
achieves 77.25% and 86.01% accuracy on the ISIC2019
and CelebA dataset respectively with Multi-attribute
Predictive Quality Disparity (PQD) score of 0.801 and
0.787, beating current state-of-the-art methods such as
Muffin and MultiFair. FairSMoE alleviates unbalanced
routing and gradient conflict issue.

2 Related Works
Single-Attribute Fairness. Distribution-based methods aim
to better represent minority groups or eliminate undesired bi-
ases in datasets. For instance, [Derman, 2021; Stafanovičs et
al., 2020] propose algorithms that adjust objects in datasets
based on predefined rules, while [Yan et al., 2020] discusses
sampling techniques to address under-representation of pro-
tected groups. However, undersampling strategies are im-

practical for DNNs as they reduce dataset size making train-
ing infeasible.
One-step training methods incorporate fairness into the

main training procedure. The works [Gaci et al., 2022;
Xu et al., 2019] utilize adversarial frameworks to train mod-
els avoiding undesired biases. These methods often re-
quire annotations of protected variables, which can be lim-
iting. Additionally, optimization methods have been pro-
posed to enhance fairness during training [Du et al., 2023;
Wu et al., 2022a] balancing fairness and accuracy.
Multi-Attribute Fairness. Recent methods address-

ing multi-attribute fairness primarily focus on data pre-
processing and augmentation [Deng et al., 2023; Tian et al.,
2024]. For example, [Sheng et al., 2023] proposed a Neural
Architecture Search framework to automatically search for
fair combinations in multi-attribute models. However, this
can cause attribute turbulence among model candidates, lead-
ing to performance degradation. [Tian et al., 2024] focus on
data augmentation by introducing mix-up procedures to gen-
erate synthetic data.
Fairness in Multi-Task Learning. As MTL becomes in-

creasingly prevalent in SOTA models [Ruder, 2017; Zhang
and Yang, 2021], understanding the interaction between fair-
ness and MTL is essential. [D’Amour et al., 2020] inves-
tigates fairness in multi-task regression models using rank-
based non-parametric independence tests. [Zhao and Chen,
2020] proposes MTL enhanced with fairness constraints to
jointly learn classifiers leveraging information across sensi-
tive groups.

Mixture of Experts. The initial concept of MoE [Jacobs et
al., 1991] involves dividing input space into regions and train-
ing specialized experts for each region, with a gating network
selecting appropriate experts. Recent advancements leverage
SMoE [Jiang et al., 2024; Du et al., 2022] to handle increas-
ing complexity of modern datasets. SMoE [Shazeer et al.,
2017] reduces computational overhead by dynamically rout-
ing inputs to expert subsets. GShard [Lepikhin et al., 2020]
extends MoE models to multilingual settings, scaling to han-
dle over 100 languages simultaneously.

3 Discovery and Analysis
Existing works have shown model fusion success on multi-
attribute fairness optimization [Sheng et al., 2023]. However,
SMoE under MTL scenarios has crucial factors—routing pol-
icy and number of experts per task—that differentiate it from
model fusion methods. To investigate optimal SMoE utiliza-
tion, we address the following questions.

3.1 Do Different Attributes Have the Same
Difficulty To Optimize?

We investigated how various sensitive attributes perform un-
der identical model configurations using the ISIC2019 dataset
for dermatology disease classification, analyzing three sensi-
tive attributes: age group, gender, and disease site.
Experimental Setting. DeiT-Small [Touvron et al., 2021]

model was employed with the last layer replaced by a sparse
SMoE layer. Number of experts was set to 4 with auxiliary
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Figure 1: Results of fairness score on different attributes. We
show that regardless of model type, the different sensitive attribute
has variant difficulty to optimize.

loss [Zoph et al., 2022]. Fairness was quantified using Pre-
dictive Quality Disparity (PQD) score.
Analysis Results. The results, illustrated in Figure 1,

reveal significant disparities in fairness optimization across
these attributes. Gender attribute showed high fairness score
variance, suggesting minor disparity and balanced outcomes.
Conversely, disease site and age group demonstrated low
PQD as shown in Figure 2, indicating greater classification
outcome disparity and fairness optimization challenges.
Observation. Not all attributes are equally challenging to

optimize for fairness. Attributes with higher variability and
less balanced representation (disease site and age group) are
more difficult to optimize than gender, highlighting the need
for attribute-specific strategies.

3.2 How Does the Default Routing Policy Behave
When Dealt With Multi-Attribute?

Building on observations that different attributes present
varying optimization difficulties, we investigated how the de-
fault routing policy manages inputs related to both easier and
more challenging attributes, and how altering expert numbers
and SMoE layer placement affects these dynamics.
Experimental Setting. We explored transformer-based ar-

chitectures with SMoE layers in various configurations, in-
creasing expert numbers and introducing SMoE layers earlier
in the network to observe routing policy distribution across
experts.
Analysis Results and Observation. Our findings reveal

that, without tailored adjustments, the default routing policy
routes similar inputs—regardless of attribute difficulty—to
the same experts. This pattern intensifies with increased ex-
perts or earlier SMoE layer integration, leading to significant
expert overutilization. These results, illustrated in Figure 2,
underscore the challenges in maintaining balanced distribu-
tion of inputs across experts.
Conclusion and Takeaway. This investigation highlights

the critical need for adaptive routing mechanisms within
SMoE models for multiple sensitive attributes. Current de-
fault routing policies may not sufficiently accommodate input
diversity, potentially leading to biased outputs and decreased
effectiveness.

4 Problem Formulation
Fairness Metrics. (i) Here we present our definition of fair-
ness used for evaluation. We utilize two mainstream metrics
for fairness evaluation: Predictive Quality Disparity (PQD)
and Demographic Parity (DP). Details on the definitions of
these metrics are available in the Appendix. (ii) Multi-
attribute Fairness (MF): it measures the overall fairness on
multiple attributes. Let S = {s1, s2, . . . , sm} be the set of
sensitive attributes in a dataset. The multi-attribute fairness
score,MF!, under the fairness metric !, is defined as:

MF! =
1
m

m∑

i=1

!(si) (1)

where !(si) represents the fairness score for the sensitive at-
tribute si, andm is the total number of sensitive attributes.
Problem Formulation. Addressing the multi-attribute

fairness problem requires a holistic approach considering the
interdependence among all attributes and their impact on the
fairness of the model. To this end, we formulate the multi-
attribute fairness optimization problem as a multi-task learn-
ing (MTL) problem. This approach enables the simultaneous
optimization of fairness across various sensitive attributes,
alongside the primary task of prediction performance.
In our MTL framework, the tasks are defined as follows:
(i) Primary Task (Predictive Performance): The primary

objective is to maximize the overall accuracy of predictions
across all groups, defined by:

Lperformance = →
m∑

i=1

log p(yi|xi, ω) (2)

where xi and yi represent the features and label of the i-th
data point, and ω denotes the parameters of the model.
(ii) Fairness Tasks: Each fairness task aims to optimize the

fairness score in predictive outcomes related to each sensitive
attribute si → {s1, s2, . . . , sm}. For each fairness metric !
such as PQD and DP, we define a corresponding loss function
that penalizes the deviation from fairness:

L! =
m∑

i=1

!(si) (3)

(iii) Overall Objective: The overall training objective com-
bines the predictive performance with the fairness tasks, bal-
anced by a set of tunable parameters ε, which regulate the
trade-off between accuracy and fairness:

Ltotal = Lperformance + εL! (4)

By integrating these objectives into a single MTL frame-
work, our approach allows for explicit control over the trade-
offs between achieving high predictive performance and en-
suring fairness across multiple sensitive attributes.

5 Methodology
5.1 Revisiting Sparse Mixture of Experts
SMoE is proposed to scale up the model capacity while main-
taining low per-inference costs. In this work, we insert SMoE
layers into a transformer block. The SMoE block consist of
n experts {E1, ..., En}, each of which is a feedforward neu-
ral network similar to those in the vision transformer block.
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Figure 2: Distribution of expert activation frequencies on DeiT-Small with vanilla SMoE layer with different settings. For each heatmap,
each row resembles a class while each column indicates different expert. Class from index 0 to 4, 5 to 12 and 13 to 14 belong to three
different sensitive attributes (age, site and gener) respectively. Results shows when number of expert increase, utilization rate will decrease
and it tends to develop a deterministic pattern for all attributes. We can also observe that the utilization rate for experts will increase when
SMoE is put into later layers.

Giving an input embedding x, it is fed into a router network
G and assigned to the most relevant experts. The architecture
of the router network is usually one or a few layers of multi-
layer perceptrons (MLPs). The gating mechanism is defined
as following:

R(x) = Top-K(softmax(g(x))) (5)

where g(·) are trainable gating networks and Top-K select
the largest K values. The final output of an SMoE block is a
summarization of features from the activated experts and can
be depicted as below:

y =
k∑

i=1

R(x)i · Ei(x) (6)

where Ei(x) stands for the feature representations produced
from the expert Ei, which is weighted by R(x) to form the
final output y.

5.2 Fairness-Guided Routing (FGR)
The proposed FairSMoE consists of the MoE layer re-
designed with fairness consideration. In the training frame-
work, we regulate expert with fairness constraints.
We begin by investigating the routing behavior of a vanilla

Sparse Mixture of Experts (SMoE) model trained with a top-2
routing policy using the ISIC2019 dermatology image classi-
fication dataset, which includes three sensitive attributes and
16 different classes in total: sex (2), age (5), and general
anatomic site (9). Discoveries in section 3 indicate that (i) the
routing choices across different attributes are highly similar,
and (ii) despite an increase in the number of experts, only a
few experts are heavily utilized, leading to a decreased over-
all utilization rate. These findings suggest that the standard
routing paradigm in SMoE is inefficient for multiple sensitive
attributes scenarios, potentially leading to under-utilization of
model capacity.
To address this inefficiency, we develop a fairness-guided

routing policy utilizing disentangled representation learn-
ing to mitigate the influence of sensitive attributes on rout-
ing decisions. We replace the traditional MLP gating net-
work with a novel structure, as in Figure 3, consisting of
the original MLP for gating fg as a gating branch, a fea-
ture extractor network ϑ and an additional sensitive attribute
(SA) branch, which consists of a number of m classifiers

{fs1 , fs2 , ..., fsm} to predict the attribute class. The input x
will first pass the feature extractor ϑ to get a representation
z = ϑ(x). Then the z will be fed into both the gating branch
and SA branch. In the Gating branch, we will get original
gating information e = fg(z). In the SA branch, z will be
copied m times and fed into {fs1 , fs2 , ..., fsm} and get class
predictions of each attributes {p1, p2, ..., pm}. After that, we
incorporate a confusion loss to further enhance this disentan-
glement:

Lconfusion = → 1
m

m∑

i=1

log (pi) (7)

This loss encourages the feature extractor to generate fea-
tures that are indistinguishable with respect to sensitive at-
tributes, fostering a state of maximum confusion. Output
{fs1 , fs2 , ..., fsm} are then fed into a linear projection layer
to get the expert choice vector {e1, e2, ..., em} and will add
with e. We select the vector from the classifier corresponding
to the specific attribute class and then apply a softmax to get
the final expert probability distribution.
By fusing losses into the training process of the SMoE

model, we ensure that the SA branch of the gating network
directs routing decisions based on task relevance and fairness
considerations, rather than on detectable sensitive attributes.
This approach not only minimizes the influence of protected
attributes on routing decisions but also optimizes the utiliza-
tion of experts by mitigating conventional biases and routing
patterns observed in vanilla SMoE models.
This dual-branch structure allows our SMoE model to han-

dle multiple tasks and sensitive attributes more effectively. It
aligns with the overarching goals of fairness and improves the
model’s capacity utilization by diversifying expert deploy-
ment across various tasks and contexts.

5.3 Fairness-driven Expert Management (FEM)
Our approach incorporates a comprehensive strategy that in-
cludes both dynamic expert allocation and fairness-dependent
constraints across experts. These mechanisms are designed
to enhance the network’s performance and fairness dynam-
ically, adapting expert utilization based on the evolving re-
quirements of the task and fairness objectives.
Attribute-Focused Expert Specialization. In our

FairSMoE model, we strategically assign each expert to
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Figure 3: Framework overview. (left) Overall architecture of FairSMoE. Our proposed method replace the FFN by modified SMoE layer
in the last ViT block. (middle) We re-design the SMoE layer by adopting Fairness-Guided Routing (FGR) mechanism and Fairness-driven
Expert Management to enforces attribute-focused constraints and dynamically allocate experts for tasks according to fairness performance.
We train the model in a multi-task learning way with 1 primary task andm fairness tasks. (right) FGR consists of two branches, one is Gating
Branch, the vanilla gating network. Another is Sensitive Attribute (SA) Branch, encoding fairness information into routing consideration.

focus on unique sets of sensitive attributes to foster diverse
expertise. Experts are initially assigned attributes based
on potential and adjusted dynamically to minimize knowl-
edge overlap and maximize fairness. The specialization is
enforced through a tailored loss function:

Lspecialization,e = ϖ ·
∑

a→Se

Lossfocus(e, a)

↑ (1↑ ϖ) ·
∑

a/→Se

Lossavoid(e, a)
(8)

Here, Se is the set of attributes assigned to expert e, and
ϖ controls the balance between focusing on assigned at-
tributes and avoiding non-assigned ones. Lossfocus(e, a) and
Lossavoid(e, a) could be a standard loss function such as cross-
entropy loss or mean squared error, depending on the task. In
this task they are both standard cross-entropy loss.
Periodic performance reviews guide dynamic reassign-

ments, ensuring experts develop deep, relevant expertise
without redundancy. The routing logic is also adapted to align
with these specializations, optimizing decision-making and
enhancing model adaptability and fairness. This integrated
approach ensures that experts not only excel in their desig-
nated domains but also contribute effectively to the model’s
overall accuracy and fairness.
Fairness-aware Expert Allocation. Recognizing that

different sensitive attributes may require varying levels of op-
timization complexity, we have implemented a dynamic ex-
pert allocation mechanism. This data-driven approach dy-
namically adjusts the number of allocated experts based on
real-time assessments of fairness and performance. Initially,
we evaluate the single-attribute fairness score (SFi) for each
task on the validation set. If SFi remains stable or improves
over n iterations, we consider increasing the number of ex-
perts assigned to that attribute. Conversely, if adding more
experts results in a worse validation loss than previously ob-
served, it indicates potential overfitting or interference among
experts, suggesting a reduction in the number of allocated ex-
perts.

This method ensures that each expert’s capacity is fully uti-
lized, avoiding underutilization or overload, and aligns expert
deployment with the fairness needs of each attribute.
Implementation of Expert Management. Our method

is outlined in Appendix as Algorithm 2. The combined
fairness-dependent constraints and dynamic expert allocation
forms the core of our fairness-guided expert management
module. This module supports the model in achieving high
accuracy while ensuring multi-attribute fairness performance.
Loss Function The overall loss function for the

FairSMoE framework is formulated to balance performance,
fairness, and expert specialization:

Ltotal = Lperformance + εL! +
∑

e

Lspecialization, e + Lconfusion

Algorithm 1 Fairness-Guided Routing (FGR)
Require: Input token x, feature extractor ϑ, sensitive at-
tribute classifiers {fs1 , fs2 , ..., fsm}, main task gating net-
work fg , linear projection layer l

Ensure: Fair routing decision to an appropriate expert
z ↓ ϑ(x) # Extract features from input
pi ↓ fsi(z) for si → S # Predict sensitive
attributes
Compute Lconfusion = ↑ 1

n

∑n
i=1 log (pi)

e ↓ fg(z), ei ↓ fsi(z) for si → S
Combine e, ei to update probabilistic distribution e #
Incorporate fairness and original gating
scores into routing decision
return Gating score e, Lconfusion

6 Experiments
6.1 Implementation Details
Dataset and Network Backbones. We evaluate our meth-
ods on the ISIC 2019 and CelebA datasets, primarily for
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Backbone Method ISIC2019 CelebA # Params
Acc.↑ PQD↑ DP↓ Acc.↑ PQD↑ DP↓ (M)

DeiT-Small

vanilla SMoE 74.49 0.773 3.12 83.26 0.752 3.05 23
Muffin 72.09 0.778 3.18 82.14 0.763 3.14 45

MultiFair 75.78 0.794 2.97 84.99 0.774 2.92 22
FairSMoE 77.25 0.801 2.72 86.01 0.787 2.61 23

DeiT-Base

vanilla SMoE 75.77 0.762 3.21 83.90 0.743 3.13 87
Muffin 73.85 0.774 3.29 82.70 0.753 3.22 173

MultiFair 76.56 0.784 3.14 85.45 0.764 3.05 86
FairSMoE 78.37 0.852 2.43 86.70 0.803 2.34 87

Swin-Small

vanilla SMoE 76.10 0.784 3.24 84.50 0.763 3.15 51
Muffin 74.05 0.792 3.31 83.10 0.771 3.24 101

MultiFair 76.80 0.799 3.12 85.90 0.781 3.05 50
FairSMoE 77.84 0.814 2.73 86.30 0.793 2.64 51

Swin-Base

vanilla SMoE 76.50 0.787 3.23 85.00 0.774 3.14 89
Muffin 74.30 0.804 3.28 83.50 0.781 3.21 177

MultiFair 77.10 0.813 3.13 86.20 0.792 3.04 88
FairSMoE 78.95 0.828 2.23 87.00 0.809 2.14 89

Table 1: Results of FairSMoE on ISIC2019 and CelebA dataset using 4 experts. We demonstrate accuracy (Acc. in %) and multi-attribute
fairness performance under two different fairness metrics, MFPQD (PQD) and MFDP / ↔ 10→3 (DP). We select sex, age, site and
chubby, goatee, gender as sensitive attributes for ISIC2019 and CelebA dataset. # indicates activated parameters.

skin lesion analysis and facial attribute recognition tasks, re-
spectively, with more details in Appendix. To demonstrate
our generalization, we choose DeiT-Small, DeiT-Base, Swin-
Small, and Swin-Base for backbones. As discussed in Dis-
covery and analysis, we follow the observation that applying
the SMoE layer in the last transformer block will obtain the
best performance.
Baselines. To demonstrate the effectiveness of FairSMoE,

we consider three groups of baselines for comparison: (1)
transformers with vanilla SMoE layers, (2) Muffin [Sheng et
al., 2023] with model fusion, and (3) MultiFair [Tian et al.,
2024] with data augmentation.
Training and Evaluation Settings. We applied a batch

size of 256 and data augmentation of RandomResizedCrop
for all methods on both datasets. Transformers are optimized
with AdamW with weight decay of 1 ↔ 10↑4, initial learn-
ing rate (LR) of 5 ↔ 10↑4. Training epoch is set to 300
for ISIC2019 and 500 for CelebA. We randomly separate
ISIC2019 80:20 for training and test, and randomly select 5%
of training set for validation. We set ϖ as 0.6 in Equation (8)
and ε as 0.1 in Ltotal. To evaluate the fairness performance,
We use multi-attribute fairness MF! as metric, which is de-
fined in Equation (1). 4 Nvidia A100s are used for training
and testing. We are using overall loss adding eq. (4), Equa-
tion (7) and Equation (8) together.

6.2 Experiment Results
Comparison with vanilla SMoE and other approaches.
We selected two representative vision transformer models and
their four variants, DeiT-Small/Base and Swin-Small/Base,
to test the effectiveness of FairSMoE. ”Vanilla SMoE” refers
to the model where we replace the last layer of each back-
bone with a vanilla SMoE layer, setting the number of ex-
perts to 4, and excluding any auxiliary loss or noisy gating.
For Muffin’s configuration, we used two backbones with-
out SMoE, following the default fusing method. For Mul-
tiFair, we used a single backbone without SMoE, implement-

Settings Acc.↗ PQD↗ DP↘
Vanilla SMoE 74.49 0.773 3.12
Ours. w/o FGR 76.08 0.781 2.93
Ours. w/o FEM 75.91 0.783 2.96
Ours. w/ both 77.25 0.801 2.72

Table 2: Ablation studies on FairSMoE of proposed Fairness-
Guided Routing (FGR) and Fairness-driven Expert Management
(FEM) on ISIC2019 dataset. Backbone is DeiT-Small and we set
the number of experts as 4.

ing only the data augmentation method proposed in Multi-
Fair. The results are shown in Table 1 and several observa-
tions can be drawn: (i) Performance and Fairness Advance-
ments: FairSMoE significantly outperforms existing methods
like vanilla SMoE, Muffin, and MultiFair in terms of accu-
racy and fairness. For example, on ISIC2019, FairSMoE en-
hances accuracy up to 78.95% and improves the PQD metric
to 0.828 on Swin-Base, demonstrating its effectiveness in bal-
ancing performance with fairness; (ii) Efficiency in Parame-
ter Utilization: Despite its enhanced capabilities, FairSMoE
maintains efficiency, using no more parameters than the least
complex models. Compared with only 25M parameters for
DeiT-Small, it outperforms models with up to 173M param-
eters, showcasing its ability to achieve optimal performances
with a lightweight network. (iii) Empirical Validation: The
empirical evidence supports the argument that FairSMoE’s
integrated approach to managing multiple sensitive attributes
simultaneously leads to higher performance and fairness. The
results validate our design philosophy, which leverages a nu-
anced understanding of attribute interactions within neural
networks to dynamically adjust to varied dataset character-
istics and fairness requirements.
Ablation Studies We conducted ablation studies on each

component in FairSMoE. We conducted experiments on
ISIC2019 dataset with all three attributes, with DeiT-Small as
a backbone. As shown in Table 2 and Figure 4, we conducted
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Figure 4: Ablation studies on the number of experts.
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Figure 5: Comparison of expert activation frequencies. We include
all three attributes in ISIC2019 and take DeiT-Small as the backbone
with SMoE layers on the last layer.

experiments on Fairness-Guided Routing (FGR), Fairness-
driven Expert Management (FEM), and the number of ex-
perts. Our results demonstrate that (i) the proposed FGR is
more effective compared with the vanilla router, demonstrat-
ing better accuracy and PQD score compared with the base-
line. (ii) when equipped with FEM, the performance is also
boosted by 1.42% in accuracy and 0.01 in PQD score, which
shows the necessity of selecting the appropriate capacity for
each task. (iii) when the number of experts arises, perfor-
mance on both accuracy and fairness are enhanced. Mean-
while, for vanilla SMoE, the performance on both aspects
drop for more experts due to low utilization rate. These
promising results demonstrate that FairSMoE has enhanced
SMoE with better scalability. We also conducted empirical
studies on ϖ in Equation (8). Results are shown in the Ap-
pendix.

6.3 In-Depth Discussion of FairSMoE
Given the superiority of our FairSMoE, we further investigate
(i) its expert specialization and routing quality, and (ii) the
mitigation effects on gradient conflicts from multiple training
objectives.
FairSMoE alleviate the unbalanced routing schedule.

As mentioned in Discovery and analysis, the default routing
mechanism[Shazeer et al., 2017] can not sufficiently accom-
modate the diversity of multiple sensitive attributes embed-
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Figure 6: Comparison of gradient conflict on the last layer of DeiT-S

ded into the input and will tend to develop a deterministic
routing pattern and over-utilization of certain experts, which
will get worse when the expert number increases. One key ad-
vantage of SMoE is to regularize each expert to focus on a set
of attributes and improve the overall utilization rate with the
increasing expert number. Figure 5 demonstrates the expert
activation frequencies on both vanilla SMoE and FairSMoE.
We observe that more experts are activated during the rout-
ing, which indicates a better utilization rate and leads to bet-
ter performance on both accuracy and fairness as pointed out
in Ablation Studies.
FairSMoE mitigate the issue of gradient conflict among

different task. The FairSMoE approach mitigates the issue
of gradient conflict among different tasks by employing dis-
entangled representation learning and confusion loss, which
ensure that features are insensitive to sensitive attributes. This
reduces the interference between tasks related to different at-
tributes, leading to more coherent gradient directions and im-
proved model stability during training. Figure 6 compares the
cosine similarity between gradients computed from the age
and site tasks on ISIC2019. The distribution of gradients
is more skewed towards 1, indicating higher cosine similarity
and reduced gradient conflict.

7 Conclusion
In this paper, we propose FairSMoE, a framework designed
to address multi-attribute fairness problem in vision recog-
nition. Our method modifies traditional SMoE models by in-
corporating fairness-guided routing and dynamic expert man-
agement to optimize expert utilization and minimize bias.
Through comprehensive testing on multiple datasets with
4 mainstream ViT backbones, we demonstrate notable en-
hancements in both performance and fairness, also the great
generalization and scalability capability on different settings.
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