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Abstract
Single-step retrosynthesis is a crucial task in or-
ganic synthesis, where the objective is to identify
the reactants needed to produce a given product. In
recent years, a variety of machine learning methods
have been developed to tackle retrosynthesis pre-
diction. In our study, we introduce RetroMoE, a
novel generative model designed for the single-step
retrosynthesis task. We start with a non-symmetric
variational autoencoder (VAE) that incorporates a
graph encoder to map molecular graphs into a latent
space, followed by a transformer decoder for precise
prediction of molecular SMILES strings. Addition-
ally, we implement a simple yet effective mixture-
of-experts (MoE) network to translate the product
latent embedding into the reactant latent embed-
ding. To our knowledge, this is the first approach
that frames single-step retrosynthesis as a latent
translation problem. Extensive experiments on the
USPTO-50K and USPTO-MIT datasets demonstrate
the superiority of our method, which not only sur-
passes most semi-template-based and template-free
methods but also delivers competitive results against
template-based methods. Notably, under the class-
known setting on the USPTO-50K, our method
achieves top-1 exact match accuracy comparable
to the state-of-the-art template method, RetroKNN.

1 Introduction
Single-step retrosynthesis is a fundamental aspect of organic
chemistry, especially vital for the pharmaceutical industry,
as it enables the design of viable synthetic routes to create
complex compounds. This process involves deducing the nec-
essary reactants by working backwards from the final product,
forming the basis for multi-step synthesis planning, where a
complete route is constructed through a series of sequential
single-step reactions.

Recently, single-step retrosynthesis has advanced signifi-
cantly through computer-aided synthesis planning (CASP),
particularly with the integration of machine learning. There
are three primary research approaches in machine-learning-
based retrosynthesis. The first approach is template-based
methods [Segler and Waller, 2017; Dai et al., 2019; Chen and

CCCCc1ccc2c(c1)CCC2=O.NOCCCCc1ccc2c(c1)CCC2=NO

Product Reactants

N OH
OH

O
H2N

Figure 1: The retrosynthesis task involves identifying the reactants
required to synthesize a given product molecule. Illustrated using
both molecular graphs and SMILES strings, the task reveals that
only minor modifications are typically needed in the molecule. This
observation motivates the approach of projecting molecules into a
latent space and formulating retrosynthesis as a latent translation
problem from product to reactants.

Jung, 2021; Xie et al., 2023], which involve searching a li-
brary to find the most relevant reaction templates that represent
chemical reactions in synthesis. By applying these templates
to product molecules, they facilitate straightforward reactant
prediction. However, despite their state-of-the-art performance
and interpretability, these methods struggle with generalization
and scalability due to the limited template libraries. The sec-
ond approach, semi-template-based methods [Shi et al., 2020;
Chen et al., 2023; Somnath et al., 2021; Sacha et al., 2021;
Liu et al., 2022; Zhong et al., 2023], either employ a two-
stage process (identifying reaction centers and completing
synthons) or utilizes an auto-regressive graph editing tech-
nique. While these methods strike a balance between inter-
pretability and generalization, they often suffer from cumula-
tive errors due to their stage-wise processing nature. The third
approach is template-free methods, which treat retrosynthesis
as a sequence-to-sequence [Liu et al., 2017; Irwin et al., 2022;
Kim et al., 2021] or graph-to-sequence [Tu and Coley, 2022;
Wan et al., 2022] translation problem, converting products
directly into reactants. Some methods [Kim et al., 2021;
Igashov et al., 2023] also attempt to capture the diversity
inherent in retrosynthesis procedures. However, despite their
broader scope, these methods often exhibit lower performance
compared to other approaches.

In our study, we introduce a new template-free method,
RetroMoE, which tackles the retrosynthesis task as a latent
translation from products to reactants. Drawing from the
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molecule optimization literature [Du et al., ], we know that
molecules with similar structures tend to cluster in the la-
tent space. This insight aligns with the observation that only
minor modifications are typically needed for reactants to syn-
thesize products during chemical reactions, as illustrated in
Fig. 1. Inspired by this, we aim to enhance the template-free
method from a latent translation perspective. To achieve this,
we introduce a non-symmetric variational autoencoder (VAE)
model that constructs a latent space for both product and re-
actant molecules. We utilize a graph encoder to ensure the
latent space accurately captures the structural information of
molecules. For precise molecule prediction, we employ a
transformer decoder. We then introduce a novel latent transla-
tion method that converts the product’s latent embedding into
the reactant’s latent embedding. Given that retrosynthesis in-
volves more complex chemical reactions than typical molecule
optimization tasks, we employ a mixture-of-experts (MoE)
network [Jacobs et al., 1991] for this translation. Finally, to
ensure the precise prediction of reactants, we use a transformer
decoder following the MoE network, further enhancing our
model’s accuracy.

The contributions of our work are summarized as follows:

• To the best of our knowledge, we are the first to formulate
the retrosynthesis task as a latent translation problem.

• We propose a non-symmetric VAE model to construct the
latent space and an MoE model to translate the product
latent embedding to the reactant latent embedding.

• Our approach outperforms other template-free and semi-
template-based methods on the USPTO-50K and USPTO-
MIT datasets and is competitive with the template-based
methods.

2 Related Work
2.1 Single-step Retrosynthesis
Several lines of research have explored learning methods
for modeling single-step retrosynthesis, broadly categorized
into three types: template-based, semi-template-based, and
template-free. We introduce the semi-template-based methods
in the supplementary material due to space limit.

2.2 Template-based Retrosynthesis
In retrosynthesis, a template is a structured representation of a
chemical reaction, defining how a product subgraph transforms
into one or more reactant subgraphs. It serves as a blueprint,
detailing the rearrangement of specific atoms and bonds during
the synthesis process.

Template-based models identify the most relevant reaction
templates from a database. Notable methods include Neural-
Sym [Segler and Waller, 2017] and RetroSim [Coley et al.,
2017], which match templates to products based on molec-
ular similarity. MHNReact [Seidl et al., 2022] treats this
as a content-based retrieval task using a modern Hopfield
network. GLN [Dai et al., 2019] predicts joint conditional
probabilities, integrating reactants into template relevance de-
cisions. LocalRetro [Chen and Jung, 2021] emphasizes local
templates, while RetroKNN [Xie et al., 2023] enhances this

with k-nearest-neighbor (KNN) search. RetroComposer [Yan
et al., 2022] composes new templates for retrosynthesis.

Despite their interpretability and strong performance,
template-based methods struggle with generalization, as they
cannot adapt to templates outside the database. They also face
scalability issues, with performance deteriorating on larger
datasets due to the increased likelihood of missing relevant
templates during extensive searches.

2.3 Template-free Retrosynthesis
The template-free approach to retrosynthesis is first intro-
duced by [Liu et al., 2017], framing the task as a sequence-
to-sequence translation problem by processing the chemical
language SMILES with natural language processing tech-
niques. [Karpov et al., 2019] later incorporates the transformer
architecture into retrosynthesis. To improve performance,
AugTransformer[Tetko et al., 2020] uses extensive data aug-
mentation, while Chemformer [Irwin et al., 2022] combines
data augmentation with pre-trained models. GTA [Seo et
al., 2021] optimizes training by designing attention masks
to reduce transformer parameters. TiedTransformer [Kim et
al., 2021] introduces a forward synthesis transformer to cre-
ate a cycle-consistent framework, addressing diversity issues
through latent variables, as also explored by [Chen et al., 2019;
He et al., 2022]. Graph2Smiles [Tu and Coley, 2022] com-
bines a graph encoder with a transformer decoder, while
Retroformer [Wan et al., 2022] uses a graph transformer
for reaction center detection and a transformer decoder for
translating product SMILES to reactant SMILES. Recently,
Retrobridge [Igashov et al., 2023] modeled retrosynthesis as
Markov bridges between product and reactant distributions.

Our work aligns with the methods of [Kim et al., 2021;
Chen et al., 2019; He et al., 2022; Igashov et al., 2023], but
rather than fostering diversity through latent variables, we
approach the task as a latent translation between products and
reactants.

2.4 Molecule Optimization
Our work is closely related to the 1D/2D molecule optimiza-
tion task, where the goal is to generate new molecules with
desired properties by optimizing existing ones. HierVAE [Jin
et al., 2020] employs a hierarchical variational autoencoder
(VAE) to capture and model the complex hierarchical infor-
mation of molecules during optimization. MSO [Winter et
al., 2019] uses a sequence-level VAE, representing molecules
as SMILES strings and reconstructing them from a learned
latent space to explore and generate molecular structures.
ChemSpace [Du et al., ] introduces the concept of identify-
ing smooth latent directions that control molecular properties,
emphasizing their role in interpreting structural changes in
relation to property variations.

While these methods typically involve creating a latent
space and using a single network to transform existing
molecules into new ones, retrosynthesis presents unique chal-
lenges. Complex chemical reactions often involve multiple,
rather than simple, transformations, requiring precise, rather
than approximate, representation of reactants. To address these
challenges, we propose a mixture-of-experts framework to ef-
fectively model diverse and complex reaction mechanisms.
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Additionally, we introduce a non-symmetric graph-sequence
VAE specifically tailored to the retrosynthesis task.

3 Method
3.1 Problem Formulation
Given one product molecule MP , the retrosynthesis task aims
to predict a set of N reactant molecules {MR

i }Ni=1 that can
lead to MP . Furthermore, a molecule denoted as M, can
be represented using two primary data formats, the SMILES
string and the molecular graph.

For the SMILES format, the molecular structure S is ex-
pressed as a sequence of characters si, written as S :=
s1s2...sL, where L represents the total length of the string.
Each character si represents a structural element, which could
be an atom element, a chemical bond, a branching notation,
etc. To represent multiple molecules, multiple SMILES strings
can be concatenated using a period “.”, resulting in a single,
extended SMILES sequence.

Alternatively, a molecule can be conceptualized as a graph
G = {V, E}. Here, V = {v1, .., vn} corresponds to the set
of n atoms in the molecule, and E = {e1, .., em} represents
the set of m bonds between these atoms. Each node (atom)
in this graph is associated with a feature vector hi ∈ Rd

that holds atomic properties such as aromaticity and electric
charge. The complete atomic information is compiled into
a node feature matrix H ∈ Rn×d. The adjacency matrix
B ∈ Rn×n×c describes the topological relationships within
M, with c denoting the number of bond types and Bijk indi-
cating the presence or absence of a chemical bond of type k
between atom i and atom j. To represent multiple molecules, a
collection of molecules can be treated as a single disconnected
graph, where each molecule forms an independent connected
component within the graph. In our work, we use both molec-
ular graph and SMILES string for our encoder and decoder,
respectively.

3.2 Non-symmetric VAE
As noted in the molecule optimization literature [Du et al., ],
molecules with similar structures tend to cluster together in the
latent space, which corresponds to the observation that reac-
tants typically undergo only minor modifications to synthesize
products during chemical reactions. With this in mind, we aim
to develop a latent space that enables us to reformulate the
retrosynthesis task as a product-to-reactant latent translation
task. To achieve this, we employ the Variational AutoEncoder
(VAE) model [Kingma and Welling, 2013]. Below, we provide
a brief overview of the VAE.

VAE Recap
VAEs estimate the Evidence Lower Bound (ELBO) on the
log-likelihood p(x) of the input molecule x, using a proposal
distribution q(z|x), where z represents the latent variables.
The goal is to maximize the ELBO, defined as:

log p(x) = log

∫
z

p(z)p(x|z)dz

≥Eq(z|x)
[
log p(x|z)

]
−DKL(q(z|x)∥p(z)) (1)
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Figure 2: Illustration of the Non-symmetric VAE model. The model
processes an input molecular graph G (product and reactant), trans-
forming it into node matrix H and edge matrix B. These matrices are
then processed by atom and bond encoders to produce features Ĥ and
B̂, respectively. Subsequently, a graph encoder—incorporating the
feature extraction of self node, neighbor nodes, and edges—further
refines these features into H̃ and B̃. Importantly, only the node fea-
ture H̃, which now includes edge information after the graph encoder,
is utilized thereafter. This feature is passed through two MLP layers
to compute µ and σ for the reparameterization trick, resulting in
the latent embedding Z. This embedding, along with the tokenized
SMILES string, is input into a transformer decoder to produce the
final output Y. The model is trained using cross-entropy and KL
divergence losses.

The first term of the ELBO is the reconstruction term, while
the second term, the Kullback-Leibler (KL) divergence, mea-
sures the information loss when q(z|x) approximates p(z). In
VAEs, p(z) typically follows a standard Gaussian distribution,
N (0, I), suggesting that all latent dimensions should be inde-
pendent or disentangled. Another important aspect to highlight
is the reparameterization trick. In VAEs, z is expressed as
a deterministic variable through z = f(ϵ,x), where ϵ is an
auxiliary variable independently distributed as p(ϵ), and f(·)
is the reconstruction function. The reparameterization is given
by:

z = fϕ(x, ϵ) = µx + σx ⊙ ϵ (2)

where ⊙ denotes the element-wise product. This trick fa-
cilitates the computation of gradients of the reconstruction
function with reduced variance.

Non-symmetric Encoder-Decoder
In developing our VAE model, we employ a non-symmetric
encoder-decoder framework. Specifically, we combine a
graph-based encoder with a transformer-based decoder [Tu
and Coley, 2022; Wan et al., 2022; Zeng et al., 2024], de-
signed to efficiently encode molecular graphs into a latent
space and subsequently decode them into SMILES strings.
This approach is tailored to support the complex demands
of the retrosynthesis task, ensuring accurate and meaningful
translations from product to reactant representations.

As shown in Fig. 2, given a molecule graph G = {V, E}
representing a product or reactant, we begin by converting it
into two matrices: the node (atom) matrix H and the edge
(bond) matrix B. These matrices are then processed by sepa-
rate encoders: an atom encoder for H and a bond encoder for
B, as they have different dimensions. Each encoder consists of
a series of MLP layers that transform the respective matrices
into atom features Ĥ and bond features B̂.
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After processing, the features are handled by our spe-
cially designed graph encoder. We base this encoder on the
Graph Attention Network (GAT) architecture [Veličković et
al., 2018]. In GAT, the attention mechanism computes the
relative weights of edges connecting node pairs, allowing
the model to focus more on important structures within the
molecule. Specifically, GAT updates the feature vector of each
node by aggregating features from its neighbors, weighted by
attention coefficients. However, the standard GAT only consid-
ers the neighbor node features, neglecting the edge feature and
current node feature which are crucial for our task. To address
this, we incorporate the edge feature and current node feature
into the computation process. Mathematically, for a node i,
the new node feature h′

i and edge feature b′
ij are computed

as:

h′
i =

∑
j∈N (i)

αij (Whi ∥ Whj ∥ Wbij) (3)

b′
ij = Wh′

i ∥ Wh′
j ∥ Wbij (4)

where N (i) denotes the neighbors of node i. αij is the
attention coefficient between nodes i and j, computed using a
softmax over a learned transformation of the node features:

αij = softmaxj
(
LeakyReLU

(
a
(
WhT

i ∥ WhT
j ∥ WbT

ij

)))
(5)

W is a weight matrix applied to node features before com-
puting attention coefficients. Note that we use different W
for different features in our implementation. a is a learnable
parameter vector used to compute the raw attention scores. ∥
denotes concatenation. The whole procedure can be summa-
rized as follows:

H̃, B̃ = GraphEncoder
(
Ĥ, B̂

)
(6)

After processing through the graph encoder, we use only
the node feature H̃, which now encapsulates all necessary
information following multiple iterations of message passing.
Initially, H̃ is input into two distinct MLP layers to compute
the mean and variance values essential for the reparameteriza-
tion technique described in Eq. 2. This step yields the latent
embedding Z.

Subsequently, this latent embedding Z is fed into a vanilla
transformer encoder [Vaswani et al., 2017], in conjunction
with sine-cosine position-encoded tokenized SMILES strings
S . This combination facilitates the final prediction Y:

Y = TransformerDecoder (Z, PosEnc (S)) (7)

3.3 MoE-based Latent Translation
The latent translation is a common technique in molecule op-
timization tasks [Du et al., ; Jin et al., 2020; Winter et al.,
2019], where a single network is typically used to adjust a
molecule’s properties, such as converting a toxic molecule into
a non-toxic one. However, unlike molecule optimization, the
retrosynthesis task involves more complex chemical reactions
and requires more precise predictions of reactants. To address
this complexity, we propose a mixture-of-experts (MoE) net-
work to better model the intricate chemical reactions involved
in retrosynthesis.
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Figure 3: Illustration of the MoE-based Latent Translation procedure.
Starting with the input product molecular graph Gp and reactant
molecular graph Gr , we generate product latent embedding Zp and
reactant latent embedding Zr through the process depicted in Fig. 2.
As illustrated on the left, these two embeddings are close to each
other in the latent space, motivating the translation of Zp to Zr .
This translation is facilitated by a mixture-of-experts network which
results in the predicted latent embedding Zpr . A transformer decoder
then generates the final prediction Yr . During training, the predicted
latent embedding Zpr is pulled close to the reactant latent embedding
Zr with a mean square error loss as shown on the right.

As shown in Fig. 3, given a product molecule graph Gp

and a reactant molecule graph Gr, we first input them into the
previously mentioned graph encoder to obtain their respective
latent embeddings, Zp for the product and Zr for the reactant.
Subsequently, we employ a Mixture of Experts (MoE) network
to translate Zp into Zr.

The MoE network comprises a gating network and several
expert networks. All the gating networks and expert networks
contain a series of MLP layers, ReLU layers, and LayerNorm
layers. The gating network generates weights for each expert
based on the input features. These weights are then used to
combine the outputs from the various expert networks appro-
priately. By weighting and aggregating these expert outputs,
we derive the translated latent embedding Zpr which is then
optimized to closely match the reactant latent embedding Zr.
To facilitate the accurate prediction of reactants, we still apply
the transformer encoder to obtain the final output Ypr. The
procedure can be formulated as follows:

Weights = Gating (Z) (8)

Zpr = Experts (Z)× Weights (9)

Yr = TransformerDecoder (Zpr, PosEnc (Sr)) (10)

3.4 Optimization
During training, our model undergoes a two-stage process.
First, we train the non-symmetric VAE with the ELBO out-
lined in Eq. 1. Specifically, we apply a cross-entropy loss
between tokenized SMILES string S and the prediction Y as
the first reconstruction term. For the second term, we still use
the KL divergence but with a regularization factor to encourage
the more disentangled latent representation following [Higgins
et al., 2017]. The loss function for this first stage is defined as:

Loss1 = CrossEntropy (Y,S) + β KL (11)

where β represents the regularization factor. This stage
includes all products and reactants from the training set to
ensure an effective latent space for the subsequent translation
task in the second stage.
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Second, we train the MoE network and transformer decoder
using a mean square error (MSE) loss between the translated
latent embedding Zpr and the reactant latent embedding Zr.
Additionally, we apply a cross-entropy loss to ensure the final
output Yr accurately matches the tokenized reactant SMILES
string Sr. This approach optimizes both the fidelity of the
translated embeddings and the accuracy of the predicted se-
quences. The loss function for this second stage is defined
as:

Loss2 = CrossEntropy (Yr,Sr) + MSE (Zpr,Zr) (12)

In the inference stage, given input product graph Gp, we use
the trained model from the second stage to predict reactant
SMILES string Yr.

4 Experiments
4.1 Datasets
In our study, we utilize two established retrosynthesis bench-
mark datasets: USPTO-50k [Schneider et al., 2016] and
USPTO-MIT [Jin et al., 2017]. The USPTO-50k dataset
comprises 50,016 atom-mapped reactions, categorized into 10
reaction classes, and is divided into training, validation, and
test sets with 40,008, 5,001, and 5,007 reactions, respectively,
following the partitioning used in previous work [Dai et al.,
2019]. We assess model performance under two scenarios:
with and without known reaction classes. The USPTO-MIT
dataset contains approximately 479,000 atom-mapped reac-
tions, with around 409,000 for training, 40,000 for validation,
and 30,000 for testing. Unlike USPTO-50k, reaction classes
are not used for benchmarking in the USPTO-MIT dataset.

4.2 Implementation Details
In our experiments on the USPTO-50K dataset, we use the
Adam optimizer with an initial learning rate of 1.25e-4 for
the first training stage and 1e-4 for the second stage. The
training lasts for 45 epochs in the first stage and 170 epochs in
the second. We apply an exponential scheduler for learning
rate decay and set the β value in Loss1 to 0.001. Both the
graph encoder and transformer decoder in each stage have a
hidden size of 512, 8 layers for both encoder and decoder,
and 8 attention heads. The MoE network consists of 3 gating
layers, 8 expert layers, and 3 experts.

For the experiments on the USPTO-MIT dataset, we use
the Adam optimizer with an initial learning rate of 1e-4 for
the first phase and 5e-5 for the subsequent phase. The training
duration is 85 epochs for the first stage and 300 epochs for
the second. We continue using an exponential scheduler for
learning rate decay, with the β value in Loss1 set to 0.001.
In terms of model configuration, both stages feature a graph
encoder and transformer decoder with a hidden size of 768,
8 encoder and decoder layers, and 12 attention heads. The
MoE network includes 3 gating layers, 8 expert layers, and
3 experts. We conduct the experiments using the PyTorch
framework on NVIDIA A5000 GPUs.

To maintain baseline performance, we use the SMILES
alignment and data augmentation techniques similar to previ-
ous methods [Wan et al., 2022; Zeng et al., 2024].

4.3 Evaluation
During inference, we use beam search to generate the output
SMILES with a beam size of 10. In all our experiments, we
assess performance using the Top-k exact match accuracy
for k = 1, 3, 5, and 10. This metric calculates the proportion of
input products for which the tested method correctly predicts
the entire set of reactants within its top-k predictions.

In the experiments on the USPTO-50k dataset, we also
report the Top-k round-trip accuracy and coverage follow-
ing [Igashov et al., 2023]. Specifically, we use the Molecular
Transformer model [Schwaller et al., 2019] to predict forward
reactions for the top-k samples of each input product. Round-
trip accuracy measures the proportion of correctly predicted re-
actants, considering predictions as correct if they either match
the ground truth or lead back to the input product. Round-trip
coverage evaluates whether at least one prediction within the
top-k meets this correctness criterion. These metrics account
for the possibility of multiple valid reactant sets for a single
product.

4.4 Comparison with State-of-the-art Methods
Results on USPTO-50K
The results on the USPTO-50K dataset are shown in Table. 1
and Table. 2. Note that a more thorough comparison can
be found in the supplementary material. Additionally, we
illustrate our method’s ability to generate new molecules in
the supplementary material.
Top-k Exact Match Accuracy. With known reaction
classes, our model achieves 66.7% top-1, 86.5% top-3, 91.3%
top-5, and 94.4% top-10 accuracy, setting a new bench-
mark for template-free methods and proving competitive with
template-based and semi-template-based methods. It is note-
worthy that our model matches the top-1 accuracy achieved
by RetroKNN [Xie et al., 2023], marking a significant success
in the template-free methods. Without reaction class informa-
tion, the model reaches a 54.8% top-1, 76.7% top-3, 83.4%
top-5 and 89.3% top-10 accuracy. While its performance
trails behind RetroKNN [Xie et al., 2023], it surpasses most
template-based and semi-template-based methods, showing
our method’s superiority.
Top-k Round-trip Coverage and Accuracy. Following
RetroBridge [Igashov et al., 2023], we also report the top-k
round-trip coverage and accuracy on the USPTO-50K dataset
under the class-unknown setting. As shown in Table. 2, our
method achieves the state-of-the-art performance on both
round-trip coverage and accuracy. This demonstrates that
our model is more effective at proposing valid and efficient
synthetic routes for downstream applications.
The Ability to Generate New Molecules. Our model can
also successfully generate novel reactant molecules that can
synthesize the same product. More details are introduced in
the supplementary material.

Results on USPTO-MIT
The top-k exact match accuracy results on the USPTO-MIT
dataset are shown in Table. 4. Our method outperforms
other template-free methods and most template-based meth-
ods. Note that our model achieves competitive performance
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Reaction Class Known Reaction Class Unknown
Model k = 1 k = 3 k = 5 k = 10 k = 1 k = 3 k = 5 k = 10

Template-Based
LocalRetro [Chen and Jung, 2021] 63.9 86.8 92.4 96.3 53.4 77.5 85.9 92.4
RetroComposer [Yan et al., 2022] 65.9 85.8 89.5 91.5 54.5 77.2 83.2 87.7
RetroKNN [Xie et al., 2023] 66.7 88.2 93.6 96.6 57.2 78.9 86.4 92.7
Semi-Template-Based
GraphRetro [Somnath et al., 2021] 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5
G2Retro [Chen et al., 2023] 63.6 83.6 88.4 91.5 54.1 74.1 81.2 86.7
MEGAN [Sacha et al., 2021] 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1
MARS [Liu et al., 2022] 66.2 85.8 90.2 92.9 54.6 76.4 83.3 88.5
Template-Free
DualTF [Sun et al., 2020] 65.7 81.9 84.7 85.9 53.6 70.7 74.6 77.0
Retroformer [Wan et al., 2022] 64.0 82.5 86.7 90.2 53.2 71.1 76.6 82.1
G2GT [Lin et al., 2023] - - - - 54.1 69.9 74.5 77.7
RetroBridge [Lin et al., 2023] - - - - 50.8 74.1 80.6 85.6
Ours 66.7 86.5 91.3 94.4 54.8 76.7 83.4 89.3

Table 1: Top-k exact match accuracy for retrosynthesis prediction on USPTO-50k test dataset. The best performance in each method type is
in bold. More comparisons are listed in the supplementary material due to space limitation.

Coverage Accuracy
Model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

GLN [Dai et al., 2019] 82.5 92.0 94.0 82.5 71.0 66.2
LocalRetro [Chen and Jung, 2021] 82.1 92.3 94.7 82.1 71.0 66.7
MEGAN [Sacha et al., 2021] 78.1 88.6 91.3 78.1 67.3 61.7
Graph2SMILES [Tu and Coley, 2022] — — — 76.7 56.0 46.4
GraphRetro [Somnath et al., 2021] — — — 80.5 73.3 68.3
RetroPrime [Wang et al., 2021] — — — 79.6 59.6 50.3
Retroformer [Wan et al., 2022] — — — 78.6 71.8 67.1
RetroBridge [Igashov et al., 2023] 85.1 95.7 97.1 85.1 73.6 67.8
Ours 85.9 95.1 97.4 85.9 76.8 72.2

Table 2: Top-k round-trip coverage and accuracy on the USPTO-50k test dataset.

Pairs Average Euclidean Distance
Product-Product 199.54

Reactant-Reactant 203.82
Product-Reactant 75.49

Table 3: Average Euclidean distance comparison on the USPTO-50K
test dataset.

with the state-of-the-art template-based method which is un-
der the class-unknown setting since the class information is
not provided by the USPTO-MIT dataset. This shows the
superiority of our method.

4.5 Ablation Analysis
Distance between the Latent Embeddings of Product and
Reactant. Previous research [Du et al., ] has demonstrated

that molecules with similar structures tend to cluster in the
latent space. Despite this, we conduct further experiments
to validate this phenomenon. Specifically, we calculated the
average euclidean distance between the latent embeddings of
product-reactant pairs within the USPTO-50K test set. For
comparison, we also calculate the average euclidean distance
for disparate product pairs and reactant pairs. The results,
as presented in the Table. 3, show that the average distance
between corresponding products and reactants is much lower
than that between different products and reactants.

The Number of Experts. Here, we examine the influence of
the number of experts in the MoE network on the performance
of the USPTO-50K test dataset under the class-unknown set-
ting. According to the results shown in Table 5, utilizing three
experts yielded the best performance. Due to memory con-
straints, we limit our testing to configurations with 1, 2, 3, and
4 experts, noting that increasing the number of experts could
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Model k = 1 k = 3 k = 5 k = 10

Template-Based NeuralSym [Segler and Waller, 2017] 47.8 67.6 74.1 80.2
LocalRetro [Chen and Jung, 2021] 54.1 73.7 79.4 84.4
RetroKNN [Xie et al., 2023] 60.6 77.1 82.3 87.3

Template-Free Seq2seq [Liu et al., 2017] 46.9 61.6 66.3 70.8
Transformer [Lin et al., 2020] 54.1 71.8 76.9 81.8
Ours 60.3 76.4 81.2 85.7

Table 4: Top-k exact match accuracy on USPTO-MIT test dataset.

Number of Experts k = 1 k = 3 k = 5

1 51.4 73.7 79.6
2 53.5 76.2 83.2
3 54.8 76.7 83.4
4 53.2 76.1 83.0

Table 5: Experimental results on varying numbers of experts for
Top-k exact match accuracy on the USPTO-50k dataset in a class-
unknown setting.

Loss Function k = 1 k = 3 k = 5

CrossEntropy 52.5 75.8 82.9
CrossEntropy + MSE 54.8 76.7 83.4

Table 6: Experimental results on training the model in the second
stage with or without the mean square error loss for the Top-k exact
match accuracy on the USPTO-50k dataset in a class-unknown
setting.

potentially enhance performance further.

Different Loss Functions. Our model in the second stage
can be trained using only the cross entropy loss. Thus, we
investigate the importance of incorporating the mean square er-
ror loss. This loss measures the distance between the predicted
reactant latent embedding and the ground truth latent embed-
ding. As shown in Table. 6, employing mean square error
loss, which effectively narrows the distance between the prod-
uct and reactant latent embeddings, is crucial for enhancing
performance.

The Effect of Non-symmetric VAE. In our work, we use a
graph-transformer encoder-decoder design to model precise
predictions of SMILES strings, creating an accurate latent
space for the second stage. Here, we discuss the effect of
this non-symmetric VAE. We design a graph-graph symmet-
ric VAE, where the graph decoder mirrors the structure of
the graph encoder introduced in the method section. After
training this symmetric VAE, we apply the graph encoder to
the second stage of our training, just as we do with the non-
symmetric VAE. As seen in Table 7, the graph-transformer
non-symmetric structure is crucial for performance, indicating
that the transformer decoder’s ability to accurately predict
SMILES strings helps build an effective latent space.

VAE k = 1 k = 3 k = 5

Graph-Graph 50.4 74.6 82.2
Graph-Transformer 54.8 76.7 83.4

Table 7: Experimental results on training the model in the first stage
using non-symmetric or symmetric VAE for the Top-k exact match
accuracy on the USPTO-50k dataset in a class-unknown setting.

Model k = 1 k = 3 k = 5

Non-symmetric Network 51.9 73.6 80.3
Ours 54.8 76.7 83.4

Table 8: Experimental results on training the model using only the
non-symmetric architecture without VAE or MoE for Top-k exact
match accuracy on the USPTO-50k dataset in a class-unknown
setting.

Effectiveness of the Latent Translation Scheme. To
demonstrate the effectiveness of our latent translation scheme,
we train the model using only the non-symmetric architecture
without incorporating VAE or MoE components. Specifically,
we removed the VAE modules (MLPs and Reparameteriza-
tion) depicted in Fig. 2, using only the product graph as input
and outputting the reactant SMILES string. As shown in Ta-
ble 8, our two-stage latent translation process significantly
outperforms the one-stage training approach.

5 Conclusion

In our work, we introduce RetroMoE, a novel generative
model designed for the single-step retrosynthesis task. This
model employs a non-symmetric variational autoencoder
(VAE) that incorporates a graph encoder and a transformer
decoder to effectively learn a molecular latent space. Fur-
thermore, we apply a simple yet effective mixture-of-experts
(MoE) network that adeptly translates the product latent em-
bedding into the reactant latent embedding. As shown in the
experiments on USPTO-50K and USPTO-MIT datasets, our
approach not only surpasses other template-free and semi-
template-based methods, but also matches the performance of
state-of-the-art template-based method, RetroKNN [Xie et al.,
2023].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Chen and Jung, 2021] Shuan Chen and Yousung Jung. Deep

retrosynthetic reaction prediction using local reactivity and
global attention. JACS Au, 1(10):1612–1620, 2021.

[Chen et al., 2019] Benson Chen, Tianxiao Shen, TommiS.
Jaakkola, and Regina Barzilay. Learning to make general-
izable and diverse predictions for retrosynthesis. Cornell
University - arXiv,Cornell University - arXiv, Oct 2019.

[Chen et al., 2023] Ziqi Chen, Oluwatosin R. Ayinde,
James R. Fuchs, Huan Sun, and Xia Ning. G 2 retro as a
two-step graph generative models for retrosynthesis predic-
tion. Communications Chemistry, 6, 12 2023.

[Coley et al., 2017] Connor W Coley, Luke Rogers,
William H Green, and Klavs F Jensen. Computer-assisted
retrosynthesis based on molecular similarity. ACS central
science, 3(12):1237–1245, 2017.

[Dai et al., 2019] Hanjun Dai, Chengtao Li, Connor Coley,
Bo Dai, and Le Song. Retrosynthesis prediction with condi-
tional graph logic network. Advances in Neural Information
Processing Systems, 32, 2019.

[Du et al., ] Yuanqi Du, Xian Liu, Nilay Shah, Shengchao
Liu, Jieyu Zhang, and Bolei Zhou. Chemspace: Inter-
pretable and interactive chemical space exploration.

[He et al., 2022] Huarui He, Jie Wang, Yunfei Liu, and Feng
Wu. Modeling diverse chemical reactions for single-step
retrosynthesis via discrete latent variables. Aug 2022.

[Higgins et al., 2017] Irina Higgins, Loic Matthey, Arka Pal,
Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained varia-
tional framework. International Conference on Learning
Representations,International Conference on Learning Rep-
resentations, Apr 2017.

[Igashov et al., 2023] Ilia Igashov, Arne Schneuing, Marwin
Segler, Michael M Bronstein, and Bruno Correia. Retro-
bridge: Modeling retrosynthesis with markov bridges. In
The Twelfth International Conference on Learning Repre-
sentations, 2023.

[Irwin et al., 2022] Ross Irwin, Spyridon Dimitriadis, Jiazhen
He, and Esben Jannik Bjerrum. Chemformer: a pre-trained
transformer for computational chemistry. Machine Learn-
ing: Science and Technology, 3(1):015022, 2022.

[Jacobs et al., 1991] Robert A Jacobs, Michael I Jordan,
Steven J Nowlan, and Geoffrey E Hinton. Adaptive mix-
tures of local experts. Neural computation, 3(1):79–87,
1991.

[Jin et al., 2017] Wengong Jin, ConnorW. Coley, Regina
Barzilay, and TommiS. Jaakkola. Predicting organic re-
action outcomes with weisfeiler-lehman network. Neural
Information Processing Systems,Neural Information Pro-
cessing Systems, Aug 2017.

[Jin et al., 2020] Wengong Jin, Regina Barzilay, and TommiS.
Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. Cornell University - arXiv,Cornell
University - arXiv, Feb 2020.

[Karpov et al., 2019] Pavel Karpov, Guillaume Godin, and
Igor Tetko. A transformer model for retrosynthesis. May
2019.

[Kim et al., 2021] Eunji Kim, Dongseon Lee, Youngchun
Kwon, Min Sik Park, and Youn-Suk Choi. Valid, plausible,
and diverse retrosynthesis using tied two-way transformers
with latent variables. Journal of Chemical Information and
Modeling, 61(1):123–133, 2021.

[Kingma and Welling, 2013] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. International
Conference on Learning Representations, 2013.

[Lin et al., 2020] Kangjie Lin, Youjun Xu, Jianfeng Pei, and
Luhua Lai. Automatic retrosynthetic route planning us-
ing template-free models. Chemical science, 11(12):3355–
3364, 2020.

[Lin et al., 2023] Zaiyun Lin, Shiqiu Yin, Lei Shi, Wenbiao
Zhou, and Yingsheng John Zhang. G2gt: Retrosynthesis
prediction with graph-to-graph attention neural network
and self-training. Journal of Chemical Information and
Modeling, 63(7):1894–1905, 2023.

[Liu et al., 2017] Bowen Liu, Bharath Ramsundar, Prasad
Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande.
Retrosynthetic reaction prediction using neural sequence-to-
sequence models. ACS central science, 3(10):1103–1113,
2017.

[Liu et al., 2022] Jiahan Liu, Chaochao Yan, Yang Yu, Chan
Lu, Junzhou Huang, Le Ou-Yang, and Peilin Zhao. Mars:
A motif-based autoregressive model for retrosynthesis pre-
diction. Sep 2022.

[Sacha et al., 2021] Mikołaj Sacha, Mikołaj Błaz, Piotr
Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski,
Rafał Loska, Paweł Włodarczyk-Pruszynski, and Stanisław
Jastrzebski. Molecule edit graph attention network: model-
ing chemical reactions as sequences of graph edits. Journal
of Chemical Information and Modeling, 61(7):3273–3284,
2021.

[Schneider et al., 2016] Nadine Schneider, Nikolaus Stiefl,
and Gregory A. Landrum. What’s what: The (nearly) defini-
tive guide to reaction role assignment. Journal of Chemical
Information and Modeling, page 2336–2346, Dec 2016.

[Schwaller et al., 2019] Philippe Schwaller, Teodoro Laino,
Theophile Gaudin, Peter Bolgar, Costas Bekas, and Al-
pha A. Lee. Molecular transformer – a model for
uncertainty-calibrated chemical reaction prediction. May
2019.

[Segler and Waller, 2017] Marwin HS Segler and Mark P
Waller. Neural-symbolic machine learning for retrosynthe-
sis and reaction prediction. Chemistry–A European Journal,
23(25):5966–5971, 2017.

[Seidl et al., 2022] Philipp Seidl, Philipp Renz, Natalia
Dyubankova, Paulo Neves, Jonas Verhoeven, Jörg K. Weg-
ner, Marwin Segler, Sepp Hochreiter, and Günter Klam-
bauer. Improving few- and zero-shot reaction template
prediction using modern hopfield networks. Journal of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Chemical Information and Modeling, page 2111–2120,
May 2022.

[Seo et al., 2021] Seung-Woo Seo, You Young Song,
June Yong Yang, Seohui Bae, Hankook Lee, Jinwoo Shin,
Sung Ju Hwang, and Eunho Yang. Gta: Graph truncated
attention for retrosynthesis. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(1):531–539, May
2021.

[Shi et al., 2020] Chence Shi, Minkai Xu, Hongyu Guo,
Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International conference
on machine learning, pages 8818–8827. PMLR, 2020.

[Somnath et al., 2021] Vignesh Ram Somnath, Charlotte
Bunne, Connor Coley, Andreas Krause, and Regina Barzi-
lay. Learning graph models for retrosynthesis predic-
tion. Advances in Neural Information Processing Systems,
34:9405–9415, 2021.

[Sun et al., 2020] Ruoxi Sun, Hanjun Dai, Li Li, Steven
Kearnes, and Bo Dai. Energy-based view of retrosynthesis.
arXiv preprint arXiv:2007.13437, 2020.

[Tetko et al., 2020] Igor V Tetko, Pavel Karpov, Ruud
Van Deursen, and Guillaume Godin. State-of-the-art aug-
mented nlp transformer models for direct and single-step
retrosynthesis. Nature communications, 11(1):5575, 2020.

[Tu and Coley, 2022] Zhengkai Tu and Connor W Coley. Per-
mutation invariant graph-to-sequence model for template-
free retrosynthesis and reaction prediction. Journal of chem-
ical information and modeling, 62(15):3503–3513, 2022.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.
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