
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Towards Robust Deterministic and Probabilistic Modeling for Predictive Learning

Xuesong Nie1,2 , Haoyuan Jin1 , Vijayakumar Bhagavatula3 and Xiaofeng Liu2,∗

1Zhejiang University
2Yale University

3Carnegie Mellon University
{xuesongnie, jhyjhy}@zju.edu.cn, kumar@ece.cmu.edu, xiaofeng.liu@yale.edu

Abstract
Predictive modeling of unannotated spatiotempo-
ral data presents inherent challenges, primarily due
to the highly entangled visual dynamics in real-
world scenes. To tackle these complexities, we in-
troduce a novel insight through Disentangling De-
terministic and Probabilistic (DDP) modeling. We
note a key observation in spatiotemporal data where
low-level details typically remain stable, whereas
high-level motion frequently exhibits dynamic vari-
ations. The core motivation involves construct-
ing two distinct pathways in the latent space: a
deterministic path and a probabilistic path. The
probabilistic path begins by defining the motion
flow, which explicitly describes complex many-to-
many motion patterns between patches, and mod-
els its probabilistic distribution using a motion
diffuser. The deterministic path incorporates a
spectral-aware enhancer to retain and amplify vi-
sual details in the frequency domain. These de-
signs ensure visual consistency while also captur-
ing intricate long-term motion dynamics. Extensive
experiments demonstrate the superiority of DDP
across diverse scenario evaluations.

1 Introduction
Predictive learning, a self-supervised learning method, ex-
cels in uncovering latent structures within unannotated spa-
tiotemporal data. This topic models temporal evolution by
predicting future frames from given ones, offering extensive
applications in autonomous driving [Jin et al., 2024], cli-
mate modeling [Lam et al., 2022], traffic flow [Nie et al.,
2024d], robotics [Gupta et al., 2022], and popular world sim-
ulations [Nie et al., 2024b]. However, spatiotemporal se-
quences, abundant and readily available in nature, typically
exhibit intricate spatial correlations, movement trends, and
multi-object interaction in practical scenarios.

Struggling with the inherent complexity and randomness
of future events, predictive learning has developed into
two main approaches: recurrent-based and recurrent-free.
Recurrent-based methods consist of recurrent unit variants

*Corresponding Author.

RNN
hidden 
states

Explicit modelingImplicit modeling
Optical Flow Motion FlowRecurrent Unit

Figure 1: Illustration of two motion modeling approaches. The
implicit modeling methods using recurrent units or spatiotemporal
translators embed motion information into hidden features. The op-
tical flow describes the one-to-one mapping of pixels between dif-
ferent frames. Our proposed motion flow captures many-to-many
motion patterns by computing the similarity of latents across frames.

(e.g., LSTM [Hochreiter and others, 1997], ConvLSTM [Shi
et al., 2015], and ST-LSTM [Wang et al., 2017]) and state
transition connections across timesteps. These methods em-
bed motion information into hidden states to model temporal
dynamics, as shown in Fig. 1. Recurrent-free methods em-
ploy parallel spatiotemporal translators instead of recurrent
units to model spatiotemporal dependencies. SimVP [Gao
et al., 2022], TAU [Tan et al., 2023], and TAT [Nie et
al., 2024a] propose elaborate spatiotemporal learning mod-
ules for implicit temporal evolution capture. These mod-
els are required to adeptly acquire sophisticated motion pat-
terns autonomously. DMVFN [Hu et al., 2023], on the other
hand, utilize optical flow to gracefully refine explicit mo-
tion depiction, effectively diminishing the occurrence of ar-
tifacts. Nonetheless, these methods inevitably exhibit limi-
tations over time, as shown in Fig. 2. DMVFN [Hu et al.,
2023] captures motion effectively but often fails to maintain
visual consistency, yielding “correct” yet not “ideal” results,
e.g., more details of clothes or horse heads are lost. Con-
versely, TAU [Tan et al., 2023] excels in preserving detailed
visual features but struggles with accurate motion representa-
tion, e.g., the motion of the arm produces deformation.

The observations above reveal that low-level details typi-
cally remain stable, whereas high-level motion exhibits dy-
namic variations. This seems intuitive, for example, an indi-
vidual’s visual features remain relatively constant in the short
term, while their behavior exhibits high stochasticity. The
prediction can be improved by designing models based on
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Figure 2: Comparative results of different methods on the UCF Sports datasets at the (T + 4)th frame. VIS is short for visual appearance,
and MOT for motion dynamics. Our DDP models motion dynamics well while retaining more detailed features.

these data properties, which existing methods have not fully
explored. To this end, we address two key questions:

(i) How to represent and model high-level motion dynam-
ics? Explicit modeling is essential for understanding complex
motion dynamics. The most common methods like optical
flow describe a one-to-one pixel mapping with two channels,
but this approach often overlooks interactions between more
pixels, as shown in Fig. 1. Therefore, we formulate motion
flow by computing inter-frame latent similarities, creating a
many-to-many mapping with more channels. Although mo-
tion flow captures richer motion patterns, its long-term mo-
tion distribution modeling is more challenging. To address
this, we introduce a motion diffuser that employs a spatiotem-
poral state space model with the diffusion structure to learn
the transition from Gaussian noise to true motion distribution.

(ii) How to enhance low-level details and multi-scale dy-
namics? Most of the leading methods typically extract fea-
tures in the original latent space. In contrast, we propose
a spectral-aware enhancer that models each frame individu-
ally in the frequency domain, preserving more visual detail
features. To address significant cross-scale motion variations
between consecutive frames, we implement motion flow shar-
ing and motion-visual warping strategies. These approaches
significantly reduce complexity and enhance long-term pre-
diction capabilities.

In this paper, we present a new perspective through Dis-
entangling Deterministic and Probabilistic (DDP) modeling
for robust predictive learning. Extensive experiments demon-
strate the effectiveness of DDP for various prediction scenar-
ios. Our key contributions are summarized as follows:

• Introduced DDP, a novel framework that disentangles
deterministic visuals from probabilistic motion for spa-
tiotemporal prediction.

• Proposed explicit motion modeling (motion flow) and a
spatiotemporal diffusion model to capture its complex,
probabilistic nature.

• Developed a spectral-aware enhancer and motion-visual
warping techniques to improve low-level detail preser-

vation and handle multi-scale dynamics.

• Extensive experiments show that DDP achieves state-of-
the-art performance across various real-world scenes.

2 Related Work
2.1 Predictive Learning Models
Recurrent-based models have historically dominated pre-
dictive learning. ConvLSTM [Shi et al., 2015] aug-
ments LSTM’s spatial learning with convolutional architec-
ture. PredRNN [Wang et al., 2017] introduces spatiotem-
poral LSTM, capturing spatial and temporal dependencies.
PredRNN++[Wang et al., 2018b] addresses gradient vanish-
ing through a gradient highway unit. MCnet [Villegas et
al., 2017] decomposes the motion and content modeling with
LSTM and CNN. SADM [Bei et al., 2021] fuses the con-
tent semantic maps and optical flow motion maps for fu-
ture frame prediction. E3D-LSTM [Wang et al., 2018c] ex-
tends LSTM with 3D convolution. PredRNNv2 [Wang et
al., 2022] employs curriculum learning and memory decou-
pling loss. WaST [Nie et al., 2024d] presents an innovative
wavelet-based spatiotemporal framework for modeling spa-
tial frequency and temporal variations. ModeRNN [Yao et
al., 2023] uses spatiotemporal slots to extract visual dynam-
ics components, addressing mode collapse.

Recent research has shifted towards recurrent-free models
to overcome parallelization limitations. vid2vid [Wang et al.,
2018a] decomposes video visuals and motion for frame pre-
diction with spatiotemporal adversarial learning. [Wu et al.,
2020] decomposes the background scene and moving objects
with instance maps. SimVP [Gao et al., 2022] employs In-
ception modules with UNet architecture for temporal depen-
dency learning. TAU [Tan et al., 2023] decomposes tempo-
ral attention into intra-frame static and inter-frame dynamical
components. DMVFN [Hu et al., 2023] proposes a dynamic
multi-scale voxel flow network. In contrast, our approach dis-
entangles deterministic visuals and probabilistic motion in la-
tent space to enhance prediction accuracy.
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Figure 3: Illustration of the DDP architecture. Our DDP features two pathways in latent space: the deterministic path and the probabilistic
path. The probabilistic path models the distribution of well-defined motion flows through a motion diffuser, while the deterministic path
preserves and enhances visual details in the frequency domain via a spectral-aware enhancer.

2.2 State Space Models
State Space Models (SSMs) with efficient hardware-aware
designs, e.g., Mamba [Gu and Dao, 2023], have recently
demonstrated significant potential for long sequence model-
ing with linear complexity. ViS4mer [Islam and Bertasius,
2022] employs a 1D Structured State Space Sequence (S4)
model for long-range temporal dependencies in video clas-
sification. S4ND [Nguyen et al., 2022] extends 1D S4 to
multi-dimensional data, including 2D images and 3D videos.
TranS4mer [Islam et al., 2023] combines self-attention and
S4 for movie scene detection, while S5 [Wang et al., 2023]
introduces a selective mechanism to S4, enhancing its perfor-
mance in long-form video understanding. DiffuSSM [Yan et
al., 2023] replaces attention mechanisms with a more scalable
SSM-based backbone for high-resolution image generation.
ViM [Zhu et al., 2024] demonstrates that self-attention is not
essential for visual representation learning by constructing
a pure SSM-based model. VMamba [Liu et al., 2024] ad-
dresses the direction-sensitive issue by introducing a cross-
scan module to traverse the spatial domain. Our work ex-
plores spatiotemporal diffusion SSMs for probabilistic mod-
eling of motion dynamics.

3 Method
3.1 Framework Overview
The spatiotemporal predictive learning aims to model spa-
tial and temporal dependencies of given past T frames I =
{It}Tt=1 to predict the most reasonable future T ′ frames I ′ =

{I′t}T+T ′

t=T+1, where It ∈ RC×H×W denotes the tth frame.
Our DDP involves three important components: (i) Proba-
bilistic Motion Modeling, (ii) Deterministic Visual Modeling,

and (iii) Motion-Visual Warping. We detail them in the fol-
lowing.

3.2 Probabilistic Motion Modeling
We first construct the visual-agnostic motion flow
{Ft→t+1}, t ∈ {1, 2, . . . , T − 1} by computing the to-
ken similarity across frames. Then the motion diffuser
models past motion flow MDiff(Ft→t+1) to estimate future
motion flow F̂T→T+t′ in an iterative manner.
Motion Flow Formulation. Given the latent feature maps
Xt ∈ RC×N , t ranges from 1 to T and N = H × W . As
illustrated in Fig. 4(a), we represent the ith feature patch as
Xi

t and compute dot product similarity for two consecutive
frames {Xt,Xt+1} to formulate the motion flow:

Fi,j
t→t+1 = Sim(Xi

t,X
j
t+1), ∀i, j ∈ {0, . . . , N − 1}. (1)

Unlike optical flow that establishes one-to-one pixel corre-
spondence, motion flow Fi,j

t→t+1 captures the many-to-many
patch relationship across frames, showing the impact of the
ith patch on jth patch in different frames.
Motion Flow Estimation. To effectively capture long-term
motion patterns, we explored a new spatiotemporal diffusion
state space model, motion diffuser, which is constructed from
a sequence of SSMs. They are systems that map a 1D func-
tion or sequence x(t) ∈ R 7→ y(t) ∈ R. It can be expressed
as a linear Ordinary Differential Equation (ODE):

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (2)

where A ∈ RM×M and B,C ∈ RM are its parameters
and h(t) ∈ RM denotes the hidden state. The discrete ver-
sions [Karras et al., 2022] of ODE include a timescale pa-
rameter ∆ to transform the continuous parameters A,B to
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Figure 4: Illustration of motion flow formulation and estimation pro-
cess. (a) The motion flow is formulated by computing token similar-
ity across frames. (b) The motion diffuser estimates future motion
flow in an iterative manner.

discrete parameters A,B. One common discrete method is
the Zero-Order Hold (ZOH), represented as:

A = exp(∆A),B = (∆A)−1(exp(∆A)− I)∆B, (3)

ht = Aht−1 +Bxt, yt = Cht. (4)

Mamba [Gu and Dao, 2023] further extends the discretization
process with a selection mechanism. Based on these, we build
the motion diffuser using stacked SSM blocks. Given the mo-
tion flow of the past T frames {Ft→t+1} ∈ R(T−1)×N×C ,
where C = N . These sequences are input into the motion
diffuser to perform the forward and backward spatiotemporal
selective scan, as shown in Fig. 3. Specifically, the sequences
are aggregated after the forward scan and the reverse scan of
the flipped sequences. Finally, the estimated motion flow can
be formulated as:

F̂T→T+t′ = MDiff(Ft→t+1), ∀t ∈ {1, 2, . . . , T − 1}, (5)

where we directly estimate the motion flow from the Tth to
the (T + t′)th frame to reduce error accumulation. Moreover,
as shown in Fig. 4(b), the MDiff cross-scale shares the es-
timated motion flow through convolutional projection to re-
duce multi-scale iterations. The diffusion process progres-
sively adds noise to the motion flow, as shown in Fig. 5. Let
βt represent the noise variance ratio at time t, and αt = 1−βt.
With context motion flow as condition c and denoised motion
flow as z, these are concatenated as input. The training loss
for the motion diffuser ϵϕ (zt; t) is:

L (ϵϕ) = Et,c

∥∥ϵϕ (√ᾱtz +
√
1− ᾱtϵ, t, c

)
− ϵ
∥∥2 . (6)

3.3 Deterministic Visual Modeling
While recurrent-based models excel at capturing motion pat-
terns, they often struggle to maintain visual consistency.
To address this limitation, we introduce the Spectral-Aware
Module (SAM) designed to enhance frequency-domain rep-
resentations (as shown in Fig. 6(a)). Adopting a MetaFormer-
like paradigm [Yu et al., 2022; Nie et al., 2024c], SAM com-
prises: (i) Dilated Reparam Convolution (DRConv) [Ding et
al., 2023] for token mixing, which augments a non-dilated
large kernel with parallel reparameterizable dilated small
kernels, and (ii) Energy-based Frequency Channel Mixing

Diffusion process:

Denoise process:

. . .

Motion Flow Diffusion (single channel case)

Noise
Motion

Flow

Figure 5: Illustration of the single-channel diffusion process. The
vector is reshaped into a spatial format for visualization.

(EFCM) for channel mixing. EFCM computes the mean
µ̂ = 1

N

∑N
i=1 xi and variance σ̂2 = 1

N

∑N
i=1 (xi − µ̂)

2 of la-
tent features X, where N = H×W . The energy value [Yang
et al., 2021] is determined by minimizing:

ei,j =
4
(
σ̂2 + λ

)
(ti,j − µ̂)2 + 2σ̂2 + 2δ

, (7)

where δ represents the hyper-parameter, and ei,j is the energy
value of the target token ti,j , where i ranges from 0 to H −
1, and j ranges from 0 to W − 1. The energy feature Xe

is formed by grouping all ei,j values. Then, we rescale the
energy value to limit excessively large energy values:

e∗i,j = LeakyReLU

(
1∑

h,w ei,j

)
. (8)

For energy features, we pool it into a global vector x ∈
RC×1×1, and then transform it to Fourier space:

F(x)(z) =
1

C

C−1∑
c=0

x(c)e−j2π c
C z, (9)

where amplitude component A(x)(z) and phase component
P(x)(z) of F(x)(z) represent different information, thus we
introduce attention-based operations to enhance A(x)(z) and
P(x)(z) respectively:

A (x) (z)′ = Afilter (x)⊙A (x) (z), (10)

P (x) (z)′ = Pfilter (x)⊙ P (x) (z), (11)

where Afilter(·) and Pfilter(·) denote 1× 1 filters for the am-
plitude and phase components. The symbol ⊙ signifies the
Hadamard product for attention weighting. Then we convert
the Fourier features to their original space via the inverted
Fourier transform F−1 (A (x) (z)′,P (x) (z)′). Finally, we
context broadcast it to the original input.

3.4 Motion-Visual Warping
Inspired by the warping operation in optical flow, which uses
the flow Ft→t+1 to map It to It+1 in pixel space. Similarly,
the motion-visual warping applies motion flow F̂T→T+t′ on
the observed T visual features Xt to obtain the (T + t′)th
features X̂T+t′ in latent space:

X̂T+t′ =

(
T∑

t=1

Xt · Ft→T

)
· F̂T→T+t′ . (12)
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Figure 6: (a) Spectral-aware module architecture involves RDD-
Conv for token mixing, and energy-based frequency channel mix-
ing. (b) Motion-visual warping aggregates past features to generate
credible future features.

Unlike optical flow which only maps the current frame, this
warping operation integrates all prior visual features Xt via
the motion flow Ft→T , as shown in Fig. 6(b). This process
takes place at each scale, and then the decoder produces fu-
ture frames by converting the warped features from latent to
pixel space.

4 Experiments
We demonstrate the effectiveness of the DDP model with
multi-scenario evaluations. These scenarios are crucial for
numerous applications requiring robust spatiotemporal pre-
dictive models. We demonstrate that the DDP model per-
forms favorably against the state-of-the-art models on five
challenging datasets corresponding to these scenarios.
Implementation Details. Our method uses PyTorch on
an NVIDIA A100 GPU, training with 16-sequence mini-
batches, the Adam optimizer, and the OneCycle scheduler.
We apply a weight decay of 5e−2 and select learning rates
from {1e−2, 5e−3, 1e−3} for stability. We use the MSE loss
to supervise training and stochastic depth for regularization.

4.1 Human Motions: UCF Sports
Dataset and Setup. UCF Sports [Rodriguez et al., 2008]
comprises 150 videos from diverse sports scenes, depicting
10 distinct actions with complex human motion patterns. Fol-
lowing STRPM [Chang et al., 2022], we scale resolution
from 480 × 720 to 512 × 512, using 6,288 sequences for
training and 752 for testing. The model observes 4 frames
and predicts 1 frame (4 → 1) during training and 6 frames
(4 → 6) during testing.
Main Results. Tab. 1 presents model performance, reporting
PSNR and LPIPS metrics for (T +1)th and (T +6)th frames.
DDP demonstrates significant performance gains over other
methods. This dataset includes complex scenarios and mo-
tion patterns, like camera movement and motion blur. Our
design effectively addresses these issues by separating visuals
and motion, as shown in Fig. 2, demonstrating the potential
for real-world applications and scalability to high-resolution
spatiotemporal data.

4.2 Synthetic Motions: Moving MNIST
Dataset and Setup. The Moving MNIST [Srivastava et al.,
2015] dataset is constructed by randomly sampling two digits

Method T + 1 T + 6

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
ConvLSTM [Shi et al., 2015] 26.43 32.20 17.80 58.78
PredRNN [Wang et al., 2017] 27.17 28.15 19.65 55.34
PredRNN++ [Wang et al., 2018b] 27.26 26.80 19.67 56.79
E3D-LSTM [Wang et al., 2018c] 27.98 25.13 20.33 47.76
MotionRNN [Wu et al., 2021] 27.67 24.23 20.01 49.20
STRPM [Chang et al., 2022] 28.54 20.69 20.59 41.11
SimVP [Gao et al., 2022] 30.64 13.17 21.83 38.74
DMVFN [Hu et al., 2023] 30.05 10.24 22.67 22.50
WaST [Nie et al., 2024d] 31.12 11.83 21.93 23.41
DDP (Ours) 32.16 6.68 23.73 21.34

Table 1: Quantitative results on the UCF Sports (4 → 6 frames). ↑ /
↓ indicates the higher/lower values denote the better performance.

with 64×64 pixels from the MNIST dataset and making them
float and bounce at boundaries with a constant direction and
velocity. There are 10,000 sequences for training and 10,000
for testing. The model observes the first 10 frames and pre-
dicts the next 10 frames.
Main Results. Tab. 2 shows MSE and PSNR metrics of DDP
network against the state-of-the-art predictive learning meth-
ods. Our model significantly outperforms these methods in
both metrics. We also show a prediction example in Fig. 7(b).
Notably, SimVP [Gao et al., 2022] improves visual details
through introducing IncepU, but missing part of the motion
modeling leads to error accumulation over time as shown in
the last row of Fig. 7(b). In contrast, DDP using a motion dif-
fuser to model long-term motion patterns explicitly can miti-
gate this issue. This suggests that the DDP models synthetic
motions better than other methods.

4.3 Driving Scenes: KITTI&Caltech
Dataset and Setup. The generalization ability is crucial
for real-world driving scenes. The KITTI&Caltech [Geiger
et al., 2013; Dollár et al., 2009] dataset evaluates gener-
alization ability across different datasets. Following stan-
dard practice [Gao et al., 2022], we train the model on the
KITTI [Geiger et al., 2013] dataset and evaluate it against the
Caltech Pedestrian [Dollár et al., 2009] dataset. We resize the
resolution to 128×160, and models predict the next frame by
previously observed 10 frames.

Method MSE↓ PSNR↑
ConvLSTM [Shi et al., 2015] 103.3 16.17
PredRNN [Wang et al., 2017] 56.8 19.12
PredRNN++ [Wang et al., 2018b] 46.5 20.11
Conv-TT-LSTM [Su et al., 2020] 53.0 19.41
PredRNNv2 [Wang et al., 2022] 48.4 20.12
SimVP [Gao et al., 2022] 23.8 23.19
MMVP [Zhong et al., 2023] 22.2 23.62
ModeRNN [Yao et al., 2023] 42.1 20.45
WaST [Nie et al., 2024d] 21.1 23.85
DDP (Ours) 19.2 24.63

Table 2: Quantitative results on the Moving MNIST (10 → 10
frames) dataset.
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(a) KITTI&Caltech

G.T.  Predicted
Frames

Error Plot
(Ours)

Predictions
(Ours)
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Error Plot
(PredRNN++)

Error Plot
(Ours)

Error Plot
(SimVP)

Inputs 

t = 1 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20
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(b) Moving MNIST
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Figure 7: Qualitative results on the KITTI&Caltech (10 → 1) and Moving MNIST (10 → 10) datasets, where error plot = |ground truth −
prediction| denotes the differences between the ground truth frames and their corresponding predicted frames.

Main Results. Tab. 3 shows the quantitative results of the
proposed model and mainstream methods. The DDP model
achieves strong performance under all metrics consistent with
previous observations. These empirical results demonstrate
the effectiveness of the DDP model for modeling spatiotem-
poral driving data. Qualitative visualizations Fig. 7(a) shows
that our method can better predict lane lines and pinpoint dis-
tant, small entities than other methods, which indicates the
potential generalization across scenes.

4.4 Traffic Flow: TaxiBJ
Dataset and Setup. TaxiBJ [Zhang and others, 2017] com-
prises taxi GPS trajectory data in Beijing, with 30-minute in-
tervals and 32×32 spatial granularity. Models predict 4 future
frames based on 4 observed frames. Complex road network
dependencies and non-linear temporal dynamics have histor-
ically challenged traffic forecasting methods.
Main Results. Quantitative results are presented in Tab.3,
with qualitative visualizations in Fig.8. TAU [Tan et al.,
2023], despite introducing a temporal attention unit and set-
ting benchmarks in several datasets, fails to adequately cap-
ture road spatiotemporal dependencies, resulting in predic-
tion inaccuracies (Fig. 8, last two rows). For unstructured
data (e.g., traffic, climate), intensity is similar to visual fea-
tures in structured data. DDP still works well in both intensity
and dynamics, consistently outperforming other approaches
with minimal intensity differences across most regions. No-
tably, the optical flow-based DMVFN [Hu et al., 2023]
method underperforms in these scenes. In contrast, DDP,
making no data-specific assumptions, demonstrates broader
applicability across various modalities.

4.5 Global Climate: WeatherBench
Dataset and Setup. WeatherBench [Rasp et al., 2020] con-
tains climatic data from 1979 to 2018, re-gridded to 5.625◦

(32 × 64 grid points) and 1.40625◦ (128 × 256 grid points).
We evaluate temperature prediction at 5.625◦ resolution, us-
ing 2010-2015 for training, 2016 for validation, and 2017-

t = 1 t = 3
Input Frames

t = 5 t = 6 t = 7 t = 8
Ground Truth and Predictions

Predicted Frames

Error Plot
(Ours)

Error Plot
(TAU)

. . .

Figure 8: Qualitative results on the TaxiBJ (4 → 4), where DDP
captures road spatiotemporal dependencies

2018 for testing. The model forecasts 12-hour temperature
based on 12-hour historical global temperature data.
Main Results. For the WeatherBench dataset, Tab. 3 presents
quantitative comparisons with state-of-the-art methods. DDP
consistently outperforms all other state-of-the-art methods
across all reported error metrics (MSE, MAE, and RMSE). It
is particularly noteworthy that some methods, such as PhyD-
Net and DMVFN, exhibit significantly higher error values on
this task, indicating substantial deviations in their predictions
from the ground truth climate patterns. This comprehensive
superiority suggests DDP’s architecture is particularly well-
suited for capturing the complex, long-range spatiotemporal
dependencies inherent in climate data.

4.6 Ablation Studies
In this section, we further perform extensive ablation studies
to study the components’ effectiveness in our DDP.
Ablation of the Probabilistic Path. We implemented vari-
ous spatiotemporal modules as motion diffusers (Tab. 4(a)),
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Method KITTI&Caltech TaxiBJ WeatherBench

MSE↓ MAE↓ SSIM↑ MSE↓ MAE↓ SSIM↑ MSE↓ MAE↓ RMSE↓
ConvLSTM [Shi et al., 2015] 139.6 1583.3 0.9345 0.485 17.7 0.978 1.521 0.7949 1.233
PredRNN [Wang et al., 2017] 130.4 1525.5 0.9374 0.464 17.1 0.971 1.331 0.7246 1.154
PredRNN++ [Wang et al., 2018b] 129.6 1507.7 0.9453 0.448 16.9 0.977 1.634 0.7883 1.278
E3D-LSTM [Wang et al., 2018c] 200.6 1946.2 0.9047 0.432 16.9 0.979 1.592 0.8059 1.262
PhyDNet [Guen and others, 2020] 312.2 2754.8 0.8615 0.419 16.2 0.982 285.9 8.7370 16.91
PredRNNv2 [Wang et al., 2022] 147.8 1610.5 0.9330 0.383 15.6 0.983 1.545 0.7986 1.243
SimVP [Gao et al., 2022] 160.2 1690.8 0.9338 0.414 16.2 0.982 1.238 0.7037 1.113
DMVFN [Hu et al., 2023] 183.9 1531.1 0.9314 3.395 45.5 0.832 448.5 16.880 21.14
TAU [Tan et al., 2023] 131.1 1507.8 0.9456 0.344 15.6 0.983 1.224 0.6810 1.106
SimVPv2 [Tan et al., 2025] 129.7 1507.7 0.9454 0.324 15.0 0.984 1.105 0.6567 1.051
DDP (Ours) 123.7 1418.9 0.9468 0.302 14.9 0.984 1.082 0.6332 1.040

Table 3: Quantitative results of state-of-the-art methods on the KITTI&Caltech (10 → 1 frames), TaxiBJ (4 → 4 frames), and WeatherBench
(12 → 12 frames) datasets. ↑ / ↓ indicates the higher/lower values denote the better performance.

utilizing convolution (Conv) and self-attention (SA). Replac-
ing spatiotemporal SSMs with these variants, our experiments
demonstrate that SSMs outperform other methods in terms of
MSE metric, validating their efficacy in modeling spatiotem-
poral data. Moreover, We experimented with various back-
ward scanning methods (Tab. 4(b)), where the spatiotemporal
flip scanning yielded the lowest MSE.

(a) Motion modeling
Method MSE↓
3D Conv 21.15
Spatiotemporal SA 20.96
Spatiotemporal SSMs 19.23

(b) Reverse scanning
Method MSE↓
Spatial flip 23.39
Temporal flip 21.14
Spatiotemporal flip 19.37

Table 4: Ablation results of the probabilistic path on the Moving
MNIST dataset.

Ablation of the Deterministic Path. We substituted the
deterministic branch of the spectral-aware module (SAM)
with various metaformer modules: Vision Transformer (ViT),
Swin Transformer, and ConvNext, as shown in Fig. 9. Ad-
ditionally, we compared different spectral architectures, in-
cluding Fast Fourier Convolution (FFC), Fourier Neural Op-
erator (FNO), and Wavelet Gating Network (WGN). Results
demonstrate that our SAM, synthesizing the strengths of these
frameworks, achieves optimal performance.

20.0

21.0

22.0

23.0

24.0

MetaFormer
ViT Swin ConvNext SAM

20.0

21.0

22.0

23.0

24.0

Spectral Module
FFC FNO WGN SAM

PS
NR

PS
NR

Figure 9: Ablation results of the deterministic path on the UCF
Sports dataset.

Ablation of the Long-Term Prediction. To investigate

the components affecting long-term predictions in DDP, we
tested long-term input and output scenarios (Fig. 10). We
replaced the Motion Diffuser (MDiff) with a deterministic
model and restricted Motion-Visual Warping (MVW) to map
only current frame latent features. Results indicate that the
motion diffuser significantly impacts long-term dynamics,
while MVW marginally enhances this capability.
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Figure 10: Ablation results of the long-term prediction on the Mov-
ing MNIST dataset.

5 Conclusion and Future Work
This paper presented Disentangling Deterministic and Prob-
abilistic (DDP) modeling, a novel predictive learning frame-
work employing two distinct latent pathways. The probabilis-
tic pathway explicitly models complex, many-to-many mo-
tion patterns via a motion diffuser, while the deterministic
pathway utilizes a spectral-aware enhancer to preserve and
amplify visual details in the frequency domain. This dual-
architecture design effectively balances robust visual consis-
tency with the accurate capture of intricate, long-term motion
dynamics. Comprehensive experimental validation demon-
strates DDP’s significant outperformance of existing state-of-
the-art methods, yielding qualitatively superior visual predic-
tions. Future research will focus on addressing the scalabil-
ity to substantially longer sequences (e.g., >100 frames) and
higher resolutions (e.g., 4K). These advancements present
considerable challenges, requiring optimized resource man-
agement and highly efficient inference strategies.
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