Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Coalition Obstruction Temporal Logic:
A New Obstruction Logic to Reason About Demon Coalitions

Davide Catta', Jean Leneutre’, Vadim Malvone?> and James Ortiz>

'Université Sorbonne Paris Nord, CNRS, Villetaneuse, France
2Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

catta@lipn.univ-paris13.fr, {jean.leneutre, vadim.malvone, james.ortizvega} @telecom-paris.fr

Abstract

In multi-agent systems, especially in cybersecu-
rity, the dynamic interplay between attackers and
defenders is crucial to the security and resilience
of the system. Traditional methods often assume
static game models and fail to account for the
strategic adaptation of the environment to the ac-
tions of the players. This paper presents Coali-
tion Obstruction Temporal Logic (COTL), a for-
mal framework for analyzing defender coalitions in
dynamic game scenarios. Within this framework,
defenders, conceptualized as demons, can actively
obstruct attackers by selectively disabling certain
actions in response to perceived threats. We estab-
lish the formal semantics of COTL and propose a
model-checking algorithm to verify complex secu-
rity properties in systems with evolving adversarial
dynamics. The utility of the framework is demon-
strated through its application to a coalition of de-
fenders that collaboratively defend a system against
coordinated attacks.

1 Introduction

Multi-Agent Systems (MAS) have become a crucial
paradigm for modeling and analyzing complex systems, es-
pecially in critical domains such as cybersecurity [Lomuscio
et al., 2009]. These systems involve multiple autonomous
agents interacting with each other, often in dynamic and ad-
versarial environments. In this context, game theory has
proven to be a powerful tool for modeling strategic inter-
actions between attackers and defenders, providing a for-
mal framework to understand how coalitions of agents can
achieve specific goals through cooperative actions. Temporal
logics, such as Alternating-time Temporal Logic (ATL) [Alur
et al., 2002], have been developed to reason about the strate-
gic capabilities of coalitions of agents in these scenarios. ATL
allows for the expression of properties like “a coalition of
agents can ensure that a certain condition will eventually be
met”, which is crucial for the verification of systems where
outcomes depend on the cooperative decisions of multiple
agents. However, ATL and other traditional strategic logics,
such as Strategy Logic (SL) [Mogavero et al., 2014], assume
that the game model in which the players participate is static.

This means that while the actions of the players may affect
their position within the game model, they do not alter the un-
derlying structure of the game model itself. This assumption
of a static game model limits the applicability of these log-
ics in real-world scenarios where the environment can change
dynamically in response to players’ actions. For instance,
in cybersecurity, defenders may deploy countermeasures that
temporarily disable certain attack actions, effectively alter-
ing the game’s landscape. Such dynamic interactions cannot
be adequately captured by ATL or traditional logics, as CTL,
LTL [Baier and Katoen, 2008]. To address this limitation,
we propose Coalition Obstruction Temporal Logic (COTL),
an extension of Obstruction Logic (OL) [Catta et al., 2023]
that incorporates dynamic game models where defenders, or
demons, obstruct attackers by deactivating edges in the game
structure. In COTL, a coalition of defenders strategically ob-
structs paths available to attackers by disabling certain tran-
sitions. This logic is well-suited for security games, where
defenders must cooperate to block attackers’ objectives. Un-
like traditional logics such as CTL, ATL, or SL, COTL ex-
presses complex temporal properties that depend on both ac-
tion sequences and strategic manipulation of the game struc-
ture by defenders. This makes COTL particularly relevant
in cybersecurity, where dynamic games model interactions
between attackers and defenders. Traditional approaches as-
sume a static attack surface, but defenders must adapt their
strategies in real-time to respond to emerging threats. By in-
corporating these dynamic elements, COTL provides a more
accurate tool for verifying defense strategies in complex envi-
ronments. Moreover, the logics we mentioned earlier assume
that the set of paths relevant for evaluating a formula in a
model is infinite. While this assumption is convenient from
a computational perspective, it is unrealistic from a model-
ing standpoint. In cyber-attack models, like Attack Graphs
(AG) [Kaynar, 2016], attack path are typically finite. Con-
sequently, our logic does not assume paths are necessarily
infinite, allowing for both finite and infinite paths. This ap-
proach brings the semantics of our logic closer to formalisms
like ATL [Belardinelli ef al., 2018]. In addition to COTL,
several other logics have been proposed to extend the ca-
pabilities of ATL in various directions. Timed Alternating-
time Temporal Logic (TATL) [Henzinger and Prabhu, 2006;
Laroussinie ef al., 2006] and Probabilistic Alternating-time
Temporal Logic (PATL), extend ATL by introducing timing

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

constraints and probabilistic outcomes. However, they as-
sume static game models, making them less suitable for sce-
narios with dynamically changing environments like those
addressed by COTL.
Our work builds on these advancements by integrating the
concepts of dynamic games and obstruction into the ATL
framework, resulting in a logic that is better equipped to han-
dle the complexities of real-world systems, particularly in
cybersecurity. This paper presents the formal semantics of
COTL, defines the key concepts such as strategies, curses,
and demonic obstruction, and illustrates the application of
this logic through a series of examples. We also provide a
model-checking algorithm for COTL, enabling the verifica-
tion of security properties in dynamic game models.
Structure of the work. Theoretical background and syn-
tax and the semantics of our new logic are in Section 2. In
Section 3 we provide some important properties of our logic.
In Section 4, we show our model checking algorithm and
prove that for COTL is PTIME-Complete. In Section 5, we
present our case study in the cybersecurity context. In Sec-
tion 6, we analyze our logic in the imperfect information set-
ting. In Section 7, we compare our approach to related work.
Finally, Section 8 concludes and presents possible future di-
rections.

2 Model and Logic

In this section, we will first discuss the basic notions used
in this paper and then we will define the syntax and seman-
tics of COTL. Let N be the set of natural numbers, we refer
to the set of natural numbers containing 0 as N> and Z the
set of integers. Let X and Y be two sets and | X| denotes its
cardinality. The set operations of intersection, union, comple-
mentation, set difference, and Cartesian product are denoted
XNY,XUY,X, X\Y,and X x Y, respectively. In-
clusion and strict inclusion are denoted X C Y and X C Y,
respectively. The empty set is denoted (). Let 7 = 7,...,m,
be a countable sequence and i < || , we denote by r; its i-th
element, by 7<, the finite prefix 71, ..., m; of 7 and by 7>;
the (possibly infinite) suffix of 7 starting at 7;. If 7 is a finite
sequence, last(m) denotes the last element 7, of 7.

Now, we define the syntax and semantics of COTL. We
begin by introducing, the model used to define the semantics
of COTL formulas. A model consists of a directed graph, a
set of actions, and a cost function that assigns a cost to each
action at every state. These actions are carried out by a group
of players called Demons. At each state, every action has a
specific cost, and a combination of actions (one per Demon)
can temporarily disable a set of adjacent edges to that state.
The formal definition follows

Definition 1. Let Ap be an at most countable set of atomic
formulas (or atoms) and D = {1,...,k} be a finite
(non-empty) set of demons (whose subsets will be called
legions). A model over Ap and D is a tuple M =
(S, s0,A, P,R,+ 8, L) where:

e S is a non-empty, countable set of states,

* sq is a distinguished state dubbed initial state,

* A is a finite, non-empty set of actions. A tuple of actions
whose length is | D| will be called a curse, we denote the
set of curses by C,

e P:D xS — 24\ 0 is the protocol function that as-
signs a non-empty set of actions to any demon and any
state. We suppose that the idle action % is assigned by
the protocol function to any demon at any state.

e R C S x S isa binary relation over S.

o +: S x C — 2% is a function associating to any state s
and any curse c such that c[i] € P(i,s), a subset of the
set of edges that are incident to s.

* $: S xDx A — Nsiisa cost function associating
a positive natural number to any triple composed of a
state, a demon, and an action that is available to that
demon at that state. We suppose that $(s,1,x) = 0 for
any state s and Demon 1.

o L : S — 2% is the labeling function associating to any
state a subset of Ap.

We use the adjective countable in its standard mathemati-
cal sense, i.e., it denotes an object that is either finite or that
has the cardinality of N.

Given a model M, a path @ over M is any non-
empty countable sequence of states m = 7y, o, - - - such that
(7, mit1) € R forevery i < |m|. We denote paths by the let-
ters 7, 7, p. A history h is any finite prefix of a path. We use
H to denote the set of all histories over a model. Let M be a
model, s is one of its states and G a legion, an action available
for G at sis a function f : G — A such that f(i) € P(i, s) for
each i € G. If f is any of these actions available at s for the
legion G. We can say that a curse ¢ extends f iff c[i] = f(i)
for each i € G. Let V(G, s) be the set of actions available
at s and V(G, M) =, g V(G, s). Here, we will consider a
coalition of demons acting rationally to modify the structure
of the model, i.e., a legion can devise strategies to modify the
model. Given a history h, a demonic strategy selects a subset
of arcs that are adjacent to last(h). The arcs selected by de-
monic strategies are temporarily deleted from the set of arcs
of the model. In this sense, the actions of the legion modify
the structure of the graph. Given a threshold n, a strategy is
said to be compatible with this threshold if the cost of any col-
lective action selected by the strategy does not encompass n.
We formally define the notion of demonic strategy as follows.

Definition 2. Let M be a model, n € N be a natural num-
ber, and G be a legion. If f is an action available to G at
some state s, we write Cost(s,G, f) for 3 ,cg 8(s,1, f(7)).
A n-strategy & for G (or G"-strategy) is a function &5: H
— V(G, M) that maps any history h to an action f avail-
able at last(h) and such that for any h and any h' =< h
Cost(last(h'),G,&(h')) < n. Let w be a path and &5 a G"-
strategy, m is compatible with &F, iff for each i < ||, there is
a curse c extending S (m<;) such that (m;, ;1) ¢ +(m;, c).
Given a state s and a strategy &3, we let Out(s, &%) denote
the set of maximal paths compatible with &g that starts at s,
that is paths compatible with GF, that are not proper prefixes
of any other path that is compatible with G, starting at s.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Remark that Out(s, &) can contain both finite and infi-
nite path but it cannot be empty, since it always contains the
trivial path s. Now, we present the syntax of our logic.

Definition 3. Let Ap be an at most countable set of atomic
propositions (or atoms) and a finite (non-empty) set of
demons D. Formulas of COTL are defined by the following
grammar:

eu=T|pl~ploAp|{(GhXe | (G)hXe |
(GNh (U @) | (GNL(pRy)

where p is an atomic formula, G is a legion (a subset of D),
and n (the grade) is any number in N.

The boolean connectives L, VV and — can be defined as usual
and the temporal operators X (next), U (until), and R (re-
lease) together with their weak version X. We can also de-
fine <<g>> Fo = (), (T V). (GG = <<g>>2(L Re),
(G0 (W) = (G).(vR(p V ¥)) and [G];Xp =
—((G)} X—yp. We have included the X operator because the
next operator X on finite traces is not self-dual, in contrast
to the infinite trace situation. The size || of a formula ¢ is
the number of its connectives. The formula (G)! ¢ with ¢
temporal formula is “there is a n-strategy &7 such that all
paths of the graphs that are compatible with the strategy sat-
isfy ¢” where “n-strategy” means “a strategy for disabling
arcs”. Formulas of COTL will be interpreted over obstruc-
tion models.

Definition 4. The satisfaction relation between a model M,
a state s of M, and a formula o is defined by induction on
the structure of p:

* M,s |E T for all state s,

* M,sEpiffp € L(s),

* M, s =~y iffnot M, s = ¢ (notation M, s = ¢),

s M,s = (G)L X iff there is a n-strategy &Y for the

legion G such that for all m € Out(s, &%) wzth 7] > 2,
and we have that M, s |= ¢,

o M,s = (G) X iff there is a n-strategy &g for the
legion G such that for all m € Out(s, &%) with |r| < 2,
or we have that M, mo [~ ¢,

o M,s = (OGN (9 U) iff there is a n-strategy S such
that for all m € Out(s, &) there is a j < |r| such that
M,m; = andforalll <k < j M,m, =,

« M,s = (G (@RY) iff there is a n-strategy &%
such that for all m € Out(s, &) we have that either
M,m; = 9 forall i < |x| or there is a k < |r| such
that M, 7, = p and M, m; = forall 1 < i < k.

Two formulas ¢ and ¢ are semantically equivalent (de-

noted by ¢ =) iff for any model M and state s of M,
M, s |E @iff M, s .

3 COTL Properties

In this section, we study the formal properties of our logic.
Here, we show that, as in ATL, the set of states that satis-
fies a formula of the form (G}, (01 U ¢2) or (G)} (1 R p2)

can be expressed as the fix-point of particular monotone func-
tions. Given a formula ¢ and a model M, we let Sat’™ ()

denote the set of states of M satisfying ¢, that is Sat’*! (o) =
{s € S| M,s = ¢}. We drop the superscript M whenever
the model is contextually given. Given a curse c and a state s,
we denote by post(c, s) the states that are incident to s after
the execution of c that is:

post(c,s) ={y € S| (s,y) ¢ 4(s,¢)}

Given a natural number n, a legion G, and a set of states
X, we denote by ¥(n, X, G) the set of states Y C S such
that for every y € Y there is an available G-action f with
Cost(G,y, f) < n and such that, for any curse c extending
f, the set post(c, s) is non-empty and included in X. We
now prove that the set ¥(n, Sat(¢), G) characterize the set of
states satisfying a formula of the form (G)! X ¢.

Proposition 1. Let M be a model, n a natural number and
¢ a formula. For every state s of M we have that M, s =
(@)X ¢ if and only if s € ¥(n, Sat(¢),G)

Proof. Suppose that M, s = (G)} X ¢ this means that there
is a n-demonic strategy &g such that for each path 7 €
Out(s, &) we have both [7| > 2 and 7, € Sat(yp). Let
f be the action that the strategy chooses on s, let c be any
curse extending f, since || > 2 for any 7 € Out(s, &)
we cannot have that post(c, s) = (). Moreover, from the fact
that T, € Sat(yp) for every m € Out(s,&5) we conclude
that post(c,s) C Sat(¢). For converse direction, let f be
an action such that for each curse c that extends f, we both
have post(c, f) # 0 and post(c, f) C Sat(p). Define a
strategy &g for the legion G which outputs f on s and the ac-
tion available for G is composed of idle actions on any other
history. Consider a path 7 € Out(s,&g). It is impossible
that |7| < 2, this would mean that there is a curse ¢ extend-
ing f, for which post(c,s) = 0. Simarly it is impossible
that o ¢ Sat(y) because otherwise we will obtain that there
is y € post(c,s) such that y ¢ Sat(y) for some c extend-
ing f. We thus conclude that if s € ¥(n,Sat(y),G) then

O

M, s [= (@)X

Proposition 2. For any pair of formulas ¢ and v the follow-
ing are true:

L (G (eU) =0V (@ A(GNX LGN (9 U))
2. {(Ghn(eRy) =0 A0V (X (N (¢R ¥))

Proof. We only prove (1), the proof of (2) being entirely sim-
ilar. For the (=) direction. Let M be any model and s any of
its states, and suppose that s € Sat({(G)! (o U)). By the
definition of satisfaction, this means that there is a demonic
n-strategy &7 such that forall 7 € Out(s, &) then there is a
j< |7r| such that mj € Sat(y) and m; € Sat&o foreach 1 <
i < j.If j = 1, then we can conclude, otherwise s € Sat(y)
and we must show that s € Sat(<<g>>*nx (G): (pU))). Let
7 be a path that satisfies (¢ U ¢) given the demonic n-strategy
&¢. Itis clear that 7>p € Out(ma, &) and, since m; ¢
Sat(v), that M, 7>, = ¢ U1, Moreover, 7 € Out(s, &g)
then we can conclude that M, s = (G)E X (GNE (o U).
For the converse (<) direction. Suppose that s € Sat(y V

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

(0 ALGNX UGN (pUv))). If s € Sat(y) then we are
done. Otherwise s € Sat(y). From the fact that s satisfies

(G)7 X (GN4 (p U), we obtain that there is a n-strategy &,

such that M, my = (G, (¢ U) for every € Out(s, S}).
By applying again the definition of satisfaction, we obtain
that there is a demonic n-strategy 6% such that M,p E
(¢ U) forevery p € Out(mz, &Z). Consider the n-demonic
G5 defined by:

Gg(h) ifh=s
«n JGE(W) ifth=s-h andh C 7
So(h) = for 7 € Out(mz, 63)
&g(h) otherwise
That is, &% is obtained by composing &} with &2.

By construction, for every m € Out(s, &5) we have that
M, 7 = ¢ U1 and we can thus conclude. O

Let M be a model and ¢, 1 be two formulas. Consider the
two functions U"g , , and R"g., » from 2° to itself defined
by:

G0 (X) = Sat(y) U (sat(p) N ¥(n, X,G))) (1)

Gp0(X) =sat(y) N (sat(p) UV (n, X,G)) (2)
we can prove the following.
Theorem 1. For every model M and pair of formulas ¢ and
¥:
1. (GWt (0 U) is the least fix-point of UG o0
2. ((G)t (@R is the greatest fix-point of RE .0

Proof. We only prove (2). In virtue of the proposition 2, it
is clear that (G))* (¢ R) is a fix-point of the function in
Equation 2. To prove that X = (G)* (¢ R4) is the great-
est fix-point of the function, we consider another fix-point Y
and show that Y C X.

If Y = () there is nothing to do. Otherwise, lety € Y:
we have that y € Sat(y) and either y € Sat(p) or y €
¥(n,Y,G). If this last case holds, we have that there is an
action f for G s.t. Cost(y,G, f) < n . We define a strategy
Gg:

n f iflast(h) € Sat(y) N ¥(n,Y,G)
otherwise
where f € V(G,last(h)) and post(c,last(h)) C Y for
any curse c¢ extending f. Remark that such an f exists if
last(h) € ¥(n,Y,G) and since there are finitely many ac-
tions, we can always pick one. It is easy to see that any path
in the above-defined strategy verifies ¢ R 1. O

4 Model Checking

Here, we present our model checking algorithm for COTL.
We show also that the model checking problem for COTL
is decidable in PTIME-Complete. To show this result, we
provide Algorithm 1 that given a model M and a formula ¢
returns the set of states of M satisfying ¢, but the pre-image

operator used for ATL[Alur ez al., 2002] and OL[Catta et al.,
2023] model checking is replaced by a coalition post operator
on M.

Definition 5. Given a finite model M, a state s, and a COTL
state formula @, the model checking problem consists in de-
termining whether M, s |= .

The model checking algorithm is based on the computa-
tion of the set Sat(y) of all states satisfying a COTL formula
(. The most interesting part of our algorithm is the treat-
ment of the formulas ¢ = (G));, X, ¥ = ((G));, (¢ U1), ¥ =
(Gt (pR1p). Let us now prove the termination and correct-
ness of the Algorithm 1.

Algorithm 1 COTL model checking
Input: A model M and ¢ is a COTL formula
Output: Sat(¢) < {s € S| M,s E ¢}

1: for all ¢b € Sub(p) do
2 switch (1)) do
3 case) = T
4 Sat(y) «+ S
5: case) =p
6: Sat(v) «+ {s€ S|pe L(s)}
7 case 1) = —)
8: Sat(y) + S\ Sat(v))
9: case) = Y1 A o
10: Sat(v) + Sat(v1) N Sat(yo)
11: case Y = ((G)E Xy
12: Sat(y) < ¥(n,sat(¢yy),G)
13: case 1) = ((g>>2,>~<1/11—
14 Sat(1)) < ¥(n,sat(¢1),G)
15: case ((G)), (¢ U1)
16: X + 0; Y « sat(yn)
17: while Y # X do
18: X<+Y
19: Y « sat(ys) U (sat(v1) N ¥(n, X,G))
20: Sat(v) «+ Y
21: case) = ((G));,(¢ RY)
22: X« TY « sat(ys)
23: while X # Y do
24: X<+Y
25: Y « sat(y2) N (sat(y1) U ¥(n, X, G))
26: Sat(v) «+ Y

Theorem 2. Let M be a model and ¢ be a COTL formula.
Then, (i) Sat(yp) terminates and (ii) s € Sat(p) iff M, s |
®.

We now, explore the computational complexity of model
checking COTL.

4.1 Lower Bounds

We now provide the lower bounds for model checking COTL.
In fact, the problem can be reduced from CTL model check-
ing problem, which is known to be PTIME-hard [Clarke et
al., 1983]. This establishes the PTIME-hardness of COTL.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

We will reduce from CTL model-checking problem to the
COTL model-checking problem by encoding CTL seman-
tics within COTL, ensuring that every CTL formula can be
checked by a corresponding COTL formula with equivalent
semantics. A CTL formula ¢ can be translated to a COTL
formula (¢)*® and a model M’ in CTL can be translated to a
model M in COTL add all transitions that are selected by the
strategy, the cost function and for which the following holds:

Proposition 3. Given a model M, then for all s € S and
Sformula o, we have that M, s =cr ¢ iff M, s = (9)°.

First, let us reduce the 0 part of COTL to be the set of
COTL formulas in which the grade of each strategic formula
is 0. Let (—)* be the function from CTL formulas to COTL
formulas, which is the identity on atomic propositions and T,
which commutes with the boolean connective and such that:

(AX@)* = (D)X ()*
(A (9 U))* = (BNo((9)" U (v)%)
(A (9R¥))* = (Mo ((»)* R()*)

We can easily show the following by remarking that
Out(s, &%) contains all paths starting at s when &7 is a 0-
strategy.

4.2 Upper Bounds

To establish the upper bound, we can devise a polynomial-
time algorithm for this problem. The algorithm 1 is de-
rived from the CTL model checking algorithm presented in
[Clarke et al., 1983], with a modification to the Post func-
tion. Specifically, for a set of D of demons and a set S of
states and s € S, post(c, s) computes the set of states reach-
able from s after executing c. Now, we can prove that our
algorithm is polynomial in time complexity.

The complexity depends on the model size |M |, tradition-
ally defined by the cardinality of the transition relation R of
M, the formula size ||, representing the number of subfor-
mulas and temporal operators, and the size of the action set
|A|, crucial for computing action profiles f : G — A. Ad-
ditionally, the number of curses in the model, representing
constraints or obstructions, impacts Post evaluation. The
following theorem establishes the complexity of our model
checking algorithms.

Theorem 3. Let M be a model, ¢ be a COTL formula
and A be a set of actions. The model checking problem of
COTL on M is PTIME-complete and can be solved in time
O(|M| x |¢| x |A|) the problem is PTIME-hard even for a
fixed formula.

5 Case Study

The Attack Graph (AG) [Kaynar, 2016] is a widely recog-
nized and increasingly popular attack model. By leveraging
an AG, it is possible to model interactions between an at-
tacker and a defender who dynamically deploys Moving Tar-
get Defense (MTD) mechanisms [Cho er al., 2020]. MTD
mechanisms, such as Address Space Layout Randomization
(ASLR) [Marco-Gisbert and Ripoll Ripoll, 2019], are active

defenses that use partial system reconfiguration to alter the at-
tack surface and reduce the chances of success of the attack.
However, activating an MTD countermeasure impacts system
performance: during reconfiguration, system services may be
partially or completely unavailable. Thus, it is crucial to se-
lect MTD deployment strategies that minimize both residual
cybersecurity risks and the negative impact on system perfor-
mance. In the following case study, we are going to use the
AG. Below, we will model a scenario where multiple defend-
ers cooperate to prevent an attacker from compromising crit-
ical system states. The defenders can selectively block cer-
tain actions or transitions. Their collective goal is to prevent
the attacker from reaching a particular “bad” state. In this
scenario (see Figure 1), we consider multiple interconnected
infrastructures, each overseen by a distinct security team:

e Infrastructure 1 (I1): The general ICT infrastructure of
company C, managed by security team (S77).

¢ Infrastructure 2 (I3): An industrial control system (ICS)
infrastructure from company C7, managed by security
team (S75). To facilitate the management of the ICS,
a secure connection between I; and I, is established,
utilizing dedicated credentials (cryptographic keys).

¢ Infrastructure 3 (I3): The general ICT infrastructure of
company C5. For maintenance, C5 engineers have se-
cure access to I5 via a dedicated connection between [
and /5 using dedicated credentials (cryptographic keys).

Figure 1: Illustration example use case

Now, consider an attacker X whose goal is to compro-
mise a target (e.g., a server) within /3. To achieve this, X
can execute various attack strategies by exploiting the inter-
dependencies between the infrastructures, as represented in
the attack graph in Figure 2. It is important to note that each
security team (S77, ST5, ST3) can only deactivate the edge
of its infrastructure at any time, and the other teams are idle.
Initially, starting in state sg, the attacker can launch an at-
tack (a(l) or a%) to gain access to infrastructure [; (reaching
state s1) or I3 (reaching state s3). After gaining access, the
attacker can carry out several attacks (a; or ag) to acquire
credentials to access I, transitioning to states s3 or s3. For
simplicity, attacks a; and as actually represent a tuple of at-
tacks. Each attack in the tuple can be associated with a coali-
tion agent. Once connected to I5, X can launch additional at-
tacks (a3, b, a3, b3) to compromise the target and reach state
s3. There are real-world examples of such attack scenarios

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Figure 2: Illustration example attack graph

that exploit vulnerabilities in interconnected infrastructures,
as demonstrated in [Case, 2016]. From the point of view of
defenders, we assume that each security team can detect at-
tacks within its domain (using intrusion detection techniques)
and can counter them when possible (using attack response
mechanisms). In our model, this means temporarily deac-
tivating an edge in the attack graph. For instance, security
team S7% can counter attack a; by disabling the edge from
51 to s3, provided the cost of countering this edge is within
the budget allocated to S7T;. Some attacks, however, may
be non-counterable. In Figure 2, the edges corresponding to
attacks aj, a3, b3, and b3 are shown with double lines, indi-
cating that these attacks cannot be deactivated because their
associated costs exceed the security team’s budget. Here,
COTL proves useful for the analysis of cooperation strate-
gies between security teams. Let’s define a proposition ¢,
which is true when X successfully reaches state s3 (i.e., com-
promises the target). We can express coaltion strategies us-
ing formulas like: ¢y = ((ST1, STe) (G—gq). This formula
states that the coalition of security teams ST} and S7T5 can
cooperate to prevent X from reaching state s3. In this ex-
ample, ¢ is not satisfied because X can still reach s3 us-
ing the sequence of attacks a3, as, b3. However, if we add
ST3 to the coalition of defenders, the formula ¢; becomes
true. This demonstrates that cooperation among S7T7, ST5,
and ST35 can successfully prevent the attack. In addition, the
formula: ¢3 = STy, ST)}, (G—q) is also true, showing that
ST, and ST3 alone can block the attack. In all cases, collab-
oration and coordination between companies C; and C5 and
their security teams are essential to counter the attack.

6 Imperfect Information

We introduce a semantic variant of our logic, COTL, to han-
dle imperfect information scenarios where defenders form a
coalition to obstruct an attacker. In this framework, the coali-
tion may have limited knowledge about the system’s current
state or the attacker’s actions. This models real-world sys-
tems where defenders must collaborate and make decisions
based on incomplete information, such as in cybersecurity or
distributed systems. Here, incomplete information is repre-
sented by grouping the game states into equivalence classes:
one for the agent and another for the coalition of defenders
(or demons), where states within the same equivalence class
are indistinguishable from their perspective.

Definition 6. Given a set of atomic propositions Ap and

a finite legion G (a subset of demons D), an Imperfect-
information Model (iModel) over Ap and G is a tuple
<Sv S0, A7 Pa Ra #7 $a ‘Ca {Ng}g€g>’ where:

o M =(S,s0,A,P,R,},$, L) is a Model over Ap and G,

» Foreach g € G, ~4C S x S is a demon’s equivalence
relation over S.

We will represent an iModel as a tuple iM = (M, {~y,
}geg>-

6.1 Memoryless Uniform Strategies

We consider the problem of verifying the existence of uni-
form strategies in the presence of imperfect information. A
strategy is uniform if, after indistinguishable histories, demon
select the same strategy. Two states s and s’ are indistinguish-
able by demon g, denoted by s ~, s’ means that the demon
g cannon distinguish between s and s’ implying that from
g's perspective, the two states are observationally equivalent.
Two histories, h and h’, and specific demon g € G, we will
say that h =, A/ if and only h and i’ have the same length n,
and h; ~g R} (i.e., sj ~ s}) for every j < n. We now pro-
ceed to define uniform strategies for the coalition of demons.

Definition 7. Given an iModel i M and a coalition G, a de-
monic G"-strategy is an uniform demonic G"-strategy &g
such that, for every pair of histories h and I, if h =, R’
then (&g (h))(i) = (&g(h'))(7).

A demonic &g strategy is termed memoryless if, for any
two histories h and &/, the condition last(h)=last(h’) im-
plies that &3 (h) = &g (h'). Now, let us introduce several
variations of the satisfaction relation initially defined in Defi-
nition 4.

Definition 8. Ler iM be an iModel, s be any state of iM,
and @ be any formula, we write:

s iM,s =" o for the satisfaction relation obtained by
replacing, in Definition 4, every occurrence of ”demonic
G-strategy” with "uniform demonic Gg-strategy”,

s iM,s " o for the satisfaction relation obtained by

replacing, in Definition 4, every occurrence of ”demonic

G-Strategy” with "uniform memoryless demonic &g -
strategy”,

First, we provide a result for the worst case.

Theorem 4. The model-checking problem for COTL under
the satisfaction relation =" is undecidable.

The bottom-up approach is a distinctive methodology used
in strategic (and temporal) logics that simplifies the satisfia-
bility checking of a formula containing multiple strategic op-
erators by reducing it to the satisfiability of a formula with
only one strategic operator. The procedure is as follows:
given a model M and a formula ¢ with multiple strategic
operators, let ¢1,- - - , ¢, be the strategic subformulas of ¢,
each containing exactly one strategic operator. For each sub-
formula ¢;, we introduce a fresh atomic proposition p;. We
then update the valuation function £(s) by adding p; when-
ever s satisfies ¢; in 2M, resulting in a new model i M’. Next,
we form a modified formula ¢’ by substituting each instance
of ¢; with the corresponding proposition p;. The satisfiability

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

of ¢'is then evaluated on the new model M’. This process is
repeated iteratively, reducing the complexity step by step until
the final result is obtained. This approach provides a system-
atic way of breaking down the formula, making it easier to
handle complex strategic reasoning within a model.

Theorem 5. The model checking problem for COTL under
the satisfaction relation =" is in PP,

6.2 Distributed Uniform Strategies

Here, we consider the problem of verifying the existence of
distributed uniform strategies in the presence of imperfect in-
formation. A strategy is distributed uniform if agents in a
coalition select the same joint action in all states that are
indistinguishable to any agent within the coalition. A dis-
tributed indistinguihability equivalence relation over a coali-
tion G is represent as Ng =N geg ~g- Similarly, we will use

the notation 4 =2 A’ if and only if A and A’ have the same

length n, and h; Ng h;- for every 7 < n. We can now pro-
ceed to define distributed uniform strategies for the demons.

Definition 9. Given an iModel iM and a coalition G, a
demonic G"-strategy is a distributed uniform demonic G"-
strategy Gg such that, for all state s and s, if s Ng s’ then
S&(s) = &L (s).

~g represents the coalition’s indistinguishability relation,
meaning that the entire coalition must act uniformly in any
two states that are indistinguishable to any demon in the coali-
tion.

Definition 10. Let iM be an iModel, s be any state of iM,
and @ be any formula, we write:

* iM,s = for the satisfaction relation obtained by re-
placing, in Definition 4, every occurrence of ”demonic
(G} g -strategy” with “distributed uniform memoryless de-
monic &g-strategy”.

Theorem 6. The model checking problem for COTL under
the satisfaction relation =" is in PP,

7 Related Work

The study of strategic interactions within multi-agent sys-
tems has led to the development of various temporal logics
designed to capture the capabilities of coalitions of agents.
In this section, we review key logics related to our work on
COTL, focusing on logics that address similar challenges or
extend the foundational concepts of ATL [Alur et al., 2002]
and OL [Catta er al., 2023]. ATL is one of the seminal log-
ics for reasoning about the strategic abilities of coalitions in
multi-agent systems. It allows for the expression of proper-
ties like a coalition of agents can ensure that a certain state is
reached, which is crucial for verifying systems where mul-
tiple agents must coordinate to achieve desired outcomes.
However, ATL assumes a static game model, where the en-
vironment does not change based on the actions of agents,
limiting its applicability in dynamic scenarios such as cyber-
security. Building on ATL, Strategy Logic (SL) [Mogavero
et al., 2014] enhances strategic reasoning by quantifying over
strategies. SL allows for complex specifications, including

nested strategies and binding to variables, offering a richer
language for strategic properties. However, despite its expres-
siveness, SL also assumes a fixed game model, making it less
suitable for dynamic environments. Temporal logics like CTL
and ATL are typically designed for infinite traces, reasoning
about systems over potentially infinite executions. Extensions
such as LTL with finite traces (LTL) [De Giacomo et al.,
2014], CTL, and CTL" adapted to finite paths soon followed.
Additional versions like ATL ; and bounded ATL [Belardinelli
et al., 2018] were developed for reasoning about finite traces.
Notably, COTL remains the only obstruction logic specifi-
cally proposed for handling finite traces. In the domain of
dynamic games, Sabotage Modal Logic (SML), introduced
by van Benthem, allows players to alter the game structure
by deleting edges in a graph. SML focuses on obstructing
opponents’ moves but lacks temporal and probabilistic rea-
soning. Subset Sabotage Modal Logic (SSML) refines this
by allowing temporary edge deactivation, though it still lacks
temporal operators and cost considerations. OL provides a
framework for reasoning about two-player games on static
weighted graphs where one player (the demon) obstructs the
other by deactivating edges. Obstruction Alternating-Time
Temporal Logic (OATL) [Catta et al., 2024] provides a frame-
work for reasoning about multi-agents player games played
on weighted and directed graphs, where players (demons) can
obstruct the other by deactivating edges [Catta er al., 2024].
abbrvCOTL integrates the concept of dynamic games with
strategic and temporal reasoning to build on these founda-
tions. Unlike previous logics, COTL better reflects the com-
plexity of real-world scenarios such as cybersecurity, where
defenders must adapt strategies in real time.

8 Conclusions

In this paper, we presented COTL, a logic that extends OL
by allowing reasoning about games where players, called
demons, can locally and temporarily modify the game struc-
ture. This enables the modeling of dynamic systems where
defenses and countermeasures can be taken immediately, par-
ticularly in the context of cybersecurity. We have shown
how COTL can be used to express and analyze cybersecu-
rity properties, such as coalitions between different defenders
to prevent attackers from achieving their goals. Our work
delves into the formal properties of COTL and its model
checking problem under different semantics. In particular,
COTL provides a flexible framework for studying the inter-
action between defenders (e.g., security teams) in a multi-
agent setting, and how they can work together to obstruct the
attacker’s progress. As future work, we aim to thoroughly
investigate the possibility of introducing probabilistic opera-
tors into COTL, with the goal of being able to reason about
complex, real-world scenarios involving uncertainty, making
it a powerful formalism for analysing probabilistic attack-
defence strategies in cybersecurity and other domains. We
also aim to investigate semantic variants of COTL where the
Demon and players use bounded memory strategies [Jamroga
et al., 2019], which are more feasible in real-world applica-
tions. These strategies can limit the complexity of the deci-
sions and make the logic more tractable for practical use.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

References

[Alur ef al., 2002] R. Alur, T.A. Henzinger, and O. Kupfer-
man. Alternating-time temporal logic. J. ACM, 49(5):672—
713, 2002.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter
Katoen. Principles of Model Checking. The MIT Press,
2008.

[Belardinelli ef al., 2018] Francesco Belardinelli, Alessio
Lomuscio, Aniello Murano, and Sasha Rubin.
Alternating-time temporal logic on finite traces. In
27th International Joint Conference on Artificial Intelli-
gence (IJCAI 2018), volume Volume 2018-July of Proc.
of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), pages 77-83, Stockholm,
Sweden, July 2018.

[Case, 2016] Defense Use Case. Analysis of the cyber at-
tack on the ukrainian power grid. Electricity information
sharing and analysis center (E-ISAC), 388(1-29):3, 2016.

[Catta et al., 2023] D. Catta, J. Leneutre, and V. Malvone.
Obstruction logic: A strategic temporal logic to reason
about dynamic game models. In ECAI 2023 - 26th Eu-
ropean Conference on Artificial Intelligence, 2023.

[Catta et al., 2024] Davide Catta, Jean Leneutre, Vadim
Malvone, and Aniello Murano. Obstruction alternating-
time temporal logic: A strategic logic to reason about
dynamic models. In Proceedings of the 23rd Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’24, page 271-280, Richland, SC,
2024. International Foundation for Autonomous Agents
and Multiagent Systems.

[Cho et al.,2020] J. Cho, D. Sharma, H. Alavizadeh,
S. Yoon, Noam B-A., T. Moore, Dan Kim, H. Lim, and
F. Nelson. Toward proactive, adaptive defense: A survey

on moving target defense. IEEE Communications Surveys
& Tutorials, 2020.

[Clarke et al., 1983] Edmund M. Clarke, E. Allen Emerson,
and A. Prasad Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A
practical approach. In John R. Wright, Larry Landweber,
Alan J. Demers, and Tim Teitelbaum, editors, Conference
Record of the Tenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Texas, USA, January
1983, pages 117-126. ACM Press, 1983.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Riccardo
De Masellis, and Marco Montali. Reasoning on Itl on finite
traces: insensitivity to infiniteness. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAT 14, page 1027-1033. AAAI Press, 2014.

[Henzinger and Prabhu, 2006] T. A. Henzinger and V. S.
Prabhu. Timed alternating-time temporal logic. In FOR-
MATS,, 2006.

[Jamroga et al., 2019] Wojciech Jamroga, Vadim Malvone,
and Aniello Murano. Natural strategic ability. Artif. In-
tell., 277, 2019.

[Kaynar, 2016] K. Kaynar. A taxonomy for attack graph gen-
eration and usage in network security. J. Inf. Secur. Appl.,
29(C):27-56, 2016.

[Laroussinie er al., 2006] F. Laroussinie, N. Markey, and
G. Oreiby. Model-checking timed atl for durational con-
current game structures. In FORMATS,, 2006.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification
of multi-agent systems. In Proceedings of the 21th In-
ternational Conference on Computer Aided Verification
(CAV09), 2009.

[Marco-Gisbert and Ripoll Ripoll, 2019] Hector Marco-
Gisbert and Ismael Ripoll Ripoll. Address space layout
randomization next generation. Applied Sciences, 9(14),
2019.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M. Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Transactions in Compu-
tational Logic, 2014.

