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Abstract
Causal discovery in time-series datasets is criti-
cal for understanding complex systems, especially
when the effectiveness of causal relationships de-
pends on both the duration and magnitude of the
cause. We introduce a novel framework for causal
discovery based on Signal Temporal Logic (STL),
enabling the extraction of interpretable causal dia-
grams (STL-CD) that explicitly capture these tem-
poral dynamics. Our method first identifies statis-
tically meaningful time intervals, then infers STL
formulas that classify system behaviors, and fi-
nally employs transfer entropy to determine di-
rect causal relationships among the formulas. This
approach not only uncovers causal structure but
also identifies the temporal persistence required
for causal influence—an insight missed by exist-
ing methods. Experimental results on synthetic and
real-world datasets demonstrate that our method
achieves superior structural accuracy over state-of-
the-art baselines, providing more informative and
temporally precise causal models.

1 Introduction
In the realm of causal inference, learning the true underly-
ing causal diagram using observational data is referred to as
causal discovery. Information-theoretic causal discovery in-
fers causal relations using entropy-based measures. Infor-
mation theory provides measures such as entropy [Duan et
al., 2015; Yang et al., 2024], mutual information [Hao et al.,
2015], and conditional mutual information [Runge, 2018],
which can be employed to infer causal relationships. It ap-
plies to both static and time-series datasets. For example,
[Shimizu et al., 2006] proposes a causal discovery approach
that relies on independent component analysis and does not
require any pre-specified time-ordering of the variables.

The current causal discovery approaches mostly ignore the
temporal aspect of the causal knowledge. For example, in
certain time-series datasets, there might be some dominant
cause-and-effect relationships among the variables where the
effectiveness of the casual relationship depends on the dura-
tion of the cause. Consider, for instance, the scenario where
for a fever-reducer drug to take effect, a patient must take

the drug for four consecutive days. Such temporal patterns
can be expressed through signal temporal logic (STL) formu-
las, a variant of temporal logic designed for real-valued vari-
ables. STL formulas strike a balance by being both human-
interpretable and adhering to the precision of formal logics
[Baharisangari et al., 2022]. This enriches causal understand-
ing when time critically shapes cause-effect dynamics.

Contribution: In this work, we present a framework for
learning signal-temporal-logic-based causal diagrams (Sig-
nal Temporal Logic-based Causal Diagram (STL-CD)) from
observational time-series datasets. (1) We define signal-
temporal-logic-based causality in which we introduce STL-
CDs and temporal precedence for STL formulas. (2)
We present a novel algorithm for extracting time intervals
with statistically meaningful trends in the given time-series
dataset. (3) We present an algorithm for inferring STL for-
mulas in the extracted time intervals such that they are suf-
ficiently satisfied and violated by the trajectories in a given
dataset. In this way, we can use information-theory-based
methods such as transfer entropy to determine causal rela-
tionships among the STL formulas. (4) Finally, we introduce
an algorithm for constructing STL-CDs using the inferred for-
mulas. We apply the proposed framework on a car transmitter
case study and a drug administration case study and compare
the results with three baselines. To the best of our knowl-
edge, this is the first work proposing a framework for signal-
temporal-logic-based causal discovery.

1.1 Related Work
Causal discovery on time-series datasets has been extensively
studied using constraint-based, score-based, and information-
theoretic approaches. We focus on the latter in this work.
Duan et al. [Duan et al., 2015] introduced transfer 0-
entropy (T0E) for causality analysis based on 0-entropy and
0-information, explicitly considering temporal aspects. Zhou
et al. [Zhou et al., 2022] proposed matrix-based conditional
and high-order transfer entropy (CTEM, HTEM) for time-
series causal discovery. Assad et al. [Assaad et al., 2022]
developed a framework for learning causal graphs from data
with varying sampling rates. Su et al.

This work addresses a key gap in existing methods: the dis-
regard of duration and logical relationships among variables.
We introduce the first data-driven framework for learning
Signal Temporal Logic-based Causal Diagrams (STL-CDs)
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from time-series data. While prior studies, e.g., [Kleinberg
and Mishra, 2009; Kleinberg, 2011], explored integrating
temporal logic and causality, they do not construct temporal-
logic-based diagrams from data. Sun et al. [Sun et al., 2015]
proposed a model-free causation entropy method to overcome
the pairwise limitations of transfer entropy. While we em-
ploy transfer entropy to highlight STL-CD’s capabilities, our
framework is flexible and can integrate alternative metrics
such as causation entropy.

2 Preliminaries
2.1 (F,G)-Fragment Signal Temporal Logic
In this section, we briefly review (F,G)-fragment signal tem-
poral logic ((F,G)-STL). First, we define trajectory.

Definition 1. Given an D-dimensional domain Y ⊂ RD and
the finite discrete time domain I = {0, 1, . . . , T − 1}, we
define a finite trajectory as a function ξ : I → Y . We denote
the length of the trajectory ξ by T . For a given labelled set
of trajectories D = {ξi, gi}Ni=1, we use ξi,d to denote the d-th
dimension of the i-th trajectory. Here, gi = +1 represents
the desired behavior and gi = −1 represents the undesired
behavior of the underlying system.

(F,G)-STL is a form of signal temporal logic that only
incorporates the temporal operators F and G. The syntax of
(F,G)-STL is defined recursively as follows.

ϕ := ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | G[a,b] ϕ | F[a,b] ϕ

where ⊤ stands for the Boolean constant True, π is an
atomic predicate in the form of an inequality f(ξ) > 0
with f being some real-valued function and π ∈ P with
P = {π1, π2, ..., πn} is a finite set of atomic predicates with
n ∈ N = {1, 2, ...}. ¬ (negation), ∧ (conjunction), ∨ (dis-
junction) are standard Boolean connectives, “F” and “G”
represent “eventually” and “always” temporal operators, re-
spectively. In time interval [a, b], we have a ≤ b, and they
are non-integers. We also define L(ϕ) ∈ B = {0, 1} as a
Boolean random variable for the truth value of the formula ϕ.
The randomness of L(ϕ) stems from the fact we can use any
random trajectory to evaluate the truth value of ϕ.

Definition 2. The Boolean semantics of an (F,G)-STL for-
mula ϕ, for a trajectory ξ with the time length of T at time-
step t is defined recursively as follows.

(ξ, t) |= π iff t ≤ T and f(ξ(t)) > 0

(ξ, t) |= ¬ϕ iff (ξ, t) ̸|= ϕ,

(ξ, t) |= ϕ1 ∧ ϕ2 iff (ξ, t) |= ϕ1 and (ξ, t) |= ϕ2,

(ξ, t) |= G[a,b] ϕ iff ∀t′ ∈ [t+ a, t+ b], (ξ, t) |= ϕ,

(ξ, t) |= F[a,b] ϕ iff ∃t′ ∈ [t+ a, t+ b], (ξ, t) |= ϕ.

Robust semantics quantifies the margin at which a certain
trajectory satisfies or violates an STL formula ϕ at time-step
t. The robustness margin of a trajectory ξ with respect to an
STL formula ϕ at time-step t is given by r(ξ, ϕ, t), where
r(ξ, ϕ, t) can be calculated recursively via the robust seman-
tics [Fainekos and Pappas, 2009]. For simplicity, we use STL
to refer to (F,G)-STL hereafter.

r(ξ, π, t) = f(ξ(t)),

r(ξ,¬ϕ, t) = −r(ξ, ϕ, t),

r(ξ, ϕ1 ∧ ϕ2, t) = min(r(ξ, ϕ1, t), r(ξ, ϕ2, t)),

r(ξ,G[a,b] ϕ, t) = min
t′∈[t+a,t+b]

r(ξ, ϕ, t′),

r(ξ,F[a,b] ϕ, t) = max
t′∈[t+a,t+b]

r(ξ, ϕ, t′).

2.2 Information-Theory-Based Causal Discovery
In this section, we review the basics of information theory and
its based method. Consider various events each with a prob-
ability of occurring denoted by p1, p2, . . . , pn, the entropy
aiming to measure the uncertainty of information is defined
as H = −

∑
1≤i≤n pi log pi. When targeting two variables,

the joint entropy is given.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (1)

Except for joint entropy facing the bi-variate situa-
tion, the Transfer Entropy (TE), first proposed by
Schreiber [Schreiber, 2000], measures directed information
flows between variables with the minimum knowledge of sys-
tem’s dynamic [Mao and Shang, 2017]. We define TE from
Y to X as follows.

TEY,X =
∑

p(xi+δ, xi, yi) log
p(xi+δ|xi, yi)

p(xi+δ|xi)
, (2)

where δ denotes the time delay, aiming to eliminate uncer-
tainty decreased by the past of X .

3 Signal-Temporal-Logic-Based Causality
In this section, we introduce signal-temporal-logic-based
causality (STL-CD) for STL formulas. We define STL-CD
as follows.
Definition 3. For a given set of predicates P , STL-CD is a
directed acyclic graph G where (1) each node represents an
STL formula over P , and (2) each edge ( ) represents a
causal link between two nodes.

Figure 1 represents two examples of STL-CDs with STL
formulas as nodes. In STL-CDs in Figure 1, each pair of STL
formulas is connected with a causal link ϕi ϕj , where ϕi is
the cause and ϕj is the effect. STL-CD is an extension of the
temporal-logic-based causal diagram (TL-CD) introduced in
[Paliwal et al., 2023]1 where the differences are as follows.
(1) TL-CD uses linear temporal logic formulas as nodes in
the DAG while STL-CD uses STL formulas. (2) STL-CD is
non-deterministic while TL-CD is deterministic.

For a given STL-CD, if we evaluate the truth values of the
STL formulas on the nodes of the STL-CD using a given
trajectory ξ and replace the STL formulas with their corre-
sponding truth values, then STL-CD is reduced to the stan-
dard causal diagram defined in Pearl causality [Pearl, 2009].

1[Paliwal et al., 2023] is related to reinforcement learning, and it
is assumed that the causal diagram is given while we discover it in
our work.
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G[0,3] π2 F[4,5] π3 π1 G[2,4] π3

Figure 1: Examples of STL-CDs.

For a STL-CD to be casually sound, we impose that the oc-
currence of the cause ϕi must precede that of the effect ϕj . In
order to formalize this requirement, we first define worst-case
satisfaction time ws(ϕ), the worst-case violation time wv(ϕ),
the best-case satisfaction time bs(ϕ) and the best-case viola-
tion time bv(ϕ) of an STL formula.

Definition 4. The worst-case satisfaction time ws(ϕ) (resp.
worst-case violation wv(ϕ)) is the maximum timesteps re-
quired to satisfy (resp. violate) the STL formulas ϕ using
a trajectory ρ. The best-case satisfaction time bs(ϕ) (resp.
best-case violation bv(ϕ)) is the minimum timesteps required
to satisfy (resp. violate) the STL formulas ϕ. The formulas to
inductively calculate these parameters are shown in Table 1.

Now, we formalize the precedence between the cause for-
mula ϕi and the effect formula ϕj as follows.

Definition 5. (Temporal Precedence of STL Formulas) We
define that the STL formula ϕi precedes the STL formula ϕj

if max{wv(ϕi), ws(ϕi)} < min{bv(ϕj), bs(ϕj)}.

Example 1. Suppose we have a drug that is administered
to a patient, and we are interested in monitoring the ef-
fect of the drug on the patient’s temperature. We can
express this scenario using STL formulas. Our observa-
tions show that the patients who took the drug for four
consecutive days eventually experienced temperature drops
in the next two days. This observation can be expressed
as G[0,3](taking the drug) F[4,5](patient’s fever stops) as
shown in Fig. 1 (Left).

4 Signal-Temporal-Logic-Based Causal
Discovery

In this section, we explain signal-temporal-logic-based causal
discovery for a given time-series dataset D. When deal-
ing with a time-series dataset, the degree of causal influence
among the attributes of the given dataset might vary at differ-
ent time windows due to different factors. Hence, it is impor-
tant to find the time intervals that might give us statistically
meaningful information [Bryhn and Dimberg, 2011].

In this section, we first extract a set of time intervals T
exhibiting statistically meaningful trends (Alg.1). For each
dimension in D, we then infer STL formulas over all intervals
in T (Alg.2) and construct the STL-CD using these formulas
(Alg. 3).

We use a time-series dataset D with T time steps, consist-
ing of disjoint sets of positive trajectories Dpos (N pos sam-
ples) and negative trajectories Dneg (N neg samples). Positive
trajectories exhibit desired system behavior, while negative
trajectories represent undesired behaviors.

We infer STL formulas to classify positive and negative
trajectories. The resulting STL-CD encodes one possible set
of structural temporal causal relationships. By focusing on
formulas that characterize desired behaviors, we obtain in-
sights into the system dynamics. Further, instead of building

the STL-CD directly from logical implications, we infer can-
didate formulas and identify causal relationships among them
using transfer entropy. This guarantees that the final STL-CD
represents only the strongest causal influences.
Example 2. In the drug-administration example, the desired
behavior represented by positive trajectories in Dpos can be
when the patient’s fever eventually stops. The undesired be-
havior which is represented by negative trajectories in Dneg

can be when the patient has a fever at all times.
The proposed framework does not use typical assump-

tions in causal discovery such as linearity, conditional in-
dependence, causal sufficiency, causal faithfulness, and non-
Gaussianity since transfer entropy does not consider these as-
sumptions [Lizier et al., 2020; Vicente et al., 2011; Barnett
and Barrett, 2019]. Also, the proposed framework first con-
verts the original time-series dataset into the Boolean dataset
by evaluating the truth values of STL formulas to calculate
the necessary probability density functions for entropy calcu-
lation.

4.1 Extracting Time Intervals with Statistically
Meaningful Trends

Alg. 1 illustrates the steps we take to extract time intervals
with statistically meaningful trends. We first take the follow-
ing two steps to define statistically meaningful trends. (1)
Given two trajectories ξ1 with a 1D state x and ξ2 with a 1D
state y both with the length of T , we divide ξ1 and ξ2 into
M sub-trajectories. (2) For each pair of sub-trajectories, we
calculate the correlation value r 2 (Eq. (3)) and p-value be-
tween the values of x and y where the p-value is obtained
by the two-sample Student’s t statistic. In Eq. (3), T ′ is the
length of an arbitrary sub-trajectory. Then, we define statis-
tically meaningful trend between ξ1 and ξ2 as follows. “If
one or several pairs of sub-trajectories yield r 2 ≥ 0.65 and
p-value ≤ 0.05, then a linear regression between trajectories
ξ1 and ξ2 is deemed statistically meaningful”.

r 2 =

(∑T ′

i=1

(
(xi − xavg)(yi − yavg)

))2

∑T ′

i=1 (xi − xavg)
2 ∑T ′

i=1 (yi − yavg)
2

(3)

In Alg. 1, we apply this definition to extract the time in-
tervals in which there are statistically meaningful trends be-
tween every two dimensions of a given dataset For a given
dataset D with D dimensions (attributes) and N trajecto-
ries, we check for the existence of a statistically meaningful
trend for every two different dimensions in all the trajectories
(Lines 3-13). In doing so, we use the linear index of an upper
triangular matrix to loop over the elements of the upper trian-
gular matrix. We use this indexing to loop over all the unique
pairs dimensions d, j ∈ {1, .., D} (where d ̸= j ) for all the
trajectories in D. For a square matrix with D rows, the num-
ber of upper triangular elements is equal to D′ = D(D−1)

2 .
For an arbitrary linear index n ∈ {1, ...D′}, we find the
corresponding row index d ∈ {1, ..., D} and column index
j ∈ {1, ..., D}.

In Alg. 1, D′ and N ′ are the numbers of elements of up-
per triangular matrices with D rows (number of dimensions
in D) and N rows (number of trajectories in D) , respectively
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The worst satisfaction time, worst violation time, best satisfaction time,
and best violation time of an STL formula ϕ

bs(π) = ws(π) = bv(π) = wv(π) = 0,

¬ϕ :


bs(¬ϕ) = bv(ϕ),

ws(¬ϕ) = wv(ϕ),

bv(¬ϕ) = bs(ϕ),

wv(¬ϕ) = ws(ϕ);

ϕ1 ∧ ϕ2 :


bs(ϕ1 ∧ ϕ2) = max{bs(ϕ1), bs(ϕ2)},
ws(ϕ1 ∧ ϕ2) = max{ws(ϕ1), ws(ϕ2)},
bv(ϕ1 ∧ ϕ2) = min{bv(ϕ1), bv(ϕ2)},
wv(ϕ1 ∧ ϕ2) = max{wv(ϕ1), wv(ϕ2)};

ϕ1 ∨ ϕ2 :


bs(ϕ1 ∨ ϕ2) = min{bs(ϕ1), bs(ϕ2)},
ws(ϕ1 ∨ ϕ2) = max{ws(ϕ1), ws(ϕ2)},
bv(ϕ1 ∨ ϕ2) = max{bv(ϕ1), bv(ϕ2)},
wv(ϕ1 ∨ ϕ2) = max{wv(ϕ1), wv(ϕ2)};

G[a,b]ϕ :


bs(G[a,b]ϕ) = bs(ϕ) + b,

ws(G[a,b]ϕ) = ws(ϕ) + b,

wv(G[a,b]ϕ) = wv(ϕ) + b,

bv(G[a,b]ϕ) = bv(ϕ) + a;

F[a,b]ϕ :


bs(F[a,b]ϕ) = bs(ϕ) + a,

ws(F[a,b]ϕ) = ws(ϕ) + b,

wv(F[a,b]ϕ) = wv(ϕ) + b,

bv(F[a,b]ϕ) = bv(ϕ) + a.

Table 1: The equations for calculating the worst satisfaction time ws(ϕ), worst violation time wv(ϕ), best satisfaction time bs(ϕ). and best
violation time bv(ϕ) of an STL formula ϕ (Definition 4).

(Line 1). In Line 2, we initialize a 4D matrix of zeros de-
noted by R ∈ RD′×N ′×M×M where M = Mmax−Mmin+1
and Mmax and Mmin are the given minimum and maximum
number of intervals that we use to divide the trajectories into
m ∈ {Mmin, ...,Mmax} sub-trajectories. We use R to track
the time intervals in which an arbitrary pair of dimensions
meet the requirements of statistically meaningful trends. For
a given number of intervals m and ξd′,d, we denote the m-th
sub-trajectory at dimension d by ξmd′,d. Alg. 1 loops over the
unique pairs of dimensions d and j with d ̸= j (Lines 3-13)
to extract the desired time intervals with statistically mean-
ingful trends. In Lines 4 and 6, function lin-up-itri() cal-
culates the corresponding row and column indices for upper
triangular matrices with D′ and N ′ elements, respectively.

In Lines 7-13, Alg. 1 divides a given pair of trajectories
ξd′,d and ξj′,j into m ∈ {Mmin, ...,Mmax} sub-trajectories
(Line 8), respectively. Then, Alg. 1 calculates the p-value
p (Line 10) and correlation value r using Eq. (3) (Line 11)
between ξmd′,d and ξmj′,j and sets the element with the indices
n,m, k, and l of R to 1 if the requirements of the statisti-
cally meaningful trends are met (Line 13). l ≤ m is the index
we use to loop over the sub-trajectories created by dividing
ξd′,d into m sub-trajectories. In Lines 15-18, Alg. 1 extracts
all the unique time intervals in which there is a statistically
meaningful trend. In Line 17 of Alg. 1, R∗∗ml refers to
the indices m and l of all the rows and columns in R. In
Line 17, Alg. 1 extracts the time intervals with statistically
meaningful trends after dividing the time interval [1, T ] into
m sub-intervals ∀m ∈ {Mmin, ...,Mmax}. Alg. 1 is designed
for trajectories with two or more dimensions, but it can be
simplified to work for 1D trajectories as well.

4.2 Signal Temporal Logic Inference
In this paper, we modify the STL inference method proposed
in [Kong et al., 2014] to infer STL formulas for a given di-
mension and time interval such that they are sufficiently satis-
fied and violated by trajectories in D. Here, an optimization-
based algorithm is used for inferring an STL formula ϕ from

dataset D for a given dimension and time interval such that
the inferred formula discriminates between the desired behav-
ior and the undesired behavior of an underlying system at the
given dimension and time interval. This optimization-based
algorithm infers (1) the structure of ϕ including the tempo-
ral operators and Boolean connectives, and (2) the predicates
such that he following objective function is minimized.

J(ϕstr, v, d, τ, t) =
1

N

N∑
i=1

Loss(gi , r(ξi,d , ϕv ,τ , t))+

λ∥ϕv,τ∥, (4)

where ϕstr is a candidate inferred STL structure, v is a can-
didate set of values to be used in the predicates in ϕstr, r is
the robustness degree, ϕv,τ is the resulting STL formula after
substituting the predicates in v and the time interval τ into
ϕstr, λ is a weighting parameter, ∥ϕv∥ is the number of predi-
cates in ϕv , and Loss is a loss function.

Example 3. In the drug administration example, for dimen-
sion d2 ∈ {d1, d2} where d1 represents taking the drug
and d2 represents the temperature of the patient, ϕstr :=
F[?1,?2](ξ∗,1 >?3), v = {100}, and τ = [4, 5], ϕv,τ can
be written as ϕv := F[4,5](ξ∗,2 < 100) where ξ∗,2 denotes
an arbitrary trajectory at dimension d2. Here, we use “?” to
denote an arbitrary unknown parameter including the value
in a predicate or a bound in a time interval.

Alg. 2 illustrates the steps we take to infer STL formulas
for all the time intervals in T for each dimension d in D. In
Line 4, Alg. 2 randomly chooses N1 ≤ N pos trajectories
from Dpos to form D1 and randomly chooses N2 ≤ N neg

trajectories from Dneg to form D2. In Line 5, we cut the time
interval τ out of the trajectories in D1 and D2 and form new
trajectories with the length of |τ | and form Dred

1 and Dred
2 ,

respectively. At Line 6, we infer an STL formula ϕ′ using
Dred

1 and Dred
2 at time interval [0, |τ |] such that the objective

function (4) is minimized at time step t = 0. Then, at Line 7,
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we map the time interval [0, |τ |] to the original time interval τ
and form ϕ. The purpose of Lines 4-7 is to infer STL formulas
that are sufficiently satisfied and violated by the trajectories
in D. Alg. 2 returns the sets Φ1, ...,ΦD each containing |T |
STL formulas where |T | is the number of time intervals in
|T |.
Example 4. Given τ = [2, 4], a positive 1D trajec-
tory ξ1 := 1, 1, 2, 2, 2, a negative 1D trajectory ξ2 :=
−1,−1,−2,−2,−2. In Line 5 of Alg. 2, the function
traj-reduced(ξ1 , ξ2 , τ) return ξred1 := 2, 2, 2 and ξred2 :=
−2,−2,−2. In Line 6, Infer-Formula(ξred1 , ξred2 , [0 , 2 ], 1 )
returns ϕ′ := G[0,2](d1 > 0) and map-time(ϕ′, τ) in Line 7
returns ϕ := G[2,4](d1 > 0).

4.3 Constructing STL-CD
In this subsection, we introduce the algorithm we use to con-
struct STL-CD using the STL formulas inferred in Subsection
4.2. Alg. 3 illustrates the steps we take to construct an STL-
CD G for given sets of STL formulas Φ1, ...,ΦD. At Line
1, we initialize a D × D matrix denoted by Dir to track
the values that determine causal directions among STL for-
mulas that are used on the nodes of the obtained STL-CD.
We utilize RatioTE to evaluate the causal effect from ϕ and
θ defined as RatioTEϕ,θ =

TEϕ,θ

H(L(θ),L(ϕ)) where TEϕ,θ is
the transfer entropy between two random variables L(θ) and
L(ϕ) (Eq. (2)) and H(L(θ), L(ϕ)) is the joint entropy be-
tween these two random variables (Eq. (1)). The reason
we add Ratio but not simply TE is that the entropy of dif-
ferent STL formulas inferred is different. For calculating
RatioTE for two different STL formulas ϕ and θ denoted
by RatioTEϕ,θ, we generate the Boolean datasets Dbool

ϕ and
Dbool

θ by evaluating the truth values of ϕ and θ using D and
calculate RatioTEϕ,θ using these Boolean datasets. For each
two dimensions d, j ∈ {1, ..., D} and d ̸= j, we initialize a
|T |×|T | matrix denoted by RatioTEMat (Line 4) to store
the RatioTEϕ,θ values between each two formulas ϕ ∈ Φd

and θ ∈ Φj (Line 16). We only calculate the RatioTE be-
tween each two ϕ and θ that satisfy the temporal precedence
constraint (Line 12).

To fill the elements in RatioTEMat, we calculate
RatioTEϕ,θ using each trajectory ξ ∈ D and then choose
the maximum value (Line 16). In Lines 14-15, we calculate
RatioTEϕ,θ using ξbool,ϕ

i and ξbool,θ
i forall i ∈ {1, ..., N}

where ξbool,ϕ
i is the Boolean 1D trajectory with T time-steps

obtained by evaluating the truth values of ϕ using ξi at time-
steps t ∈ {0, ..., T − 1}. At Line 17, Alg. 3 fills the
Dirdj with the summation of all the RatioTE values in
RatioTEMat as the determinant of the causal direction
between dimension d and j. In this way, we consider the cu-
mulative RatioTE values of all |T | formulas that we have
inferred for each dimension d. At Lines 18 and 19, we ex-
tract the best pair of formulas for dimensions d and j with the
corresponding RatioTE value. In Line 20, we calculate the
causal effect difference between dimension d and j and store
it in IndiMat. Finally, in Lines 21-28, we add a causal link
from dimension d to j if IndiaMatdj > 0, else we add a
causal link from dimension j to d.

For a given pair of dimensions j and d, Alg. 3 returns the

Algorithm 1: Extracting time intervals with statisti-
cally meaningful trends.

Input: observational time-series datasetD with T time steps
and N trajectories with D dimensions, maximum
number of intervals Mmax, minimum number of
intervals Mmin, significance level α = 0.05

1 N ′ ← N(N−1)
2

, D′ ← D(D−1)
2

2 Initialize R as 4D matrix of 0 ∈ RD′×N′×M×M

3 for n = 1, ..., D′ do
4 d, j ← lin-up-tri(D ,n)
5 for k = 1, ..., N ′ do
6 d′, j′ ← lin-up-tri(N , k)
7 for m = 1, ...,M do
8 Divide ξd′,d and ξj′,j into m sub-trajectories
9 for l = 1, ...,m do

10 p ← ttest2(ξld′,d , ξ
l
j ′,j , α)

11 r 2 ← r2corr(ξld′,d , ξ
l
j ′,j )

12 if (p ≤ α) ∧ (r 2 ≥ 0.65) then
13 Rnkml ← 1

14 T ← ∅
15 for m = 1, ...,M do
16 for l = 1, ...,m do
17 if ∃m and l,R∗∗ml = 1 then
18 Divide the time interval [1, T ] into m intervals and

add the l-th time interval to T
19 return T

pair of formulas ϕd and θj that has the highest RatioTEϕ,θ

along with the causal direction. If we have ϕd θj , then
it is possible that the time interval of ϕd does not start from
0. The reason is that many of the statistically meaningful
time intervals that Alg. 1 returns do not start from 0. For
having pairs of formulas that are meaningful when converted
to natural language, Alg. 3 maps the time intervals of ϕd and
θj such that the time interval of ϕd starts from 0 (Lines 24 and
27). When the formulas are fixed, the direction obtained by
transfer entropy converges to the ground truth causal direction
as the amount of data increases.

Example 5. Assume for the Ex. 1, Alg. 3 returns
G[4,7](taking the drug) F[8,9](patient’s fever stops)
for a set of trajectories with length T = 20.
We map the time intervals in these formulas
such that G[4,7] starts from zero and we obtain
G[0,3](taking the drug) F[4,5](patient’s fever stops)
which yields a meaningful natural language translation.

5 Evaluation
We have applied the framework to both the synthesis and real-
world vehicular sensory data sets. The former is constructed
through simulation equations, while the latter is collected
through vehicle onboard vehicular sensors on Controller Area
Network (CAN) by reversing engineering the specification of
the CAN protocol [Ruan et al., 2025]. We also performed
comparisons with the main causal discovery algorithms as
follows:
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Algorithm 2: Inferring (F,G)-STL formulas
Input: observational time-series dataset D with T time

steps and D dimensions, set of time bounds T ,
Number of random positive and negative trajectories
N1 ≤ N pos and N2 ≤ N neg

1 Φ1, ...,ΦD ← ∅
2 for d = 1, ..., D do
3 for τ ∈ T do
4 D1,D2 ← rnd-traj(D,N1 ,N2 )

5 Dred
1 ,Dred

2 ← traj-reduced(D1 ,D2 , τ)

6 ϕ′ ← Infer-Formula(Dred
1 ,Dred

2 , [0 , |τ |], d)
7 ϕ← map-time(ϕ′, τ)
8 Add ϕ to Φd

9 return Φ1, ...,ΦD

Whether Taking Drug Temperature

0.612

0.395

0.00056 0.0144

0.213

0.038 …

…
G[6,9]d1 > 0

F[19,20]d1 > 0

G[11,14]d2 < 101

F[16,19]d2 < 101

G[10,17]d2 > 99

Figure 2: The primary calculation results of RatioTE between
STL formulas are partially displayed, where the direction is deter-
mined by time precedence and the weight of the edge is the value of
RatioTE between two STL formulas.

• Temporal Causal Discovery Framework (TCDF) [Nauta
et al., 2019] targets discovering non-linear causal rela-
tions between time series using deep learning networks
with an attention mechanism within a dilated depthwise
convolutional network.

• Multivariate Granger Causality (MVGC) [Barnett and
Seth, 2014] is the representative methods for discover-
ing Granger Causality using the vector autoregressive
model.

• Symbolic Transfer Entropy [Staniek and Lehnertz,
2008] utilizes technique of symbolization to calculate
transfer entropy getting rid of difficulties within prob-
ability estimation on non-stationary time-series.

In the results, the red arrow represents the wrong causal
direction and the black arrow represents the correct one.

5.1 Drug-Administration Case Study
In this subsection, we apply the proposed method to a
drug-administration case study where we use synthetic data
where the ground truth of the desired behavior is “tak-
ing the fever-reducer drug for four consecutive days causes
the fever to eventually stop in the next days once the four
consecutive days are finished”. This statement can be as
G[0,3] TakingDrug F[4,?] FeverStop where ? indicates an
unknown time upper bound. The undesired behavior which
is represented by negative trajectories is when the patient has
a fever. For this case study, we generated the dataset D with
16 positive trajectories and 2 negative trajectories all with the
length of T = 25 and two dimensions. The first dimension d1
indicates whether the patient has taken the drug, i.e., d1 = −1

Algorithm 3: STL-based causal discovery
Input: observational time-series datasetD with T time steps

and D dimensions, sets of STL formulas Φ1, ...ΦD

1 Dir ← 0 ∈ RD×D

2 for d = 1, ..., D do
3 for j = 1, ..., D do
4 RatioTEMat← 0 ∈ R|T |×|T |

5 if d ̸= j then
6 n← 0
7 for ϕ ∈ Φd do
8 n← n+ 1
9 m← 0

10 for θ ∈ Φj do
11 m← m+ 1
12 if(

max{wv(ϕ), ws(ϕ)} < min{bv(θ),

bs(θ)}
)

then
13 Evaluate the truth values L(ϕ) and

L(θ) using trajectories from D
separately and construct the
Boolean datasets Dbool

ϕ and
Dbool

θ , respectively
TETraj ← 0N×1

14 for i = 1, ..., N do
15 TETraji ←

Compute-TE(ξbool,ϕi , ξbool,θi )

16 RatioTEMatnm ← maxTETraj

17 Dirdj ← sum(TEMat)
18 TE-dj ← maxRatioTEMat
19 ϕd, θj ← argmaxϕ,θ (RatioTEMat)

20 IndiaMat← (Dir −Dirtran)./Dir
21 for d = 1...D do
22 for j = d+ 1, ..., D do
23 if (IndiaMatdj > 0) then
24 ϕ′

d, θ
′
j ← map0(ϕd , θj )

25 Add a casual arrow from ϕ′
d to θ′j with the

corresponding TE value of TE-dj
26 else
27 ϕ′

d, θ
′
j ← map0(θj , ϕd)

28 Add a casual arrow from θ′j to ϕ′
d with the

corresponding TE value of TE-jd

29 return STL-CD G

indicates the drug has not been taken and d1 = −1 indicates
that the drug has been taken. The second dimension d2 is the
temperature value of the patient. d1 < 100F ◦ indicates the
fever has stopped and d1 > 100F ◦ indicates that the fever has
not been stopped. We also set Mmin = 1 and Mmax = 20. We
have inferred 25 STL formulas for each dimension and then
calculated the TE among pairs according to temporal prece-
dence constraints. We partially display the result in Fig 2. Fi-
nally, the obtained STL-CD (with mapped formulas) is shown
in Fig. 3a, unveiling the truth that taking the drug is the cause
of falling temperature. The unmapped formulas are G[6,9]

for cause and G[11,15] for effect where the duration of tak-
ing drug is four consecutive days as described by pairs of
STL formulas with the maximum RatioTE value. The sat-
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isfaction of the effect (mapped) formula G[5, 8]d2 < 101
implies the satisfaction of the effect formula in the ground
truth. This means that the temporal behavior specified by
G[5, 8]d2 < 101 encompasses the temporal behavior spec-
ified by F[4,?]FeverStop. As for the predicate d2 < 101,
the value d2 = 101 indicates having a fever, and the value
d2 = 99 indicates not having a fever in the trajectories and the
predicate d2 < 101 captures “not having a fever” correctly.
We also apply three other baseline methods on Drug synthesis
dataset and their results are shown in Fig. 3b, Fig. 3c, Fig. 3d.
As seen, only STE generated the correct CD. However, only
the proposed method extracted the ground truth duration of
taking drug that causes the fever to drop. We quantify struc-
tural accuracy by the percentage of correctly identified edges.
In the drug case study, our method achieved 100% accuracy,
outperforming TCDF (0%) and MVGC (0%).

5.2 On-Board Vehicular Sensory Data
In this case study, we collect on-board vehicular sensory data
from CAN bus when the vehicle is under normal operation.
The dataset D has 9 normalized trajectories with the length
of T = 3000 and each trajectory has four dimensions. d1
is the “vehicle speed”, d2 is the “engine speed”, d3 is the
“accelerator paddle position”, and d4 is the “throttle posi-
tion”. The underlying causal diagram originates from com-
mon Electronic Control Units (ECUs) within the vehicle in-
cluding the Throttle Control Unit [Loh et al., 2013], Trans-
mission Control Unit [Tamada et al., 2020], etc. According
to the design of the control logic inside ECUs, we could fig-
ure out the ground truth for these four attributes (without any
STL formulas).

D has nine positive trajectories and three negative trajecto-
ries where positive trajectories represent the situation where
the vehicle is under operation (the vehicle is moving) and the
negative trajectories represent the situation where the vehicle
is not under operation (where the vehicle is static). Fig. 4a
shows the obtained results for Vehicle dataset with Mmin =
90 and Mmax = 100. As seen, the proposed method discov-
ered five edges correctly out of six possible edges among the
four attributes. In Fig. 4a, it can be seen that three differ-
ent formulas are inferred for d1, three different formulas for
d3, two different formulas for d2, and two different formu-
las for d4 wherein each pair of formulas, the temporal prece-
dence constraint is met and the causal link has a correct direc-
tion. For example, G[0,29](d4 > 0.5936) F[537,565](d1 >
0.797) means “the normalized throttle position being greater
than 0.5936 for 30 consecutive time units causes the normal-
ized vehicle speed to eventually be greater than 0.797 in the
time window of [537, 565]”. Moreover, several such STL
formulas in different time intervals with statically meaningful
trends can be used in the abstraction of the temporal proper-
ties in the context of causality and the abstraction of systems
dynamics. The formulas we get could be used as forming
blocks for vehicle dynamics STL specifications benchmarks
such as in [Hoxha et al., 2014]. For discovering the ground
truth STL formulas of this case study, we need to use more
data and perform more extensive experiments.

Fig. 4b shows the obtained CD by MVGC where the cor-
rect discovered edges are d3 d4, d3 d2, and d4 d2.

G[0,3] d1 > 0 G[5,8] d2 < 101

(a) STL-CD by the proposed method

d1 d2

(b) CD by TCDF

d1 d2

(c) CD by MVGC

d1 d2

(d) CD by STE

Figure 3: The obtained results for the drug-administration case
study.

F[0,29] d2 > 0.801 G[2608,2640] d1 > 0.324

F[0,31] d3 > 0.598 F[147,175] d1 > 0.797

G[0,29] d4 > 0.5936 F[537,565] d1 > 0.797

G[0,29] d3 > 0.753 G[752,847] d2 > 0.458

G[0,28] d3 > 0.9521 G[1500,1528] d4 > 0.266

(a) STL-CD by the proposed method

d3 d4

d1 d2

(b) CD by MVGC

d3 d4

d1 d2

(c) CD by STE

Figure 4: The obtained results for the Vehicular Sensory Data case
study

Fig. 4c shows the obtained CD by STE where the correct
discovered edges are d3 d1, d3 d2 and d3 d4. TCDF
did not return any causal link. The method we proposed not
only discovers the closest causal diagram but also reveals a
potential temporal logic within the controller. In the vehicu-
lar case, our method achieved 83% accuracy, also surpassing
MVGC (50%) and STE (50%).

6 Conclusion

In this paper, we introduced signal-temporal-logic-based
causal discovery to explicitly capture the temporal aspects of
causal relationships, enabling agents to reason about causality
over time while considering the order and duration of events.
This approach has the potential to improve decision-making
in complex, dynamic environments. As future work, we aim
to optimize the extraction of statistically meaningful time in-
tervals to maximize their utility based on dataset size. Addi-
tionally, we plan to extend the method to construct a complete
DAG rather than focusing on pairwise nodes.
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