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Abstract

Histopathological examination primarily relies on
hematoxylin and eosin (H&E) and immunohisto-
chemical (IHC) staining. Though IHC provides
more crucial molecular information for diagnosis,
it is more costly than H&E staining. Stain trans-
fer technology seeks to efficiently generate virtual
IHC images from H&E images. While current deep
learning-based methods have made progress, they
still struggle to maintain pathological and struc-
tural consistency across biomarkers without pixel-
level aligned reference. To address the problem, we
propose an Auxiliary Task supervision-based Stain
Transfer method for multi-biomarkers (ATST-Net),
which pioneeringly employs human annotation-
free masks as ground truth (GT). ATST-Net en-
sures pathological consistency, structural preserva-
tion and style transfer. It automatically annotates
H&E masks in a cost-effective manner by utilizing
consecutive IHC sections. Multiple auxiliary tasks
provide diverse supervisory information on the lo-
cation and intensity of biomarker expression, en-
suring model accuracy and interpretability. We de-
sign a pretrained model-based generator to extract
deep feature in H&E images, improving generaliza-
tion performance. Extensive experiments demon-
strate the effectiveness of ATST-Net’s components.
Compared to existing methods, ATST-Net achieves
state-of-the-art (SOTA) accuracy on datasets with
multiple biomarkers and intensity levels, while also
reflecting high practical value. Code is available at
https://github.com/SikangSHU/ATST-Net.

1 Introduction
Cancer remains one of the leading causes of death worldwide,
posing a significant threat to human health [Chhikara et al.,
2023; Li et al., 2025]. Histopathological examination is the
gold standard for cancer diagnosis and treatment.

Hematoxylin and eosin (H&E) staining is widely used in
clinical practice to enhance the visualization of tissues and

∗Corresponding author.

Tissue
Sampling

Section
Preparation

Fixation
Embedding
Sectioning

H&E Staining

IHC Staining Further
Analysis

(a) Consecutive section H&E and IHC staining (b) Biomarker diversity
Clustered Nucleus Stn Sparse Nucleus Stn

Membrane Stn

IHC Virtual Staining or

Figure 1: Diagram of stain transfer. After tissue sampling, fixation,
embedding and sectioning to obtain sections, we aim to generate
virtual IHC images that replace real staining for further analysis.
“Stn” in (b) stands for “Staining”. Best viewed at a zoomed-in level.

cells. Hematoxylin (Hema) stains nuclei blue or dark pur-
ple, while eosin stains the cytoplasm and extracellular ma-
trix pink. Though H&E staining reveals tissue structure and
cellular morphology, it cannot differentiate cancerous cells
from normal ones due to its lack of specific protein expres-
sion. This limitation is addressed by molecular staining tech-
niques like immunohistochemical (IHC) staining, which uses
antigen-antibody specificity to visualize protein (positive) ex-
pression in tissues and cells. IHC staining typically combines
Hema with diaminobenzidine (DAB) chromogen, employing
different staining configurations to highlight biomarkers such
as ER, PR, Ki67 and HER2, which are crucial for breast
cancer analysis. However, IHC examination is more expen-
sive, time-consuming and requires more specialized equip-
ments and techniques, limiting its accessibility and hindering
progress in pathological diagnostics. Currently, while no re-
search directly establishes a molecular biological connection
between H&E and IHC images, progress in related prediction
indirectly suggests a relationship between stains worth ex-
ploring via artificial intelligence (AI). For example, [Zeng et
al., 2022] achieves semi-supervised H&E-to-PR stain trans-
fer, [Liu et al., 2020] predicts Ki67 positive cells, and [Farah-
mand et al., 2022] infers HER2 status from H&E images.

We aim to develop a deep learning-based stain transfer
method that models the relationship between H&E and IHC
staining, as illustrated in Figure 1. It generates virtual IHC
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images that align with H&E images in both pathology and
structure, enabling immediate diagnosis of multiple biomark-
ers from the same tissue. Despite significant progress in stain
transfer, existing methods still struggle to overcome several
key challenges: (a) Absence of pixel-level aligned ground
truth (GT). Staining is irreversible in clinical practice, mean-
ing tissue sections stained with one dye cannot be restored
to their pre-staining state for re-staining. Pathologists often
use consecutive tissue sections (3 to 5µm apart) for different
stains. Due to misalignment and staining-induced variabil-
ity, pixel-level aligned GT is unavailable (Figure 1a). Several
studies employ expert annotations to enhance pathological
consistency supervision, such as patch-level [Liu et al., 2021;
Boyd et al., 2022; Pati et al., 2024] and cell-level [Liu et
al., 2020] annotations. However, manual annotations are
time-consuming, labor-intensive and impractical for large-
scale fine-grained labeling, often resulting in coarse, region-
level annotations. (b) Difficulty in maintaining patholog-
ical and structural consistency. Tissue and biomarker di-
versity (Figure 1b) complicates the preservation of patho-
logical and structural details during style transfer, including
consistency in protein (positive) expression regions, tissue
structures and specific expression sites (e.g., clustered nuclei,
sparse nuclei, or membrane staining). (c) Limited practical
applicability. The lack of pixel-level aligned GT for supervi-
sion impedes the interpretability of existing methods, limiting
their clinical practical applicability.

In this paper, we propose a novel supervised generative
stain transfer method that utilizes automatically generated
GT masks. Biomarker expression masks, derived from IHC
images of consecutive sections, serve as region-level an-
notations for corresponding H&E images. This approach,
achieved through stain unmixing and morphological opera-
tions, provides finer-grained annotations than manual label-
ing in a cost-effective way and allows parameter adjustments
to account for varying region differences between consecu-
tive sections. To fully leverage region-level alignment, we
introduce multiple auxiliary tasks that exploit the DAB and
Hema channels, offering supervisory information on positive
expression location, intensity and nucleus number. This im-
proves both model accuracy and interpretability. Further-
more, to enhance the model’s ability to extract pathologi-
cal and structural information across biomarkers, we design
a generator architecture incorporating a pretrained encoder
trained on large-scale H&E datasets. By robustly capturing
stain-invariant feature of various biomarkers from H&E im-
ages, this generator boosts model’s generalization ability.

The main contributions of this paper are as follows:
(1) This paper presents ATST-Net, a generative stain trans-

fer method that converts H&E to IHC images, designed for
high interpretability and generalization. It novelly employs
non-pixel-aligned IHC-stained consecutive sections as GT,
eliminating the need for any manual annotation or prior infor-
mation, thus markedly reducing annotation costs and errors.

(2) Multiple specialized auxiliary tasks are proposed to
fully supervise the generation process, addressing the lack of
precise annotations. These tasks include global and local pos-
itive expression location matching, intensity matching, and
nucleus number matching in positive regions.

(3) We propose a robust stain transfer generator architec-
ture that enhances H&E image interpretation and ensures ac-
curate feature extraction of biomarkers. This is the first work
to demonstrate the effectiveness of a specialized large-scale
pretrained model for stain transfer.

(4) We conduct experiments with the latest methods on di-
verse datasets, including the public dataset MIST [Li et al.,
2023] with multiple biomarkers, and BCI [Liu et al., 2022],
which classifies positive expression intensity. Our method,
ATST-Net, achieves SOTA accuracy in terms of pathology,
structure and style. It also enables bidirectional transfer.

2 Related Work
Traditional methods mainly focus on color mapping. [Rein-
hard et al., 2001] proposed a statistical transfer technique
adjusting each channel’s values. [Macenko et al., 2009] in-
troduced a histology stain normalization method using stain
vector determination and deconvolution. These methods only
achieve partial color transfer and lack pathological consis-
tency constraints, failing to capture the full stain relationship.

Deep learning-based methods adopt a generative approach.
They better capture pathological semantic relationships be-
tween stained images, leading to more accurate and reliable
transfer. Methods that directly use pixel-level supervision
typically rely on Pix2pix [Isola et al., 2017] as the backbone.
For instance, [Liu et al., 2022] introduced a pyramid Pix2pix
method that supervises feature at multiple scales during im-
age generation. However, calculating absolute errors between
generated images and pixel-level unaligned GT distorts the
image structure, resulting in inaccurate stain transfer. More
recent models are based on CycleGAN [Zhu et al., 2017;
Shaban et al., 2019] and CUT [Park et al., 2020], which ap-
ply fully unpaired or non-pixel-aligned H&E and IHC image
pairs. For example, UMDST [Lin et al., 2022] enables the
simultaneous generation of multiple stains from a single stain
using unpaired training data. [Li et al., 2023] proposed an
Adaptive Supervised PatchNCE loss to address misalignment
between the source and target domains. PSPStain [Chen et
al., 2024] focuses on improving pathological semantic min-
ing and spatial misalignment. These specifically designed
methods significantly improve the performance of transfer.
However, annotation-free methods suffer from limited inter-
pretability, while manual annotation is costly, incomplete and
subject to bias. [He et al., 2024] proposed PST-Diff, a pilot
study applying diffusion models to this task, though its ability
to preserve tissue structure requires further validation.

3 Method
The architecture of ATST-Net is depicted in Figure 2 and 3.
This section starts with data preprocessing, which maximizes
the utility of annotation information in consecutive sections.
For limited annotations, we introduce multiple auxiliary tasks
to guide biomarker generation. A specialized generator is de-
signed to deeply mine information, ensuring the preservation
of pathological and structural feature during stain transfer. Fi-
nally, the whole training and inference process is detailed.
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Real H&E Image Real IHC Image
(consecutive tissue section)

DAB Channel

②

① Stain Unmixing

② Grayscale Conversion
& Gaussian Filtering

③ Otsu Thresholding &
Erosion & Dilation

④ Closing

RH RI D

④ ③

Positive Region Mask

M

①

Figure 2: Diagram of data preprocessing. (1) Stain unmixing. (2)
Grayscale conversion & Gaussian filtering. (3) Otsu thresholding &
Erosion & Dilation. (4) Closing.

3.1 Data Preprocessing
Though pixel-level alignment is unavailable between H&E
and corresponding IHC images from consecutive sections,
high-quality dataset preparation ensures region-level align-
ment. As shown in Figure 2, data preprocessing extracts the
positive region mask M ∈ RH×W×C with height H , width
W and channel C for each H&E image RH ∈ RH×W×C

from its corresponding real IHC image (real IHC) RI ∈
RH×W×C . ATST-Net then adopts the automated annotated
masks to capture biomarker information in H&E images, gen-
erating virtual IHC images (fake IHC) FI ∈ RH×W×C .

During preprocessing, the color deconvolution stain un-
mixing method ColorDeconv [Ruifrok et al., 2001] is first
applied to extract the DAB channel from the real IHC RI .
The extracted channel is converted to grayscale and smoothed
by Gaussian filtering Gσ . Otsu thresholding Otsu then sep-
arates the foreground from the background. After the reg-
ular erosion and dilation operations, morphological closing
Closing fills gaps to produce a continuous automated anno-
tated mask M . The entire process is summarized as:

M = Closing(Otsu(Gσ(ColorDeconv(RI )))), (1)

where the filter’s standard deviation σ is empirically set to 1.
The disk radius in Closing is adjustable based on alignment
quality, with larger radii accommodating greater shift.

3.2 Auxiliary Tasks for Supervision
The absence of pixel-level aligned guidance makes it diffi-
cult for the model to learn feature of various biomarkers. To
address this, we exploit the approximately aligned positive
region masks from preprocessing, which are fully utilized via
multiple auxiliary tasks. They guide the model in capturing
the location and intensity of positive expression, as shown in
Figure 3. Positive nucleus number matching is incorporated
to improve the precision of pathological details further.

To globally constrain positive regions, the fake IHC FI un-
dergoes stain unmixing and morphological processing to pro-
duce the DAB channel D′, Hema channel H ′ and extracted
mask M ′ ∈ RH×W×C , as detailed in Section 3.1. The lo-
cation loss for global positive expression between M ′ and its

GT M is:

L1 =
1

HW

H∑
x=1

W∑
y=1

(
M ′(x, y)−M(x, y)

)2
, (2)

where x and y represent the vertical and horizontal coordi-
nates of M ′ and M respectively. To further enhance feature
learning for both positive and negative regions at a more lo-
calized level, M is divided into n equal-sized patches, de-
noted as Pk, with k as the patch index. The positive region
area within each patch is S(Pk). The top n

4 patches with the
highest S(Pk) form set H, and the bottom n

4 patches with
the lowest S(Pk) form set L. The local positive expression
supervision losses L2 and L3 are then computed as:

Li=2,3 =
4

n

∑
Pk∈Si

1

HW

∑
x,y∈Pk

(
M ′(x, y)−M(x, y)

)2
, (3)

in which Si denotes the patch set, with S2 = H and S3 = L.
Given the relatively small size of focused regions and simi-

lar intensity of positive expression within them, average stain-
ing intensity of positive regions in masks M ′ and M is used
for intensity supervision. The intensity loss L4 is defined as:

L4 =
(∑(D′ ◦M ′)

NM ′
−

∑
(D ◦M)

NM

)2
, (4)

where NM ′ and NM are the number of foreground pixels, and
D ◦M represents extracting M ’s foreground region from D.

Finally, a positive nucleus number matching task is intro-
duced to further refine the model’s ability to capture fine-
grained details. The convergence of the total loss, with this
term incorporated, offers stronger evidence of pathological
consistency and structural preservation. The widely recog-
nized nucleus segmentation method CPP-Net [Chen et al.,
2023] is used for segmentation. Loss L5 is expressed as:

L5 =
∣∣NCPP

(
Seg(H ′ ◦M ′)

)
−NCPP

(
Seg(H ◦M)

)∣∣, (5)

where Seg represents segmentation and NCPP is the nucleus
number predicted by CPP-Net. | · | denotes the absolute value.

3.3 Deep Pathology Mining Generator
In this study, we improve the stain transfer model’s gener-
alization ability by leveraging the feature extraction capabil-
ity of a specialized large-scale pretrained model. While re-
staining slides after cleaning them is impractical in clinical
workflows, AI enables us to simulate this ideal scenario.

ATST-Net employs an encoder-decoder architecture. The
encoder, based on Vision Transformer (ViT) [Dosovitskiy,
2020], focuses on extracting essential stain-invariant feature
from the source image, which corresponds to the de-staining
phase. The decoder, composed of multiple upsampling lay-
ers, reconstructs key features to the original image size while
integrating the style characteristics of new staining during the
re-staining phase. Skip connections are incorporated between
encoder and decoder layers to share multi-scale details.

To be specific, the encoder integrates PathoDuet [Hua
et al., 2024], a cutting-edge SOTA pretrained model for
H&E images based on ViT. PathoDuet is trained within a
self-supervised framework built on the contrastive learning
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Figure 3: The overview of our proposed ATST-Net. Best viewed at a zoomed-in level.

method MoCo v3 [Chen et al., 2021] using pretext tasks.
In our model, the input image rh ∈ RH×W×C is initially
divided into a series of flattened tokens rhp ∈ RL×(P 2·C),
where P is the token size and L = HW

P 2 is the total number
of tokens. These tokens are linearly projected into dimen-
sions L×D, where D is the latent space dimension, produc-
ing rhpat. Next, position embedding rhpos is added, along
with a learnable class token rhcls and a placeholder parame-
ter ϵ to align with the PathoDuet structure. The process gen-
erates the final input v for the transformer encoder, which
consists of K transformer blocks. At the network bottleneck,
five ResNet blocks are introduced to fully integrate the ex-
tracted feature. Upsampling operations then restore feature
maps to the original image size. To further preserve struc-
tural details, skip connections transmit low-level information
to the decoder layers. Following the convolutional process
in CellViT [Hörst et al., 2024], outputs from selected trans-
former blocks vk, k ∈ N

4 ,
2N
4 , 3N

4 , N are concatenated and
fused with the corresponding decoder layers after convolu-
tional operations adjust their dimensions.

3.4 Training and Inference
In ATST-Net, CycleGAN [Zhu et al., 2017] serves as the
backbone for style transformation. The deep pathology min-
ing generator, along with multiple auxiliary task constraints,
ensures the accuracy of pathological consistency and struc-
tural preservation during stain transfer. The proposed deep
pathology mining architecture is applied for H&E-to-IHC
conversion. For IHC-to-H&E conversion, a simpler U-Net

structure [Liu et al., 2021] based on convolutional operations
is employed. This choice improves computational efficiency,
given the lower color richness of H&E images. The discrim-
inator structure follows the design in [Zhu et al., 2017].

During training, two primary loss functions are ap-
plied. The first is the adversarial loss Ladv(G1, DIHC ) and
Ladv(G2, DHE ), where G1 is the generator maps images
from the real H&E domain HE to the IHC domain IHC , and
G2 maps images from the IHC domain to H&E. DIHC and
DHE are discriminators that enforce the generated images
to conform to the target domain’s distribution and staining
properties. To constrain the mapping space and avoid infinite
possibilities, a cycle consistency loss Lcycle(G1, G2) ensures
that the output fake IHC can be mapped back to the H&E do-
main. Additionally, structural similarity (SSIM) is incorpo-
rated into Lcycle(G1, G2) to enhance brightness, contrast and
structural fidelity in generated images. Combined with multi-
ple auxiliary task supervision losses applied solely during the
H&E-IHC-H&E transformation, the total loss function is:

Ltotal = Ladv(G1, DIHC ) + Ladv(G2, DHE )

+ αLcycle(G1, G2) + β1L1 + · · ·+ βnLn,
(6)

where n = 5, and α and β control the weight of each term.

4 Experimental Setup
4.1 Datasets
Experiments are conducted on two high-quality public
datasets: the Breast Cancer Immunohistochemical (BCI)
challenge dataset [Liu et al., 2022] and the Multi-IHC Stain
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Translation (MIST) dataset [Li et al., 2023]. BCI con-
tains 3896 H&E-HER2 training pairs and 977 test pairs (all
1024×1024) from 51 whole slide images (WSIs), with HER2
expression categorized into four intensity levels: 0, 1+, 2+
and 3+. MIST provides four biomarkers (ER, PR, Ki67,
HER2) with 4153, 4139, 4361 and 4642 training pairs, and
1000 test pairs each (all 1024 × 1024). In our experiments,
poorly aligned MIST training samples are removed, yielding
4000 training and 1000 test pairs per biomarker. All BCI data
is used without filtering. The BCI test set contains 38, 235,
446 and 258 image pairs for HER2 level 0, 1+, 2+ and 3+.

4.2 Evaluation Metrics
We employ six evaluation metrics to comprehensively as-
sess method performance, categorized into paired and un-
paired metrics. The paired metrics [Liu et al., 2021] include:
(1) Peak Signal-to-Noise Ratio (PSNR). (2) SSIM: Evaluates
similarity in brightness, contrast and structure. (3) Contrast-
Structure Similarity (CSS): A SSIM variant that focuses on
contrast and structure rather than intensity. (4) Perceptual
Hash Value (PHV): Assesses perceptual similarity between
fake and real images via feature maps. The unpaired metrics
[Li et al., 2023] are: (1) Fréchet Inception Distance (FID) and
(2) Kernel Inception Distance (KID): Measure feature-space
distribution similarity between fake and real IHC image sets.

4.3 Implementation Details
All methods are implemented in PyTorch 1.12.1 on a sin-
gle NVIDIA GeForce RTX 3090 GPU. During training and
testing, images are cropped to 512 × 512 and stitched after
processing. To retain pathological details in H&E and IHC
images, no normalization is applied. CPP-Net is trained on
a systematic IHC nucleus dataset [Xu et al., 2024]. The pro-
posed deep pathology mining generator uses 224×224 inputs
to match the pretrained model. Training adopts a batch size
of 1, an initial learning rate of 0.0002 with linear decay after
half the epochs, and the Adam optimizer. Hyper-parameters
in Ltotal are: α = 5, β1 = 60, β2 = β3 = 10, β4 = 20,
β5 = 1. The model is trained end-to-end. Parameter settings
for comparison methods follow their original papers.

5 Experiments and Analysis
5.1 Comparisons with the SOTA Methods
To assess stain transfer accuracy, ATST-Net is evaluated
on four MIST biomarkers and one BCI biomarker with
four levels. We compare it with the baseline style transfer
method CycleGAN and SOTA stain transfer methods, i.e.,
PC-StainGAN [Liu et al., 2021], UMDST [Lin et al., 2022],
PyramidP2P [Liu et al., 2022], ASP [Li et al., 2023] and PSP-
Stain [Chen et al., 2024]. Following the protocol in Section
4.1, we adopt the same data volume and splits, with image
sizes as reported. For PC-StainGAN, H&E labels are gener-
ated using the method in Section 3.1 due to unavailable expert
annotations. UMDST is trained separately biomarkers.

Quantitative results for MIST (ER, HER2) and BCI are
shown in Table 1, with MIST (PR, Ki67) in the supplemen-
tary materials. The quality of generated images (fake IHC)
is first assessed using PSNR and SSIM, though these metrics

are suboptimal due to structural deviations caused by section
misalignment and preparation variations. Thus, they serve
as reference metrics. This is further reflected in CSS, which
mitigates per-pixel intensity impact but still suffers from mis-
alignment, resulting in lower scores across all methods.

While CycleGAN is effective for style transfer, it lacks
pathological consistency constraints, leading to incorrect
stain transfer and poor metric performance. UMDST, with
its dynamic style adjustment ability, adaptively represents the
relationship between stains but struggles with complex IHC
images involving multiple biomarkers, where positive region
accuracy decreases. PyramidP2P aligns high-dimensional
feature maps of fake and real IHC. It maintains positive re-
gion consistency through aggregated feature constraints, but
loses the original tissue structure totally. PC-StainGAN im-
proves pathological feature differentiation while preserving
structure. However, it relies on precise manual annotations,
with any decrease in annotation accuracy greatly affects its
performance. Notably, ASP and PSPStain excel in PHV, FID
and KID by using task-specific networks to preserve patho-
logical consistency and tissue structure in H&E-to-IHC style
transfer. PHV shows higher stain transfer accuracy across dif-
ferent layer levels between fake and corresponding real IHC,
while FID and KID further confirm consistency in feature dis-
tribution across a larger set. Our ATST-Net outperforms exist-
ing methods on most key metrics. On MISTHER2, it improves
CSS, PHV(avg), FID and KID by 0.019, 0.027, 11.2 and 4.6,
showcasing superior accuracy. Quantitative analysis reveals
ATST-Net shows reduced improvements on BCI compared
to MIST, mainly due to MIST’s higher alignment precision,
which offers more accurate guidance for model learning.

We further evaluate methods for differentiating positive ex-
pression intensity in IHC (0, 1+, 2+ and 3+) when learning
pathological information. Results for level 0 and 3+ in the
BCI test data are in Table 1, with level 1+ and 2+ in the sup-
plementary materials. PSPStain, which aligns average protein
expression intensity during training, outperforms other meth-
ods in most metrics. Our proposed ATST-Net constrains pos-
itive expression location while focusing on intensity. Its gen-
erator excels at identifying varying expression degrees across
different locations, surpassing PSPStain on multiple metrics.

To assess ATST-Net’s generalization performance, we de-
sign cross-dataset validation. The MIST dataset has clearer
tissue structures, greater variation in expression intensity and
better alignment between H&E and IHC images compared
to BCI. We train on MISTHER2 and test on BCI, which ex-
hibits great difference. Results for this MIST→BCI (train-
ing dataset→testing dataset) experiment are presented in the
MISTHER2 section of Table 1 (values in parentheses). ATST-
Net achieves improvements of 0.015, 0.027, 14.4 and 6.3 in
CSS, PHV(avg), FID and KID, respectively, demonstrating
stronger generalization. However, the metrics are lower than
when training on BCI, highlighting how variations in tissue
sample, staining and imaging setup, even for the same tissue
and biomarker type, can cause significant image variations. In
practice, stain transfer models perform optimally only when
test data closely matches training data in tissue and biomarker
type, sample batch, staining and imaging condition.

In addition, compared to other methods, ATST-Net stands
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Dataset Method PSNR↑ SSIM↑ CSS↑
PHVT=0.01 ↓

FID↓ KID↓
layer1 layer2 layer3 layer4 avg.

Comparisons on MIST and BCI.

MISTER

CycleGAN 11.859 0.183 0.152 0.567 0.486 0.311 0.856 0.555 132.1 92.5
PC-StainGAN 12.260 0.174 0.167 0.484 0.431 0.267 0.845 0.507 62.5 15.4

UMDST 12.348 0.188 0.163 0.513 0.430 0.294 0.851 0.522 76.2 19.7
PyramidP2P 11.759 0.204 0.178 0.461 0.448 0.343 0.868 0.530 101.1 82.3

ASP 11.550 0.166 0.177 0.451 0.405 0.271 0.845 0.493 53.7 6.2
PSPStain 11.782 0.184 0.181 0.436 0.396 0.273 0.840 0.486 52.8 6.4
ATST-Net 11.989 0.201 0.190 0.407 0.374 0.274 0.817 0.468 46.3 5.0

MISTHER2

(MIST→BCI)

CycleGAN 13.240 0.186 0.109 0.589 0.530 0.329 0.857 0.576 235.2 323.9
CycleGAN (15.270) (0.270) (0.087) (0.684) (0.586) (0.392) (0.873) (0.634) (242.9) (356.2)

PC-StainGAN 13.216 0.195 0.116 0.486 0.472 0.301 0.846 0.526 84.4 16.5
PC-StainGAN (14.311) (0.355) (0.081) (0.671) (0.602) (0.378) (0.874) (0.631) (196.9) (89.0)

UMDST 13.216 0.169 0.123 0.504 0.445 0.273 0.842 0.516 86.1 18.4
UMDST (15.396) (0.261) (0.072) (0.634) (0.555) (0.371) (0.856) (0.604) (117.1) (39.2)

PyramidP2P 13.636 0.195 0.113 0.460 0.458 0.360 0.869 0.537 106.2 74.7
PyramidP2P (17.207) (0.305) (0.044) (0.670) (0.649) (0.386) (0.865) (0.643) (198.7) (97.7)

ASP 13.452 0.192 0.118 0.454 0.423 0.267 0.839 0.496 84.3 15.3
ASP (16.152) (0.288) (0.077) (0.582) (0.514) (0.366) (0.859) (0.580) (122.0) (47.2)

PSPStain 13.514 0.178 0.137 0.424 0.398 0.259 0.838 0.480 79.3 13.2
PSPStain (15.517) (0.299) (0.083) (0.650) (0.573) (0.364) (0.843) (0.608) (128.3) (54.5)
ATST-Net 13.619 0.187 0.156 0.391 0.364 0.238 0.819 0.453 68.1 8.6
ATST-Net (15.223) (0.304) (0.102) (0.541) (0.477) (0.345) (0.848) (0.553) (102.7) (32.9)

BCIHER2

CycleGAN 20.029 0.437 0.089 0.427 0.505 0.324 0.798 0.514 60.3 10.4
PC-StainGAN 20.224 0.446 0.096 0.422 0.375 0.244 0.752 0.448 69.0 19.5

UMDST 19.003 0.458 0.093 0.510 0.422 0.276 0.778 0.497 79.7 27.0
PyramidP2P 20.978 0.463 0.083 0.611 0.419 0.263 0.740 0.508 117.5 76.3

ASP 20.173 0.484 0.107 0.520 0.373 0.259 0.736 0.472 64.8 10.2
PSPStain 20.484 0.444 0.126 0.434 0.367 0.234 0.715 0.438 49.3 8.5
ATST-Net 20.655 0.491 0.135 0.408 0.351 0.218 0.729 0.427 43.6 6.5

Comparisons on different expression levels of HER2 in BCI.

BCIHER2
(level 0)

CycleGAN 21.226 0.505 0.118 0.421 0.510 0.312 0.789 0.508 164.9 7.3
PC-StainGAN 21.742 0.523 0.126 0.453 0.386 0.240 0.755 0.459 182.7 15.7

UMDST 20.683 0.541 0.112 0.499 0.394 0.253 0.762 0.477 198.7 27.1
PyramidP2P 22.409 0.529 0.110 0.623 0.380 0.241 0.730 0.494 175.8 60.8

ASP 21.344 0.538 0.145 0.505 0.359 0.229 0.727 0.455 177.0 7.1
PSPStain 22.078 0.513 0.171 0.426 0.345 0.214 0.714 0.425 163.2 6.8
ATST-Net 22.215 0.535 0.182 0.430 0.333 0.199 0.711 0.418 148.9 6.2

BCIHER2
(level 3+)

CycleGAN 17.546 0.411 0.079 0.470 0.560 0.359 0.837 0.557 135.7 44.5
PC-StainGAN 17.560 0.420 0.094 0.481 0.430 0.277 0.800 0.497 149.7 52.4

UMDST 16.909 0.433 0.088 0.558 0.470 0.302 0.812 0.536 153.1 51.2
PyramidP2P 17.753 0.426 0.080 0.642 0.485 0.332 0.791 0.563 208.5 126.9

ASP 17.410 0.440 0.104 0.562 0.462 0.301 0.788 0.528 152.8 45.8
PSPStain 17.633 0.418 0.111 0.491 0.416 0.269 0.793 0.492 133.9 40.5
ATST-Net 17.437 0.451 0.118 0.450 0.395 0.245 0.815 0.476 112.7 30.4

Table 1: Comparisons of various methods on MIST and BCI. The KID values in the table are scaled by a factor of 1000.

out by enabling bidirectional transfer, including IHC-to-H&E
transfer via its backbone. As shown in Figure 3, a simpler net-
work performs the reverse transfer, leveraging the lower color
complexity. Figure 5 shows H&E images recovered from
IHC inputs. ATST-Net preserves IHC tissue structures while
restoring the H&E stain style, enhancing practical value.

5.2 Qualitative Comparisons
We qualitatively compare all methods on the four MIST
biomarkers, as shown in Figure 4. PyramidP2P distorts tis-
sue structure in H&E images, while other methods maintain
structural integrity. Notably, ATST-Net shows superior patho-
logical consistency, as highlighted by the red boxes in the
first two rows. The fake IHC images more closely match real
IHC images in both positive expression location and intensity.
Moreover, ATST-Net transfers sparse Ki67 expression more
accurately (third row). Patches generated by ATST-Net ex-
hibit minimal color discontinuity when stitched (fourth row),
ensuring better prediction consistency and practical value.

6 Ablation Study
We conduct ablation experiments on all ER and HER2 test
images in MIST. Firstly, we evaluate the proposed genera-
tor and multiple loss functions, then analyze the generator’s
structure. Evaluation metrics are shown in Table 2 and 3,
where “Gen”, “U”, “Skip” and “Res” represent “Generator”,
“U-Net-based”, “Skip connections” and “ResNet blocks”.

When solely employing the U-Net-based generator for
H&E-to-IHC transfer, identical to that used for IHC-to-H&E
transfer, fake IHC images lack pathological consistency, re-
sulting in poor performance, with evaluation metrics compa-
rable to traditional CycleGAN. In contrast, the proposed deep
pathology mining generator, based on a pretrained model, ef-
fectively learns pathological features of various biomarkers
from H&E images. However, its potential is not fully realized
without guidance from biomarker positive expression refer-
ence. As shown in the second row of Table 2, the model’s
performance on CSS, PHV, FID and KID in MISTER shows
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Real H&E Image CycleGAN PC-StainGAN UMDST PyramidP2P ATST-Net (Ours)PSPStainASPReal IHC Image
ER

PR

Ki67

HER2

Figure 4: Qualitative comparison on MIST. The four rows correspond to ER, PR, Ki67 and HER2. All images are 1024× 1024.

Dataset
Gen Auxiliary Task

CSS↑ PHV↓ FID↓ KID↓
U Ours L1 L2&L3 L4 L5 (avg.)

MISTER

✓ 0.155 0.541 119.0 83.3
✓ 0.165 0.529 92.3 62.0
✓ ✓ 0.161 0.505 69.6 18.8
✓ ✓ ✓ 0.177 0.491 58.5 6.5
✓ ✓ ✓ ✓ 0.184 0.477 49.8 5.4

✓ ✓ ✓ ✓ ✓ 0.175 0.494 57.0 7.2
✓ ✓ ✓ ✓ ✓ 0.190 0.468 46.3 5.0

MISTHER2

✓ 0.115 0.562 190.6 262.6
✓ 0.120 0.554 164.8 233.9
✓ ✓ 0.127 0.531 90.2 23.7
✓ ✓ ✓ 0.146 0.476 78.4 11.0
✓ ✓ ✓ ✓ 0.151 0.465 72.9 12.2

✓ ✓ ✓ ✓ ✓ 0.153 0.470 81.7 11.3
✓ ✓ ✓ ✓ ✓ 0.156 0.453 68.1 8.6

Table 2: Ablation study of components in ATST-Net.

marginal improvement over the U-Net-based generator.
Applying global positive expression location loss (L1) im-

proves accuracy in tissue regions with clustered positive ex-
pression, but the model struggles in sparse expression areas.
Local expression supervision losses (L2&L3) mitigate this by
guiding the model to focus on both positive and negative fea-
ture, substantially improving all metrics. While L1, L2 and
L3 enable the model to identify positive expression locations,
generated intensities tend to be uniform and biased toward
dominant intensities in the training data. To address this, in-
tensity supervision loss (L4) ensures precise expression inten-
sity. Additionally, nucleus number matching loss (L5) refines
expression location while aligning the pathological distribu-
tion of all fake IHC images with real ones from consecutive
sections. These improvements are reflected in FID and KID,
which increase by 3.5 and 0.4 in MISTER. Integrating the pro-
posed generator with auxiliary task supervision losses yields
optimal results across all metrics: CSS, PHV, FID and KID in
MISTER reach 0.190, 0.468, 46.3 and 5.0, respectively, and in
MISTHER2, these values are 0.156, 0.453, 68.1 and 8.6. The

Dataset
Module Auxiliary Task

CSS↑ PHV↓ FID↓ KID↓
Skip Res L1, L2, ..., L5 (avg.)

MISTER

✓ 0.160 0.505 55.0 7.9
✓ ✓ 0.194 0.486 50.1 5.1

✓ ✓ 0.196 0.479 53.9 7.1
✓ ✓ ✓ 0.190 0.468 46.3 5.0

MISTHER2

✓ 0.063 0.500 83.0 25.7
✓ ✓ 0.161 0.484 81.6 23.4

✓ ✓ 0.105 0.461 75.7 13.9
✓ ✓ ✓ 0.156 0.453 68.1 8.6

Table 3: Ablation study on the generator.

Source Target ATST-Net
(a) (b)

Source Target ATST-Net

Figure 5: IHC-to-H&E stain transfer. (a) MISTER, (b) MISTKi67.

last two rows for each biomarker in Table 2 further confirm
our generator’s higher accuracy and generalization ability.

We demonstrate the role of each module in the proposed
generator. Skip connections transmit multi-scale shallow and
deep features to the decoder, helping preserve textural and
structural details. Multiple ResNet blocks in the network bot-
tleneck integrate and stabilize deep stain-invariant features.
As shown in Table 3, the combination of skip connections and
ResNet blocks yields superior performance across all metrics.

7 Conclusion
This study proposes a cost-effective H&E-to-IHC stain trans-
fer method with high accuracy, generalization and inter-
pretability. It integrates automatic annotation, auxiliary tasks
and a generator architecture. Comparisons on public datasets
with diverse biomarkers and expression levels demonstrate its
SOTA accuracy and strong clinical applicability.
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