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Partially Observable Reference Policy Programming∗

Edward Kim and Hanna Kurniawati
Australian National University

{edward.kim, hanna.kurniawati}@anu.edu.au

Abstract

This paper proposes Partially Observable Refer-
ence Policy Programming, a novel anytime online
approximate POMDP solver which samples mean-
ingful future histories very deeply while simulta-
neously forcing a gradual policy update. We pro-
vide theoretical guarantees for the algorithm’s un-
derlying scheme which say that the performance
loss is bounded by the average of the sampling ap-
proximation errors rather than the usual maximum;
a crucial requirement given the sampling sparsity
of online planning. Empirical evaluations on two
large-scale problems with dynamically evolving
environments—including a helicopter emergency
scenario in the Corsica region requiring approxi-
mately 150 planning steps—corroborate the theo-
retical results and indicate that our solver consider-
ably outperforms current online benchmarks.

1 Introduction
Planning under uncertainty in non-deterministic and partially
observable scenarios is critical for many (semi-)autonomous
systems. Such problems can be systematically framed as
a Partially Observable Markov Decision Process (POMDP)
[Kaebling et al., 1998]. Although solving infinite-horizon
POMDPs in the worst case is undecidable [Madani et al.,
2003], the past decade has seen tremendous advances in
the practicality of approximate POMDP solvers [Kurniawati,
2022]. Most of these solvers are online sampling-based meth-
ods that numerically compute estimates of the expected total
reward of performing different actions before optimising over
these estimates. Due to difficulties in computing gradients,
such solvers exhaustively enumerate over the entire action
space, which massively hinders fast computation of a close-
to-optimal solution for problems with large action spaces and
long horizons. This problem is even worse when the environ-
ment is also dynamically changing at each execution step.

The core difficulty is the curse of history where the set of
possible futures branches by the size of the action space and

∗Technical details and proofs are contained in the Supplementary
Material (https://github.com/RDLLab/pomdp-py-porpp).

grows exponentially with respect to the horizon. Most exist-
ing methods try to abstract the problem into a simpler one by
either reducing the size of the action space [Wang et al., 2018]
or relying on macro actions—i.e. a set of open-loop action
sequences—to reduce the planning horizon [Theocharous and
Kaelbling, 2003; He et al., 2010; Kurniawati et al., 2011;
Flaspohler et al., 2020; Lee et al., 2021]. Still, the fundamen-
tal problem—i.e. exhaustive action enumeration—remains.

Recently, [Kim et al., 2023; Liang et al., 2024] have
softened this requirement by introducing the notion of a
Reference-Based POMDP (RBPOMDP) which is a refor-
mulation of a POMDP whose objective is penalised by the
Kullback-Leibler (KL) divergence between a chosen and
nominal reference policy. As such, a solution can be viewed
as a KL-regularised improvement of the reference policy. The
form of objective allows analytical action optimisation so that
the value can be approximated by estimating expectations un-
der the reference policy. This property accommodates solvers
that have been shown to perform effectively on certain long-
horizon tasks. However, the RBPOMDP formulation comes
at the cost that the solution has a baked-in commitment to
the reference policy. In general, it is unclear a priori which
reference policies yield near optimal policies for the original
POMDP of interest, so the performance of the computed so-
lution is vulnerable to mis-specification.

The aim of this paper is to build on the advantages of
the RBPOMDP framework while, in tandem, bolstering any
vulnerabilities to mis-specification. To this end, our contri-
bution is an exact iterative scheme (Sect. 3.2) whose suc-
cessive policies can be viewed as solutions of a sequence
of RBPOMDPs—i.e. KL-constrained policy improvements.
Theoretical analysis shows that the performance loss of the
exact scheme is bounded by the average of the sampling er-
rors, which means the algorithm is less sensitive to large ap-
proximation errors (Theorem 1). We also contribute an ex-
plicit approximate scheme (Sect. 3.3) and provide a POMDP-
specialised high-probability bound for the performance loss
(Theorem 2). Finally, the scheme is practically implemented
in our proposed algorithm Partially Observable Reference
Policy Programming (PORPP)—an anytime online POMDP-
solver—and tested on two non-trivial long-horizon POMDPs,
one of which has a dynamically evolving environment. Ex-
perimental results indicate that PORPP substantially outper-
forms current state-of-the-art online POMDP benchmarks.
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2 Background and Related Work
2.1 POMDP Preliminaries
An infinite-horizon POMDP is defined as the tuple
⟨S,A,O,Z, T , R, γ, b0⟩ where the sets of all possible agent
states, actions and observations are denoted by S ,A andO re-
spectively. For clarity, our presentation is for countable sets.
The transition model T is such that T (s′ | a, s) is the condi-
tional probability that s′ ∈ S occurs after performing a ∈ A
from s ∈ S . The observation modelZ is such thatZ(o | s′, a)
is the conditional probability that the agent perceives o ∈ O
when it is in state s′ ∈ S after performing a ∈ A. The re-
ward model is a real-valued function R : S × A → R such
that |R(s, a)| ≤ Rmax < ∞ for all s, a and γ ∈ (0, 1) is the
discount factor.

The agent does not know the true state, but it maintains a
belief about its state—i.e. a probability distribution b on the
space S . Let B be the set of all such distributions. Starting
with a given initial belief b0, the agent’s next belief b′ after
taking the action a and perceiving some observation o is given
by b′(s′) ∝ Z(o | s′, a)

∑
s∈S T (s′ | a, s)b(s) and we write

b′ = τ(b, a, o) with the belief update operator τ . We denote
the set of reachable beliefs byRb0 ⊂ B; i.e. the set of beliefs
reachable from b0 under some policy. For any given belief
b and action a the expected immediate reward is given by
R(b, a) :=

∑
S R(s, a)b(s). The probability that the agent

perceives an observation o ∈ O having performed the action
a ∈ A under the belief b is given by

P (o | a, b) :=
∑
s′∈S
Z(o | s′, a)

∑
s∈S
T (s′ | a, s)b(s). (1)

A (stochastic) policy is a mapping π : Rb0 → ∆(A). We
denote its distribution for any given input b ∈ Rb0 by π(· | b).
Let Π be the class of all stochastic policies. For any (b, a) ∈
Rb0×A, define the action-value function Qπ : Rb0×A → R
recursively according to

Qπ(b, a) = R(b, a)

+ γ
∑
a′,o

Qπ
(
τ(b, a, o), a′

)
P (o | a′, b)π(a′ | b). (2)

Given the reward is uniformly bounded, for any policy π ∈ Π,
we have |Qπ(b, a)| ≤ Qmax := Rmax/(1 − γ) for all pairs
(b, a) ∈ Rb0 ×A. A solution to the POMDP is a policy π∗ ∈
Π satisfying Q∗(b, a) := supπ∈Π Qπ(b, a) = Qπ∗

(b, a) for
all (b, a) ∈ Rb0 ×A.

2.2 POMDP Packing and Covering Numbers
For a Markov Decision Process (MDP) with finite state and
action spaces, the usual input for complexity is the set cardi-
nality |S||A| where it is generally assumed that the spaces are
finite. However, for the POMDP, the reachable belief space
Rb0 is an uncountable subset even if S is finite so the notion
of set cardinality is no longer a sensible complexity input. A
more reasonable approach is to choose a metric in R|S|, and
estimate a “finite volume” of Rb0 via the dual concepts of a
δ-packing or δ-covering number. While these are theoretical
quantities, they can be explicitly computed in certain cases

and highlight key properties relating to the POMDP’s com-
plexity [Lee et al., 2007].

The interested reader can refer to Sect. 1 of the Supple-
mentary Material for a more thorough review of their formal
definitions and properties. In words, the δ-covering number
Cδ(Rb0) is the minimum number of balls of radius δ needed
to cover the set Rb0 . If in addition, all the centres of the
balls are required to belong to Rb0 then we call such a num-
ber the internal δ-covering number and denote it by C◦δ (Rb0).
The δ-packing number Pδ(Rb0) is the maximum number of
points that can be packed inside Rb0 such that all points are
at least δ distance apart. The concepts are closely related and,
importantly, are finite if and only if Rb0 is totally bounded
(see Remark 1 in Supplementary Material). For instance, it
suffices to assume that S is finite. To ensure the δ-covering
number is always finite, we will make the following standing
assumption for the remainder of this paper.

Assumption 1. The reachable belief space Rb0 is totally
bounded.

2.3 KL-Penalisation and POMDPs

The idea of using KL-penalisation in fully observable
MDPs started with a series of works on Linearly Solvable
MDPs [Todorov, 2006; Todorov, 2009a; Todorov, 2009b;
Dvijotham and Todorov, 2012]. The main idea is to find a
control conditional distribution p(s′ | s) to a stochastic con-
trol problem where the control cost increases with the rel-
ative entropy between p(· | s) and some benchmark p̄(· | s).
The formulation results in a Bellman backup which can be
optimised analytically and yields efficient methods to solve a
special class of fully-controllable MDPs.

These works were reformulated over stochastic actions
by [Rawlik et al., 2012] and related to general MDPs by [Azar
et al., 2011; Azar et al., 2012] who introduced Dynamic Pol-
icy Programming. This can be interpreted as a policy iter-
ation scheme where each iterate πk is a solution to a spe-
cialised MDP whose reward decreases with the relative en-
tropy KL(πk+1 ∥πk). The scheme can be shown to converge
to the solution of the MDP; indeed, the gradual update forced
by the KL-penalty yields performance bounds which depend
on the average accumulated error as opposed to the usual
maximum, suggesting robustness to approximation errors.

The extension of the idea of KL-penalised MDPs to
POMDPs was provided by [Kim et al., 2023] who introduced
the concept of a Reference-Based POMDP (RBPOMDP).
In essence, the formulation can be viewed as a Belief-
MDP [Kaebling et al., 1998] with policies U(b′ | b) that con-
trol transitions between POMDP beliefs where the reward is
penalised by the relative entropy KL

(
U(· | b) ∥ Ū(· | b)

)
for

some reference policy Ū . Their empirical results suggest that
approximate solvers for RBPOMDPs can outperform state-
of-the-art benchmarks on large POMDPs for certain choices
of Ū(· | b). However, the authors did not provide a system-
atic procedure to determine this choice. This current work
addresses this gap by providing a systematic procedure, in a
similar vein to [Azar et al., 2012],
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3 PORPP
PORPP is an anytime online POMDP solver which approxi-
mates the solution of a policy iteration scheme whose succes-
sive policies are forced to be close to each other. Specifically,
each policy iterate is a solution to a RBPOMDP over stochas-
tic actions whose reference policy is the previous policy in the
sequence and can therefore be viewed as a KL-constrained
policy improvement. While this procedure converges more
slowly, its advantage is that it yields a performance bound
which is given by the average of approximation errors, sug-
gesting that it is less prone to over-commitment—a useful
feature given the scarcity of samples generated by an online
planner. In what follows, ∥ · ∥∞ denotes the usual supremum-
norm for bounded functions.

3.1 RBPOMDPs over Stochastic Actions
In [Kim et al., 2023], the reliance on belief-to-belief transi-
tions U(b′ | b) implicitly allows the agent to control the choice
of observation, which may not be valid in general. We will
consider a more natural formulation over stochastic actions
which will form the building blocks for the required system-
atic procedure. Namely, a RBPOMDP over stochastic actions
is a tuple ⟨S,A,O, T ,Z, R, γ, η, π0, b0⟩. Its value V , for a
given b ∈ Rb0 , is specified by the recursive equation

V(b) = sup
π∈Π

[ ∑
a∈A

R(b, a)π(a | b)− 1

η
KL(π ∥π0)

+ γ
∑
a,o

P (o | a, b)π(a | b)V
(
τ(b, a, o)

)]
. (3)

Intuitively its solution is a stochastic policy that tries to re-
spect the reference policy π0 unless deviating substantially
leads to greater rewards where the trade-off is balanced by
the temperature parameter η > 0. The right-hand-side can be
optimised analytically so that (3) is equivalent to

V(b) = 1

η
log

[ ∑
a∈A

π0(a | b) exp
{
η
[
R(b, a)

+ γ
∑
o

P (o | a, b)V
(
τ(b, a, o)

)]}]
. (4)

In fact, we can represent the Bellman equation (4) in a slightly
different way by introducing preferences Ψ over belief-action
pairs. More specifically, let

Ψ(b, a) :=
1

η
log

(
π0(a | b)

)
+R(b, a)

+ γ
∑
o

P (o | a, b)V
(
τ(b, a, o)

)
. (5)

This yields V(b) = 1
η log

[∑
a exp[ηΨ(b, a)]

]
=: [LηΨ](b)

where Lη is the log-sum-exp operator [Blanchard et al., 2021;
Asadi and Littman, 2017] and eq. (4) stated with respect to
preferences becomes

Ψ(b, a) =
1

η
log[π0(a | b)] +R(b, a)

+ γ
∑
o

P (o | a, b)[LηΨ]
(
τ(b, a, o)

)
. (6)

If Ψ∗ satisfies (6), the solution of the RBPOMDP is

π∗(a | b) = exp[ηΨ∗(b, a)]∑
a′ exp[ηΨ∗(b, a′)]

. (7)

being the exact maximiser of (3).

3.2 Exact Scheme
We are now in a position to describe the exact iterative
scheme that relates the RBPOMDP to that of the standard
POMDP. Taking inspiration from (7), the scheme implicitly
represents a reference policy πk by maintaining action pref-
erences Ψk : Rb0 ×A → R according to the equation

πk(a | b) :=
exp[ηΨk(b, a)]∑
a′ exp[ηΨk(b, a′)]

. (8)

The policy is then updated gradually by asserting that πk+1

is the solution to a RBPOMDP whose reference policy is πk.
That is,

Ψk+1(b, a) =
1

η
log[πk(a | b)] +R(b, a)

+ γ
∑
o

P (o | a, b)[LηΨk]
(
τ(b, a, o)

)
= Ψk(b, a)− [LηΨk](b) +R(b, a)

+ γ
∑
o

P (o | a, b)[LηΨk]
(
τ(b, a, o)

)
=: [LηΨk](b, a). (9)

The exact scheme indeed converges to the action-value Q∗ of
the POMDP. To show this, let Lη be the exact function op-
erator defined by (9) and consider a sequence of approximate
preferences (Ψ̂k)k≥0 such that Ψ̂k+1 ≈ LηΨ̂k. For arbitrary
(b, a) ∈ B ×A, let

ϵk(b, a) :=

{
Ψ̂k(b, a)− [LηΨ̂k−1](b, a) if k ≥ 1

0 if k = 0
(10)

and Ek(b, a) :=
∑k

j=0 ϵj(b, a) and define the approximating
policy to be

π̂k(a | b) :=
exp[ηΨ̂k(b, a)]∑
a′ exp[ηΨ̂k(b, a′)]

. (11)

We have the following general error bound which says that
the total error is bounded by the average of approximation
errors at each iteration. Since the exact scheme has Ek = 0
for all k, the result also validates the asymptotic convergence
of the exact scheme.
Theorem 1. Suppose ∥Ψ̂0∥∞ ≤ Qmax. Then

∥Q∗ −Qπ̂k∥∞

≤ 2

(1− γ)(k + 1)

[γ(4Qmax +
log(|A|)

η )

(1− γ)

+
k∑

j=0

γk−j∥Ej∥∞
]
. (12)

Proof. See Supplementary Material.
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3.3 Explicit Sampling-Based Approximate Scheme
We will now introduce explicit synchronous and asyn-
chronous sampling-based approximate schemes and prove
their asymptotic optimality. In both cases, we prove spe-
cialised bounds with respect to the POMDP’s δ-covering
numbers. The asynchronous scheme is especially important,
as it forms the basis for the design of our online planning al-
gorithm.

We will need some setting up to introduce the sampling-
based scheme that approximates (9). Let ρ be a metric on B
and B be some well-ordered1 subset of B. Let τ̃B,ρ : B×A×
O → B be the mapping which takes an arbitrary belief b ∈ B
to the least element of

argmin
b′∈B

ρ
(
b′, τ(b, a, o)

)
. (13)

Intuitively, τ̃B,ρ finds the set of points in B nearest to
τ(b, a, o) (it is not necessarily a singleton set) and has a rule
to break ties so that the mapping is well-defined.

Let Qπ
B,ρ : Rb0 ×A → R be the action-value approxima-

tion on any subset B ⊂ Rb0 which is the unique solution to
the recursion

Qπ(b, a) = R(b, a)

+ γ
∑
a′,o

Qπ
(
τ̃B,ρ(b, a, o), a

′)P (o | a′, b)π(a′ | b). (14)

The difference between (2) and (14) is that the next belief is
forced to a nearest belief in B ⊂ Rb0 in the latter, whereas the
belief update for the former is the natural one. As such, we
expect the two quantities to differ according to the precision
of B in approximatingRb0 . In fact, it can be shown that if B
is a δ-covering ofRb0 the approximation becomes negligible
for the optimal policy π∗ as δ ↓ 0 (see Proposition 3 in the
Supplementary Material).

It is clear from (14) that it suffices to evaluate Qπ
B,ρ on the

subset B × A. The synchronous scheme therefore updates
action preference approximations according to the rule

Ψ̂k+1(b, a) := Ψ̂k(b, a)− [LηΨ̂k](b) +

Nk(b,a)∑
i=1

R(si, a)

Nk(b, a)

+ γ

Mk(b,a)∑
j=1

[LηΨ̂k]
(
τ̃B,ρ(b, a, oj)

)
Mk(b, a)

(15)

for all (b, a) ∈ B ×A where si ∼ b and oj ∼ P (· | a, b) and
generic increasing sequences Nk and Mk having the property
that Nk(b, a) ↑ ∞, Mk(b, a) ↑ ∞ as k ↑ ∞. The scheme
is synchronous in the sense that, at each step k, it samples
{sNk−1(b,a)+1, . . . , sNk(b,a), oMk−1(b,a)+1, . . . , oMk(b,a)} for
each (b, a) and updates the action preferences according to
(15). The approximate stochastic policy π̂k is then fully spec-
ified by the approximate preferences according to (11).

The synchronous scheme yields the following high-
probability bound when B is an internal δ-covering Eδ ofRb0

1It suffices for B to be finite.

for the metric ρ1 induced by the 1-norm—i.e. ρ1(x, y) :=
∥x− y∥1 for x, y ∈ R|S|−1.2

Theorem 2. Let C◦δ = |Eδ| be the internal δ-covering number
of Rb0 for a given δ > 0. If ∥Ψ̂0∥ ≤ Qmax then, for any
α ∈ (0, 1), we have with probability at least 1− α

∥Q∗ −Qπ̂k

Eδ,ρ1
∥∞ ≤

K1

k + 1
+

K2√
k + 1

+
γδQmax

1− γ
(16)

where

K1 :=
2γ

(1− γ)2
[
log(|A|)/η + 4Qmax

]
(17)

and

K2 :=
[4γ log(|A|)
η(1− γ)3

+
2Qmax

1− γ

]√
2 log

{2|A|C◦δ
α

}
. (18)

Proof. See Supplementary Material.

Although the precision of the bound gets more precise af-
ter every synchronous update, the error can still be large if
the covering Eδ is not a good representation ofRb0—i.e. δ is
large. In general, Eδ may be required to be extremely large
and performing even one synchronous update can be an exor-
bitantly expensive task.

To mitigate this fundamental problem, PORPP employs
a heuristic action sampler π̃ to bias towards a selection of
promising beliefs and asynchronously updates preference ap-
proximations on the selection. The underpinning assumption
for optimality of this procedure is that the selection grows to
include the set of beliefs reachable under the optimal policy
π∗—which is not known a priori—while simultaneously be-
ing small enough to be tractable for online planning.

More precisely, let Eδ be an internal δ-covering ofRb0 and
let Ωk :=

(
(b1, a1), (b2, a2), . . . , (bk, ak)

)
be the sequence

of pairs in Eδ ×A traversed by π̃ after k steps. Then, by def-
inition, our asynchronous scheme updates action preference
approximations according to

Ψ̂k+1(bk, ak) := Ψ̂k(bk, ak)

− [LηΨ̂k](bk) +

N(bk,ak)∑
i=1

R(si, ak)

N(bk, ak)

+ γ

N(bk,ak)∑
j=1

[LηΨ̂k]
(
τ̃Eδ,ρ1(bk, ak, oj)

)
N(bk, ak)

(19)

where si ∼ bk and oj ∼ P (· | ak, bk) and N(bk, ak) is
the number of times π̃ has visited (bk, ak). Let R∗

b0
be the

set of beliefs reachable under the optimal policy π∗ of the
POMDP and denote by κk the number of times that π̃ has
visited Ω∞ after k steps. Then, provided π̃ traverses Ω∞ in-
finitely often and {b : (b, a) ∈ Ω∞} ⊃ R∗

b0
∩ Eδ , the bounds

of Theorem 2 hold with (16) replaced by

∥Q∗ −Qπ̂k

Eδ,ρ1
∥∞ ≤

K1

κk + 1
+

K2√
κk + 1

+
γδQmax

1− γ
(20)

2Note that the Euclidean space under consideration can, in the-
ory, be infinite-dimensional under Assumption 1.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 PORPP
Input: Root node h0 of T equipped with belief particles b
Output: T

1: while steps remaining do
2: while time permitting do
3: Sample belief particle s from h0

4: SIMULATE(h0, s, 0)
5: end while
6: a← argmaxa∈children(h0) Ψ̂(h0a)
7: Execute macro action a in environment
8: Receive macro observation o from environment
9: Update history h0 ← h0ao

10: Resample new state particles and add to h0

11: end while

for Q∗ and Qπ̂k

Eδ,ρ1
being functions defined on Ω∞ and C◦δ now

being the δ-covering number of Ω∞. As such, we would like
to ensure that Ω∞ is as small as possible without compromis-
ing optimality.

3.4 Algorithm: PORPP
We propose Partially Observable Reference Policy Program-
ming (PORPP), a specific online implementation of the asyn-
chronous scheme discussed above. PORPP represents beliefs
as nodes h in a tree where each node is associated with a
history of action-observation pairs and maintains a belief es-
timate by progressively sampling a richer set of state parti-
cles at each node. With enough time, the planner grows a
rich tree (i.e. δ small) and improves preference estimates by
sampling sequences of action-observation histories up to a re-
quired depth Dmax and backing up estimates according to the
sampling-based scheme.

Specifically, at each history, PORPP’s heuristic action sam-
pler SAMPLECANDIDATEACTION(h, s) uses domain spe-
cific knowledge about the problem to propose a (macro) ac-
tion a—i.e. a sequence of primitive actions—to add to the
tree. The aim of the sampler is to sample actions that cover
the optimal policy while avoiding counterproductive ones—
see Sec. 3.6 for examples. The action is added to the tree if it
has not been already and the progressive widening threshold
κAN(h)αA (e.g. [Sunberg and Kochenderfer, 2018]) has not
been exceeded. PORPP then selects an action by sampling
the softmax distribution given by the current preferences—cf.
(11)—before sampling a new state s′, (macro) observation o
and (macro) reward r(s, a; γ) using a generative model. The
observation is then added to the tree, and the procedure con-
tinues recursively until the depth exceeds Dmax. At this point
the value is estimated from the sampled state using a value
heuristic and the information is propagated back up to the
root node via (19) (lines 18 to 23 in Algorithm 2).

This planning procedure continues until timeout (lines 2
to 5 in Algorithm 1) after which the algorithm executes
the action with the best sampled preference in the environ-
ment. Upon receiving an observation, particles that are con-
sistent with the realised action-observation pair are resampled
and added to the associated node (line 10 in Algorithm 1).
This planning-execution loop continues until a step budget is
reached, at which point the algorithm terminates.

Algorithm 2 SIMULATE(h, s, depth)
Parameters: κA ≥ 0, αA ∈ (0, 1), Dmax ≥ 1, η > 0.

1: if depth > Dmax then
2: return VALUEHEURISTIC(h, s)
3: end if
4: if depth > 0 then
5: b(h)← b(h) ∪ {s}
6: end if
7: N(h)← N(h) + 1
8: if |children(h)| < κAN(h)αA then
9: a← SAMPLECANDIDATEACTION(h, s)

10: if ha /∈ T then
11: Add ha to T
12: end if
13: end if
14: a← SAMPLEPREFSOFTMAX(h; η)
15: Resample s from b(h)
16: Sample (s′, o, r(s, a; γ)) from gen. model G (s, a)
17: Create nodes for hao if not created already
18: N(ha)← N(ha) + 1

19: R(ha)← R(ha) + r(s,a;γ)−R(ha)
N(ha)

20: D(ha)← D(ha) + SIMULATE(hao,s′,depth+|a|)−D(ha)
N(ha)

21: Ψ̂(ha)← Ψ̂(ha)− V(h) +R(ha) + γ|a|D(ha)
22: V(h)← log

{∑
a∈children(h) exp[ηΨ̂(ha)]

}
/η

23: return V(h)

3.5 Problem Scenarios
We evaluated the performance of PORPP on two challenging
long-horizon POMDPs.

3D Maze with Poor Localisation. A 3-dimensional holo-
nomic cuboid drone needs to navigate to one of two goal re-
gions in a closed maze with very poor localisation (Figure
1). The state of the robot is represented by a continuous 3-
dimensional co-ordinate for its centre of mass, and the robot
can move continuously in any direction of fixed magnitude
(i.e. v = 1) plus some mean zero (Gaussian) noise with co-
variance matrix I × 0.02 × v and any movement conforms
to the “walls” of the environment. However, the robot does
not know its true state and only knows that it can spawn at
two starting positions with equal probability (Figure 1). The
robot can only localise its co-ordinate if it comes in contact
with a landmark where it receives an observation of its true
position; otherwise, it receives no feedback about its position.
The scenario terminates if the robot comes in contact with a
danger zone—which incurs a penalty of -500—or reaches the
goal—which yields a reward of 2000. A step penalty of -5
is incurred in all other cases. This is a long-horizon problem
requiring 100 steps to reach the goal while simultaneously
navigating around danger zones.

HEMS Mission with Evolving No-Fly-Zones. We consid-
ered a Helicopter Emergency Medical Service (HEMS) mis-
sion set on the Cap Corse peninsula in Corsica (Figure 2).
The mesh used to generate the terrain was extracted from
X-Plane 12. The mission objective is to navigate a holo-
nomic helicopter starting from the west end of the island (ar-
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Figure 1: 3D Maze with Poor Localisation. The environment is a
closed box and walls are grey; danger zones are yellow; landmarks
are purple; goal region is labelled blue. The robot spawns in two
positions P1 and P2 with equal likelihood and the robot does not
receive any initial feedback about its position. If the robot spawns at
P1, the direct route to the goal has a high likelihood of collision with
a danger zone so the robot must localise first and take a safer route.

row in Figure 2 (a)) to two unordered objectives—i.e. the
victim’s locations (green balls in Figure 2) where the agent
receives a reward of 2000 for each new objective achieved.
The mission ends if there is a collision (which incurs a re-
ward penalty of -2000) or both objectives are achieved—i.e.
the mission is accomplished—which yields an additional re-
ward of 20000. The scenario is complicated by the fact that
no-fly-zones (NFZs) evolve at fixed time steps that are un-
known to the agent (see Figure 2). The agent need not avoid
NFZs entirely, but incurs an additional penalty of -20 for each
step inside a NFZ. We assume that the agent has no predic-
tive model of when NFZs will appear; hence, the agent only
re-plans with respect to reward changes due to NFZ evolu-
tions. To encourage the agent to achieve the objective, a step
penalty of -5 is incurred at each time step. The state of the
helicopter is fully specified by a continuous 3-dimensional
co-ordinate representing the helicopter’s centre of mass (its
orientation is always fixed)—notice that fuel and weight of
the craft are not considerations—and actions are the continu-
ous directional vectors of a fixed magnitude v = 2 (i.e. the
helicopter’s speed) representing the agent’s intended direc-
tion of movement. Transitions in the intended direction and
readings of the true state of the helicopter are subject to Gaus-
sian noise with covariance matrices I× 0.25× v and I× 0.2
respectively. This problem is a long-horizon problem often
requiring a minimum of 150 steps to accomplish the mission
without consideration of NFZs.

3.6 Heuristic Action Sampler
One crucial factor in the overall performance of PORPP is the
heuristic action sampler SAMPLECANDIDATEACTION(h, s).
We stress that the heuristic action sampler is not a solution to
the POMDP; indeed, the heuristic sampler need not account
for uncertainty being a function of a determined state. Rather,

(a) Steps 1–14 (b) Steps 15–49

(c) Steps 50–99 (d) Steps 99+

Figure 2: Corsica Rescue Mission with Evolving NFZs. The starting
position is indicated by the arrow in (a); objectives are green; NFZs
are red. The environment evolves at preset time-steps that are un-
known to the agent. The agent should react to avoid NFZs but may
elect not to do so in order to evade a greater catastrophe.

its fundamental purpose is to exploit domain-specific knowl-
edge to propose promising actions to explore given a belief.

In both environments, our specific implementation of
this subroutine relies on an offline-generated Probabilistic
Roadmap (PRM) [Choset et al., 2005] to represent the en-
vironment’s collision-free configuration space. Based on the
input particle an objective in the environment’s configuration
space is sampled and collision-free paths to the sampled ob-
jective are queried from the PRM. That is,

• For the 3D maze, a random landmark or goal region is
sampled and targeted and the shortest path on the PRM
starting from the position given by the state particle to
the target is returned.

• For the Corsica map, the state s records which victims
have been visited. Accordingly, a simple homotopic
collision-free path starting from the helicopter’s position
(as recorded in s) and ending at a random unvisited vic-
tim location is sampled.

The returned paths are then truncated at a fixed length, and a
macro action which traces the path is returned.

3.7 Benchmark Methods
The benchmarks used for comparison are:

• RefPol. This simply samples a state particle and exe-
cutes the action returned by the heuristic action sampler
without further POMDP planning.

• RefSolver. The solver from [Kim et al., 2023] a
RBPOMDP which uses the heuristic action sampler as
its reference policy.

• POMCP—[Silver and Veness, 2010]. The canonical
benchmark to beat for online POMDP planning. For a
fair comparison, it expands 16 macro actions composed
of equally spaced directional vectors.
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Planners Time (s) Succ. % E[Tot. Reward]

PORPP 1 71 570.3 ± 183.5
2 75 628.9 ± 191.3
3 80 625.0 ± 215.2
5 81 688.3 ± 200.1

10 88 873.4 ± 172.1
15 94 983.1 ± 168.0

RefSolver 2 39 -244.6 ± 224.5
3 38 -278.9 ± 216.5
5 26 -544.9 ± 204.6

10 30 -384.0 ± 213.3
POMCP 2 10 -786.3 ± 378.0

3 9 -1637.3 ± 256.8
5 7 -2150.8 ± 161.0

10 13 -1897.5 ± 240.1
RefPol N/A 29 -572.2 ± 231.1

Table 1: Results for 3D Maze with Poor Localisation (100 runs;
maximum macro action length = 10)

3.8 Experimental Setup
All experiments were performed on a desktop computer with
128GB DDR4 RAM and an 8 Core Intel Xeon Silver 4110
Processor. All solvers were implemented in the pomdp py li-
brary [H2RLab, 2024] and Cythonised for a fair comparison.
The discount factor for all environments was γ = 0.99.3

3.9 Results and Discussion
Results are summarised in Table 1 and Table 2. In both
scenarios we ran RefPol to corroborate our claim that the
heuristic action sampler is significantly sub-optimal. Still,
PORPP was able leverage the heuristic action sampler to sig-
nificantly outperform both benchmarks yielding very high
success rates with >10 seconds of planning time. As ex-
pected from our theoretical analysis, the results improve in
trend with the planning time. Notably, RefSolver does not im-
prove quite as much PORPP which seems consistent with the
idea that RefSolver is converging to a policy which is some-
where in between the reference policy and the optimal pol-
icy of the POMDP. POMCP, meanwhile, was myopic in both
scenarios and could not take advantage of deep rewards even
when helped by macro actions because of the need to exhaus-
tively enumerate. Interestingly, in the HEMS mission, we
typically observe the PORPP policy trace non-trivially adapt-
ing to the environment (Figure 3).

4 Summary
This paper presents PORPP an online particle-based anytime
POMDP solver which provably approximates a gradual KL-
constrained iterative scheme making it robust to large ap-
proximation errors. Empirical results indicate the feasibility
of our planner for large-scale POMDPs showing that it out-
performs existing benchmarks for the long-horizon POMDPs
with evolving environments presented in this paper.

3See https://github.com/RDLLab/pomdp-py-porpp for the code
and parameters used to run the experiments.

Planners Time (s) Succ. % E[Tot. Reward]

PORPP 1 58 11393.5 ± 1588.4
2 75 15408.8 ± 1399.3
3 78 16207.7 ± 1316.7
5 78 16231.6 ± 1320.2

10 90 19393.5 ± 967.9
RefSolver 2 2 -1453.9 ± 947.8

3 4 -860.6 ± 1297.7
5 28 3514.9 ± 3043.1

10 22 2258.7 ± 2809.2
POMCP 2 2 -410.5 ± 900.0

3 0 -942.5 ± 181.1
5 2 -421.8 ± 928.1

10 0 -839.6 ± 227.4
RefPol N/A 0 -6584.3 ± 379.5

Table 2: Results for HEMS Mission with Evolving NFZs (100 runs;
maximum macro action length = 15)

Figure 3: Two perspectives of the PORPP trajectory trace of the heli-
copter in the HEMS mission during steps 50–149. At the beginning
of the trace the helicopter initially descends to avoid the new NFZ
and targets the nearest objective. Once this objective is achieved,
the helicopter successful navigates a path around the NFZ and sur-
rounding terrain rather than taking the shortest path through the NFZ
to the next objective.

For future work, we would like to examine the solver
on non-holonomic problems (realistic ODE approximations
of helicopter dynamics, robotic manipulators, etc.) with
more complex domains (e.g. HEMS fire and flood res-
cue scenarios). We would also like to systematically stress
test PORPP with respect to different parameter settings and
choices of heuristic samplers.
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