
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dynamic Replanning for Improved Public Transport Routing

Abdallah Abuaisha , Bojie Shen , Daniel D. Harabor , Peter J. Stuckey and Mark Wallace
Department of Data Science and AI, Monash University, Australia

{abdallah.abuaisha1, bojie.shen1, daniel.harabor, peter.stuckey, mark.wallace}@monash.edu

Abstract
Delays in public transport are common, often im-
pacting users through prolonged travel times and
missed transfers. Existing solutions for handling
delays remain limited; backup plans based on his-
torical data miss opportunities for earlier arrivals,
while snapshot planning accounts for current de-
lays but not future ones. With the growing avail-
ability of live delay data, users can adjust their jour-
neys in real-time. However, the literature lacks
a framework that fully exploits this advantage for
system-scale dynamic replanning. To address this,
we formalise the dynamic replanning problem in
public transport routing and propose two solutions:
a “pull” approach, where users manually request re-
planning, and a novel “push” approach, where the
server proactively monitors and adjusts journeys.
Our experiments show that the push approach out-
performs the pull approach, achieving significant
speedups. The results also reveal substantial arrival
time savings enabled by dynamic replanning.

1 Introduction
Public transport is a crucial component of smoothly function-
ing urban mobility systems. Unfortunately, in dynamic en-
vironments, travel conditions can change rapidly and unex-
pected incidents can occur, making delays in public transport
fairly common. These delays often result in missed transfers,
prolonged travel times, and late arrivals for users. Efficient
routing that accounts for real-time delays can play a vital role
in reducing travel times for users, ultimately enhancing their
satisfaction and trust in the public transport system.

To handle dynamic scenarios, many works utilise histor-
ical delay data or delay probability distributions. Backup
plans (i.e., a policy) are precomputed offline, with the ob-
jective of maximising reliability by providing plans that re-
main viable when potential delays occur, or minimising ex-
pected arrival time at the destination [Botea et al., 2013;
Dibbelt et al., 2014; Redmond et al., 2022]. These plans,
which can be printed in advance, offer multiple options at
each transfer stop for users to consult in case of disruptions.
However, these contingent planning approaches fail to ac-
count for all possible scenarios and only address delays of

Figure 1: A toy network with eight stops (s1 to s8), where the origin
s1 is yellow and the destination s6 is pink. Routes r1, r2, and r3 use
dashed blue, solid red, and dotted green arrows, labelled with travel
times in minutes. Scheduled departure times for trips on each route
are noted at its starting stop. Loops at stops indicate transfer times.

limited duration, potentially missing opportunities for ear-
lier arrivals. Another family of algorithms demonstrates the
feasibility of efficiently updating timetables [Cionini et al.,
2017; Dibbelt et al., 2018] or precomputed data structures
[D’Emidio and Khan, 2019; Baum et al., 2023] to account for
delays. While this can enable snapshot planning with updated
information, resulting journeys may be infeasible or subopti-
mal due to unforeseen future delays.

With widespread internet access, many transport opera-
tors and journey-planning applications, such as Google Maps,
provide real-time data, including service disruptions and up-
dated vehicle departure and arrival times. This enables users
to manually review updates and request replanning when nec-
essary. Dynamic replanning, a widely adopted concept, en-
ables real-time adaptation to environmental changes, address-
ing the limitations of offline and snapshot planning. By lever-
aging updated information and computational techniques, it
enhances efficiency and reliability in applications such as
robotics [Simmons, 1992] and multi-agent systems [Zhang
et al., 2024]. However, extending dynamic replanning to pub-
lic transport routing is challenging. The number of replans
and the search space required for a single journey often ex-
ceed expectations. Not only disruptions directly impacting
the journey (e.g., a missed transfer or a delayed service) must
be considered, but also those affecting other services in the
network, which can sometimes lead to an earlier arrival time
at the destination. Consequently, frequent replanning is es-
sential, with each replan accounting for all timetable services.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Example 1. Consider Figure 1. Departing from the origin
stop s1 at 8:00, the original optimal plan, according to the
normal timetable, involves taking the 8:00 trip on route r1,
t1, and arriving at the destination stop s6 at 8:40. However,
if the 8:00 trip on route r2, t2, is delayed by 10 minutes while
t1 runs on schedule, then catching the delayed t2 at stop s3
becomes possible. The updated optimal plan involves taking
t1 from s1, then changing at s3 to t2, which arrives at s6 at
8:25, earlier than the original plan’s arrival time of 8:40.

To the best of our knowledge, we are the first to extend the
dynamic replanning concept to public transport routing. We
begin by providing a comprehensive description and formula-
tion of the problem. Next, we propose a straightforward pull
approach, where users frequently request real-time journey
replans from a central server via their edge devices (e.g., mo-
bile phones), utilising the typical centralised setup for man-
aging queries. However, the pull approach has several draw-
backs: (i) it is inconvenient for users due to frequent manual
actions, such as monitoring updates and requesting replans;
(ii) it relies on user judgement, which may lead to missed op-
portunities for earlier arrivals; and (iii) it places pressure on
the server with numerous requests, reducing efficiency and
complicating timetable updates. To address these issues, we
further propose a novel push approach, where the server con-
tinually monitors and adjusts user journeys, pushing revised
plans to users’ edge devices. While more convenient for
users, simply replanning strains the server, as it must mon-
itor and replan for all users based on the entire timetable. To
improve efficiency, the server creates a query-specific enve-
lope, containing only relevant timetable parts. This envelope
is sent to the edge device, which subscribes to envelope up-
dates and performs local replanning on the envelope, reducing
the search space and distributing the computational load.

Our extensive experiments on metropolitan datasets reveal
two key findings: (i) the push approach achieves significant
query efficiency, delivering runtimes within a fraction of a
second, an order of magnitude faster than the pull approach,
while enabling the capacity to process 10–20 times more
queries; and (ii) our dynamic replanning strategy saves 5–30
minutes per journey on average compared to static and other
dynamic strategies, even when the initial plan is not delayed.

2 Preliminaries
2.1 Timetable Modelling
The timetable is the main input for any public transport rout-
ing system. We follow one of the most popular methods, as
detailed in Dibbelt et al. (2018), which directly utilises the
timetable structure rather than constructing a graph. Specifi-
cally, we represent a timetable as TB = (S, T, C, F ), where
S denotes stops, T denotes trips, C denotes connections, and
F denotes footpaths. Each component is defined as follows:
• A stop s ∈ S is a departure and/or arrival point where a
vehicle stops to pick up and/or drop off passengers.
• A trip t ∈ T corresponds to a scheduled transport vehicle
that visits a specific order of stops. Trips with the same order
of stops can be grouped into a route.
• Each trip t ∈ T is divided into a sequence of connections,

denoted as tC = ⟨c0, c1, . . . , ck⟩. A connection c ∈ tC is rep-
resented as a 5-tuple (sdep, τdep, sarr, τarr, t), indicating an
event where trip t departs from stop sdep ∈ S at time τdep
and arrives at stop sarr ∈ S at time τarr, with no interme-
diate stops. Note that sdep ̸= sarr and τdep < τarr always
hold. Connections in tC satisfy the following properties:1 (i)
t(c0) = t(c1) = · · · = t(ck), (ii) sdep(ci) = sarr(ci−1), and
(iii) τdep(ci) ≥ τarr(ci−1), ∀i ∈ {1 . . . k}. The union of all
connections from all trips in T forms the full set C.
• A footpath f ∈ F models walking between two stops
to change trips. It is represented as a triple f =
(si, sj ,∆τ(si, sj)), indicating a transfer from stop si ∈ S to
stop sj ∈ S with a duration of ∆τ(si, sj). We require each
stop si ∈ S to have a loop footpath f = (si, si,∆τ(si, si)).
Each stop si ∈ S is associated with a list of its outgoing
footpaths, denoted as f(si) = {f0, . . . , fm} ⊆ F . Follow-
ing Dibbelt et al. (2018), footpaths are required to satisfy the
transitive closure and triangle inequality properties.

A journey in TB is a scheduled path from origin stop so
to destination stop sd. It consists of a sequence of connec-
tions j = ⟨c0, . . . , cn⟩, where sdep(c0) = so and sarr(cn) =
sd. Each pair of consecutive connections either shares the
same trip t ∈ T (i.e., no vehicle change) or requires a transfer
via a footpath f ∈ F . Each transfer must respect the re-
quired transfer time. Formally, τarr(ci−1) + ∆τ(sarr(ci−1),
sdep(ci)) ≤ τdep(ci) must hold ∀i ∈ {1 . . . n}.
Earliest Arrival Time Problem (EATP). Given a query
q = (so, sd, τq), EATP aims to find a journey j that departs
from origin so no earlier than time τq and arrives at destina-
tion sd as early as possible, at time τd, assuming no delays in
timetable TB . Such a journey is denoted as j(so, sd, τq).

2.2 Delay Modelling
The dynamic nature of public transport networks often causes
disruptions, such as traffic congestion, technical issues, and
adverse weather, leading to service delays. These delays can
significantly affect travel plans computed based on published
timetables, resulting in missed transfers and longer travel
times. To model delays, we assume the transport system op-
erates a centralised server that stores the original timetable
TB and also maintains a list of delay events DV .
Definition 1. (Delay Event). A delay event dv ∈ DV is rep-
resented as a tuple (t, τδ, δ), where t ∈ T denotes the trip
experiencing the delay, τδ specifies the time when the delay
occurs, and δ represents the duration of the delay. The time
τδ must fall within the trip’s timeframe (i.e., τdep(c0) ≤ τδ ≤
τarr(ck) for t = ⟨c0, . . . , ck⟩).

When a delay event occurs, it impacts all subsequent con-
nections in trip t after time τδ . To avoid synchronisation
issues, we assume the real-time timetable TBcurr at time
τcurr can be derived from the original timetable TB and the
delay events DV . This requires identifying each delayed
trip t based on DV , scanning its affected connections c in
TB , and adjusting their departure and arrival times accord-
ing to the trip’s delay δ (i.e., τdep(c) = τdep(c) + δ and

1We often use the notation a(b) to denote “a of b”, unless stated
otherwise. For instance, t(ci) refers to the trip of connection ci.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

τarr(c) = τarr(c) + δ). Unlike previous works, we do not
impose any restrictions on the maximum duration of delays.

Snapshot Earliest Arrival Time Problem (SEATP).
Given a query q = (so, sd, τq,DV ), SEATP plans a journey
j as in EATP, but while accounting for current delay events
DV in a snapshot of timetable TB , denoted as TBcurr .

2.3 Snapshot Solver
Several EATP algorithms can be adapted to solve SEATP,
with the Connection Scan Algorithm (CSA) [Dibbelt et al.,
2018] being one of the most efficient online approaches. Be-
low, we provide a brief overview of CSA.

Unlike Dijkstra’s algorithm [Dijkstra, 1959], CSA does not
operate on a graph and does not require a priority queue. In-
stead, it compiles all connections from a timetable TB into a
single array C, sorted by (updated) departure time (i.e., from
earliest to latest), and efficiently solves queries by scanning
through this sorted array. Specifically, CSA maintains an ar-
ray A to store the tentative earliest arrival time for each stop
s ∈ S. Initially, A is set to infinity for all stops. Next,
A at each stop si that is walking-reachable from the origin
stop so via a footpath in f(so) is updated to τq +∆τ(so, si).
The algorithm then proceeds to scan the connections in C in
sequential order, starting from the first connection that de-
parts at or after τq . For each scanned connection c, the al-
gorithm first checks its reachability. A connection is consid-
ered reachable if there exists a way to catch it on time (e.g.,
A[sdep(c)] ≤ τdep(c)). If c is reachable and can improve the
arrival time at sarr(c), the algorithm updates A at each acces-
sible stop sj via an outgoing footpath from sarr(c), if A[sj ]
can be improved. Since sarr(c) has a loop transfer, its own
arrival time, A[sarr(c)], is also updated. However, if c is not
reachable, the algorithm simply skips it and proceeds to the
next connection. This process continues until all connections
in C departing before A[sd] are scanned. Finally, the algo-
rithm returns the arrival time at the destination stop, A[sd].
To extract the full journey, the algorithm is augmented with
journey pointers or followed by a post-processing phase. For
further details, refer to Dibbelt et al. (2018).

3 Dynamic Replanning
Both contingent and snapshot planning may miss opportuni-
ties to improve arrival times. Building on its success in vari-
ous domains, we propose a dynamic replanning approach to
address this limitation. Dynamic replanning involves adapt-
ing and improving plans during execution to effectively han-
dle uncertainties in constantly changing real-time environ-
ments. The core of our approach is to initially provide pas-
sengers with an optimal plan, which is then proactively and
continually adjusted as necessary along their journey based
on the latest delay information. The goal is to reduce the
impact of disruptions on passenger travel times. A key ob-
servation is that passengers cannot take any action while the
vehicle is in motion between stops. Therefore, replanning just
before arriving at each stop along the journey until reaching
the destination is sufficient, providing the finest feasible time
granularity. In broad terms, our dynamic replanning strategy
for solving a single user query consists of the following steps:

1. Update the original timetable TB with the latest delay
events DV at the current time τcurr to derive the real-time
timetable TBcurr .

2. Plan an optimal snapshot journey j from the current stop
scurr to the destination stop sd using the current timetable
TBcurr with an SEATP solver.

3. Execute the first action of the planned journey j, which
depends on the current travel context.

Steps 1 to 3 are repeated iteratively at each stop, starting
from the origin so as the current stop scurr, until the passen-
ger reaches the destination sd. Let c be the first connection
of the newly planned journey j in the current iteration, and c′

the connection taken in the previous iteration. The action the
passenger should execute at the end of the current iteration
falls into one of four cases2: (i) catch the trip with connection
c directly from s0, if c′ is null; (ii) stay on the current trip, if
c and c′ belong to the same trip; (iii) alight from the current
trip at stop sarr(c

′) and board a new trip at stop sdep(c), if
c and c′ belong to different trips; or (iv) reach sd directly by
walking via a footpath, if c is null. Cases (i), (ii), and (iv)
are straightforward. In case (iii), we consider walking from
sarr(c

′) to sdep(c) and boarding connection c as a single ac-
tion, without any intermediate replanning, assuming the user
is committed to this course of action.

Regarding the snapshot solver, offline preprocessing-based
algorithms are generally unsuitable for frequent replanning
due to the high cost of repairing precomputed data [Bast
et al., 2010; Delling et al., 2015a; Baum et al., 2023;
Abuaisha et al., 2024]. In contrast, online algorithms such
as CSA [Dibbelt et al., 2018] and RAPTOR [Delling et al.,
2015b] are better suited, as they support timetable updates at
a relatively low computational cost. In this paper, we adopt
CSA as the underlying replanning solver; however, any solver
designed for a similar timetable structure could also be used.

4 Our Approaches
We introduce two approaches for dynamic replanning: a
baseline pull approach and a more efficient push approach.

4.1 The Pull Approach
The straightforward approach follows the conventional setup
where a central server handles all user queries in the network.
In this approach, users frequently request (pull) journey re-
plans from the server via their edge devices. We assume users
recognise the need to replan at every stop along their journey,
in line with our formulation of dynamic replanning. To de-
termine the next action the user should take, the server treats
each request as a new query, computing an optimal journey
from scratch based on the latest delay updates. Figure 2 illus-
trates the framework of the pull approach for a single request.

For each request, the pull approach invokes the replan-
ning algorithm to solve an SEATP query by setting so to the
user’s current stop scurr and τq to the current time τcurr. Al-
gorithm 1 presents the pseudocode for the pull approach’s

2To focus on more critical aspects of our algorithms, we omit
cases (i) and (iv) in later discussions (but not in experiments); how-
ever, these can be easily handled by setting c′ and c to null, resp.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Framework for dynamic replanning during a typical replan
iteration: the pull approach (left) and the push approach (right).

Algorithm 1: Baseline Replanning Algorithm (Pull)
Input: scurr: user’s current stop; τcurr: current time (departure

time); sd: destination stop; TB : timetable; DV : most
recent delay events

Output: j: optimal journey from scurr to sd
1 TBcurr ← updateConnections(TB ,DV , τcurr);
2 sort connections in TBcurr by updated departure time;
3 j ← runCSA(TBcurr, scurr, sd, τcurr);
4 Env ← buildEnvelope(scurr, sd, τcurr, τd(j));
5 return (j, Env );

replanning algorithm, which returns the optimal journey to
sd. To begin, the algorithm retrieves the updated timetable
TBcurr based on the latest delay events available at time
τcurr (line 1). Next, as a prerequisite for running CSA, the
algorithm resorts the connections C in the timetable TBcurr

by their updated departure time, from earliest to latest (line 2).
The algorithm then executes CSA to plan an optimal journey
j from scurr to sd, starting at the departure time τcurr (line 3).
Line 4 shown in grey is not used for the pull approach (see
Subsection 4.2). Finally, the algorithm returns j (line 5), ex-
tended with the envelope when used in Subsection 4.2. Note
that if the first connection c0 of j belongs to a different trip
than the previous one, a transfer from scurr to sdep(c0) will
be included as part of the next execution.

4.2 The Push Approach
Although the pull approach addresses dynamic replanning, it
has significant drawbacks. Users must repeatedly request a
replan at each stop, which creates a cumbersome experience.
Additionally, the total number of requests can grow signifi-
cantly, with each requiring a full timetable update and replan,
which increases server load, especially for large timetables.

To overcome these challenges, we propose a novel ap-
proach in which the server continually monitors and adjusts
user journeys, then sends (pushes) the revised plans to users’
edge devices. To avoid replanning a user’s journey from
scratch using the entire timetable at each iteration, the server
constructs an envelope for each user. This envelope contains
only the relevant parts of the timetable that could affect the
user’s journey, limiting the search space for subsequent re-
planning iterations. Rather than storing a separate envelope
for each user, which would be resource-intensive, the server
computes the envelope at the start of the query and transmits

it to the user’s edge device. The edge device subscribes to the
server for real-time envelope delay updates and performs lo-
cal replanning as needed using the updated envelope. This de-
centralised design distributes the workload between the server
and edge devices, optimising resource utilisation and signif-
icantly reducing number of requests handled by the server.
Figure 2 illustrates the framework of the push approach for a
typical replan iteration; note that the server may occasionally
need to push a new envelope to the user, as explained later.

Building the Envelope
The push approach recomputes the optimal journey at each
replanning iteration until the destination is reached. During
each iteration, the optimal journey may change due to de-
lays in only two scenarios: (i) the current optimal journey
is delayed, causing a previously suboptimal journey to be-
come the new optimal one by arriving earlier than the de-
layed journey; or (ii) a previously unreachable connection is
delayed, making it possible to catch it and form a new journey
that arrives earlier than the current journey (see Example 1).
In scenario (ii), the destination’s arrival time of the current
journey, τd, serves as an upper bound. CSA only needs to
scan through connections that could potentially form a jour-
ney which arrives earlier than τd to identify the new optimal
journey. Based on this observation, we construct an envelope
at the start of query q, which contains these connections to
restrict the search space of CSA during replanning. The enve-
lope may need to be reconstructed later to accommodate ad-
ditional delays affecting the current journey, as in scenario (i).
Fortunately, envelope reconstruction is infrequent, as shown
in our experiments. We begin exploring envelope connections
by constructing a time-independent graph, as defined below.

Definition 2. (Time-Independent Graph (TIG)). Given a
timetable TB = (S, T, C, F ), the time-independent graph
is a weighted directed graph G = (V,E), where each ver-
tex v ∈ V represents a stop s ∈ S, and each edge e ∈ E
connects a pair of stops with a weight equal to the mini-
mum duration among all connections and footpaths between
them. Formally, w(si, sj) = min({τj−τi | (si, τi, sj , τj , ) ∈
C} ∪ {∆τ(si, sj) | (si, sj ,∆τ(si, sj)) ∈ F}).
Example 2. The TIG for the network in Figure 1 records the
minimum duration for each edge in minutes. It consists of the
edges: (s1, s3), (s3, s5), (s5, s7), and (s7, s6), each with a
duration of 10; (s2, s3), (s3, s4), (s4, s6), and (s5, s4), each
with a duration of 5; and (s8, s5) with a duration of 15.

Based on the original timetable TB , the time-independent
graph TIG is precomputed once during offline preprocessing
and then reused for all online queries. A journey from an ori-
gin so to a destination sd in TB , denoted as j(so, sd), can be
represented as a path pG(so, sd) in TIG . Since TIG assigns
the minimum travel time of all connections and footpaths
as the edge weight, the shortest path duration spG(so, sd)
clearly serves as a lower bound for any journey from so to
sd in TB . Given a query q and the initial arrival time τd of
the optimal journey at sd, we build the envelope as follows.

Definition 3. (Envelope). Given an upper bound on the ar-
rival time τd, the envelope Env of a query (so, sd, τq) is a
subset of connections, Env ⊆ C, such that each connection

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 2: Envelope Replanning Algorithm (Push)
Input: scurr: user’s current stop; τcurr: current time (departure

time); sd: destination stop; jcurr : current journey to sd;
Env : envelope of jcurr; DV : most recent delay events

Output: jcurr: residual journey to sd; Env : updated envelope;
1 jcurr ← evaluateJourney(jcurr,DV , τcurr);
2 if jcurr is delayed or scurr = so then
3 (jcurr,Env)← pull(scurr, sd, τcurr); % call the server
4 else
5 Env ← updateConnections(Env ,DV , τcurr);
6 if Env is delayed then
7 sort connections in Env by updated departure time;
8 jcurr ← runCSA(Env , scurr, sd, τcurr);
9 return (jcurr , remove c0(jcurr) from jcurr , Env );

(sdep, τdep, sarr, τarr, t) ∈ Env satisfies the following con-
ditions: (a) spG(so, sdep)+ (τarr − τdep)+ spG(sarr, sd) ≤
τd − τq; (b) τarr + spG(sarr, sd) ≤ τd; and (c) τq ≤ τdep.

Condition (a) ensures that the envelope includes connec-
tions that could form a journey with travel time no longer
than that of the current journey, τd − τq , regardless of delays.
Condition (b) further guarantees that such a potential jour-
ney would arrive at the destination no later than the current
optimal one. Finally, condition (c) restricts the envelope to
connections whose updated (possibly delayed) departure time
is at or after the query time, ensuring that relevant delayed
connections are not missed. Constructing this envelope is
straightforward. It involves running two Dijkstra searches on-
line on TIG : a forward search from origin stop so and a back-
ward search from destination stop sd, to compute spG(so, s)
and spG(s, sd), respectively, for each stop s ∈ TIG . Al-
ternatively, all-pairs shortest-path durations in TIG can be
precomputed offline, at the cost of several gigabytes of mem-
ory. Using these durations, only connections in C satisfying
conditions (a), (b), and (c) are added to the envelope.
Example 3. Consider the query (s1,s6,8:00) described in Ex-
ample 1 for the network in Figure 1. The query’s envelope in-
cludes the connections on the dashed route r1, the solid route
r2 from s3 to s6 for the trip departing s2 at 8:00, and the
dotted route r3 from s5 to s6 for the trip departing s8 at 8:00.
Theorem 1. Given a query (so, sd, τq) with an initial optimal
journey j from so to sd that arrives at time τd, no journey
j∗ starting at or after τq and using connections outside the
envelope Env can arrive before τd, regardless of any delays.3

While our approach targets common disruptions, where a
delay in one connection propagates to subsequent ones on the
same trip, it also handles rarer cases where a trip recovers and
catches up. The envelope remains valid as long as the sped-up
connection does not arrive earlier than scheduled or complete
faster than its minimum scheduled duration.

Replanning on the Envelope
Utilising the defined envelope, the edge device efficiently
runs CSA within it to replan the user’s journey. Algorithm 2
presents the pseudocode for the push approach’s envelope re-
planning algorithm. Given a query (so, sd, τq), the algorithm

3Proof is available in preprint: https://arxiv.org/abs/2505.14193.

is recursively called to determine the best action for the user
at each stop along the journey, starting from the origin stop so
until the destination stop sd is reached. Initially, the current
stop scurr and time τcurr are set to the origin so and query
time τq , while the current journey jcurr and its envelope Env
are empty and will be computed in the first iteration.

At each replanning iteration, the algorithm first evaluates
jcurr, to account for any known delays at time τcurr that may
affect the journey’s feasibility or arrival time (line 1). Based
on this, there are three possible scenarios for the next step:

1. The current journey jcurr is delayed, or the algorithm is
invoked for the first time (i.e., scurr = so) (line 2). jcurr is
considered delayed if any of its transfers will be missed, or
if its final leg4 is delayed. In this case, the envelope Env is
either empty (first call) or no longer valid as the journey’s
arrival time τd is pushed back. The algorithm calls the
server to replan an optimal journey for (scurr, sd, τcurr)
(line 3), then invokes the function buildEnvelope(scurr, sd,
τcurr, τd(j)) to (re)construct Env based on the new jour-
ney’s arrival time τd(j) (line 4, Algorithm 1), and finally
pushes Env to the user’s device for further replanning.

2. The current journey jcurr is not delayed (line 4). The al-
gorithm updates departure and arrival times of connections
only in the envelope Env to reflect known delays at time
τcurr (line 5). If any connection in Env is delayed, Env
remains valid, but journey replanning is required for po-
tential improvement in arrival time (line 6). The algorithm
then resorts the connections within Env by updated depar-
ture time and runs CSA on Env to plan an optimal journey
for (scurr, sd, τcurr) (lines 7–8).

3. Neither the current journey jcurr nor the envelope Env is
delayed. In this case, jcurr preserves optimality, and no
replanning is needed.

Case (1) is the most time-consuming part of Algorithm 2,
requiring a server call to compute both a new journey that
considers the entire timetable and a new envelope (Algo-
rithm 1). Fortunately, as shown in the experiments, case (1)
occurs infrequently. The envelope is constructed during the
first algorithm call and may need to be reconstructed only
once or twice in most cases.

Finally, after replanning jcurr according to the different
cases, the algorithm returns jcurr including its first connec-
tion, c0, as the next action for the user to execute (line 9). Ad-
ditionally, the algorithm provides the remaining part of jcurr
(excluding c0) and the updated envelope Env for the next re-
planning iteration. To prepare for this iteration, the algorithm
sets τcurr to τarr(c0) and scurr to sarr(c0).

5 Experiments
All experiments were implemented in C++17 with full opti-
misation on a 3.20 GHz Apple M1 machine with 16 GB of
RAM, running macOS 14.5 and utilising a single thread.
Datasets. Four metropolitan networks of varying sizes,
namely Perth, Berlin, Paris, and London, are considered.
Each dataset is based on a weekday timetable and includes

4the connections from the final transfer stop to sd.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://arxiv.org/abs/2505.14193


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset Stops Connections Trips Footpaths
Perth 14,022 643,737 21,130 17,689
Berlin 27,941 1,449,971 70,941 76,456
Paris 19,800 1,643,608 71,407 73,850
London 19,746 4,572,979 121,760 46,566

Table 1: Key metrics for the test datasets.

all available public transport modes, such as trains, subways,
trams, buses, and ferries. All datasets were imported in the
General Transit Feed Specification (GTFS) format. The first
two datasets are from an open data platform,5 while the others
are sourced from [Phan and Viennot, 2019].6 Table 1 sum-
marises the key metrics for the datasets. To model transfers,
the original footpath set from the source is used. Additional
footpaths are created to ensure the footpath graph is transi-
tively closed. Loop footpaths are also added for stops that do
not have any. Numbers in Table 1 include these footpaths.
Delay Modelling. Delay events are modelled as described
in Section 2. The time at which the delay event occurs
for each trip is randomly selected. A real delay probabil-
ity distribution could not be applied due to the lack of his-
torical delay data. As a result, we use a synthetic delay
model that follows an exponential distribution, as suggested
by several studies [Hansen, 2001; Marković et al., 2015;
Bast et al., 2013]. This distribution has a single parameter
λ = 1/δ̄, where δ̄ is the mean delay. The Cumulative Distri-
bution Function (CDF) is given by P (δ ≤ x) = 1− e−λx for
x ≥ 0, where δ is the duration of delay experienced by a trip
t, and x is the random variable representing delay. Very short
delays below 30 seconds are ignored. The mean delay values
used vary depending on transport mode and time of day, and
were estimated based on performance reports for London.7
For fully-separated modes, such as trains, δ̄ = 2 minutes is
used regardless of the time of day. For semi-separated modes,
such as trams, δ̄ = 3 minutes is used for off-peak periods and
δ̄ = 7 minutes for peak periods. Finally, for mixed-traffic
modes, such as buses, δ̄ = 5 minutes is used for off-peak pe-
riods and δ̄ = 10 minutes for peak periods. The peak and
off-peak periods are determined based on the distribution of
connections throughout the day. The exact periods are high-
lighted in the experimental figures.
Query Generation. We generate a sample of 1,000 unique
stop pairs (so, sd) chosen uniformly at random for each
dataset. These stop pairs are assigned ten fixed departure
times (τq) throughout the day, from midnight to 9 pm. This
results in a total of 10,000 queries per dataset. This sample
size enables realistic estimates of average query runtime and
time savings distribution, and aligns with common practice
in the field. Note that the stop pairs were verified to ensure a
dynamic replanning solution exists for all ten departure times.

5.1 Experiment 1: Query Performance
The mean query runtimes for both the baseline pull approach
and the proposed push approach are presented in Figure 3.

5https://openmobilitydata.org
6https://files.inria.fr/gang/graphs/public transport
7https://tfl.gov.uk/corporate/publications-and-reports

Metric Perth Berlin Paris London
Envelope Size 5.9% 3.7% 7.5% 2.8%
Pushed Data (MB) 1.4 1.6 4.1 4.8
Journey Delayed 3.7% 4.8% 4.2% 6.0%
Envelope Delayed 73.6% 81.0% 94.0% 87.5%
Neither Delayed 22.7% 14.2% 1.8% 6.5%

Table 2: Envelope statistics: mean connection share, pushed data
size, and percentage of stops per query across all delay cases.

This runtime reflects the average total time required to pro-
cess a query from the source to the target, including replan-
ning at each intermediate stop along the journey—whether
handled solely by the server (pull approach) or shared with
the edge device (push approach). The results demonstrate
the efficiency of the push approach, achieving runtimes well
within a fraction of a second, while the pull approach requires
several seconds. The push approach consistently achieves an
order-of-magnitude speedup across all datasets and times of
day. This translates to the push approach being capable of
handling 10 times more queries than the pull approach within
the same time period. The relatively slower runtimes for the
London dataset are due to its larger number of connections.
The pull approach performs worse overnight due to the low
frequency of relevant services, especially when a transfer is
missed, leading to scanning more unnecessary connections.

Table 2 shows statistics for the push approach across
datasets, including the average envelope size and the aver-
age percentage of stops per query where delays affect the
current journey, the envelope, or neither. Two key factors
contribute to the superior performance of the push approach:
(i) the significantly smaller size of the envelope compared
to the full connections array (around 5%), which consider-
ably reduces the search space, and (ii) the infrequent need
for server calls to reconstruct the envelope (about 5% of the
intermediate stops). This low frequency means the server re-
ceives approximately 20 times fewer calls compared to the
pull approach (where a request is made at every stop), en-
abling a significantly higher query handling capacity. Finally,
the statistics indicate that the amount of data sent from the
server to each edge device, which represents the total enve-
lope (re)construction and its updates during the journey, is
modest, averaging only 3 megabytes. This demonstrates the
practicality of the push approach for real-world applications.

5.2 Experiment 2: Arrival Time Saving
To examine travel time savings from dynamic replanning
(DR), we develop three alternative baseline strategies for han-
dling disruptions. First, static planning (SP) represents the
default strategy, where users plan their journey using the pub-
lished delay-free timetable and follow the plan as closely as
possible despite any delays. If the plan fails due to a missed
transfer, users attempt to repair the static plan with minimal
deviation. They wait at the same stop and take the next avail-
able train to the next transfer stop. Second, in the Snapshot
Replanning (SR) strategy, users (re)plan their journey at τq
based on the most recent delay updates just before starting
from the origin stop, and then react to delays as in static plan-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 3: Runtime comparison between the pull and push approaches throughout the day. Different y-axis limits are used to enhance data
clarity across plots. Cyan blocks represent peak periods, while grey lines indicate overall average runtimes.

Figure 4: Distribution of difference in arrival time at destination for affected queries (percentages shown) between static planning (SP) and
dynamic replanning (DR) across the day. Red dots indicate mean values, while cyan blocks indicate peak periods.

ning. Finally, in the journey-delayed replanning (JDR) strat-
egy, replanning occurs only when the current journey is de-
layed; essentially removing lines 6-8 from Algorithm 2. JDR
can be understood as an improvement on contingent planning,
integrating real-time delays and replanning dynamically. For
journeys that arrive extremely late in these baselines due to
a lack of available services and require waiting until the next
day, we assume users will not wait indefinitely before seek-
ing alternative actions (e.g., taking a taxi). In such cases, a
penalty of 90 minutes is applied to account for inconvenience
and extra time and cost. This means users are considered to
arrive only 90 minutes later than they would with DR.

DR vs. SP. Figure 4 illustrates the difference in arrival time
at the destination between DR and SP throughout the day,
excluding queries with identical arrival time in both scenar-
ios. The results show that a significant portion of journeys are
affected, with almost half in both Perth and Berlin, slightly
fewer in Paris, and more in London. The mean difference in
arrival time for affected journeys ranges from 20 to 30 min-
utes of time savings in both Perth and Berlin, and from 5 to 20
minutes in both Paris and London. Note that in a few cases
(around 4-5% of journeys), DR may result in a later arrival
than SP. This occurs when the updated plan advised by DR
encounters significant unforeseen delays later. The findings
also show that affected journeys during overnight hours (i.e.,
0, 3, and 21) are generally fewer but result in larger time sav-
ings compared to the rest of the day. This is because services
are less frequent during these hours, so even if a journey is
delayed, transfers are more likely to remain valid. However,

Comparison Metric Perth Berlin Paris London

DR vs. SR Q. Affected 42.3% 41.1% 20.4% 66.2%
Avg. Saving 30.2 24.2 10.6 16.0

DR vs. JDR Q. Affected 10.0% 13.1% 13.3% 21.1%
Avg. Saving 5.7 4.6 6.0 4.9

Table 3: Average arrival time savings (Avg. Saving) in minutes from
DR for affected queries (Q. Affected), compared to SR and JDR.

if a transfer is missed, the consequences can be significant,
leading to longer waits and late arrivals.
DR vs. SR and JDR. Table 3 shows the advantages of DR
compared to both SR and JDR scenarios. SR can provide a
limited improvement over SP. Considering JDR, a significant
part of the time savings of DR comes from replanning even
when the current journey is not even delayed. This demon-
strates the importance of the dynamic replanning in minimis-
ing the impact of disruptions.

6 Conclusion and Future Work
We innovatively formulated dynamic replanning in public
transport routing to address delays, shifting the initiative from
users to the system, which proactively ensures they remain
on the best path. This approach demonstrates both query ef-
ficiency and travel time savings. It opens several directions
for future work, including further improving envelope tight-
ness, developing more selective triggers for envelope-based
replanning, testing with real-world delay data, and extending
to multicriteria routing (e.g., number of transfers).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
This work was partially funded by the Australian Research
Council (ARC) under grant DP190100013.

References
[Abuaisha et al., 2024] Abdallah Abuaisha, Mark Wallace,

Daniel Harabor, and Bojie Shen. Efficient and exact pub-
lic transport routing via a transfer connection database. In
Proceedings of the International Symposium on Combina-
torial Search, volume 17, pages 2–10, 2024.

[Bast et al., 2010] Hannah Bast, Erik Carlsson, Arno Eigen-
willig, Robert Geisberger, Chris Harrelson, Veselin Ray-
chev, and Fabien Viger. Fast routing in very large pub-
lic transportation networks using transfer patterns. In
Algorithms–ESA 2010: 18th Annual European Sympo-
sium, Liverpool, UK, September 6-8, 2010. Proceedings,
Part I 18, pages 290–301. Springer, 2010.

[Bast et al., 2013] Hannah Bast, Jonas Sternisko, and Sabine
Storandt. Delay-robustness of transfer patterns in public
transportation route planning. In ATMOS-13th Workshop
on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems-2013, volume 33, pages 42–
54. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik,
2013.

[Baum et al., 2023] Moritz Baum, Valentin Buchhold, Jonas
Sauer, Dorothea Wagner, and Tobias Zündorf. Ultra: Un-
limited transfers for efficient multimodal journey plan-
ning. Transportation Science, 57(6):1536–1559, 2023.

[Botea et al., 2013] Adi Botea, Evdokia Nikolova, and
Michele Berlingerio. Multi-modal journey planning in the
presence of uncertainty. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 23, pages 20–28, 2013.

[Cionini et al., 2017] Alessio Cionini, Gianlorenzo
D’Angelo, Mattia D’Emidio, Daniele Frigioni, Kalliopi
Giannakopoulou, Andreas Paraskevopoulos, and Christos
Zaroliagis. Engineering graph-based models for dynamic
timetable information systems. Journal of Discrete
Algorithms, 46:40–58, 2017.

[Delling et al., 2015a] Daniel Delling, Julian Dibbelt,
Thomas Pajor, and Renato F Werneck. Public transit
labeling. In Experimental Algorithms: 14th International
Symposium, SEA 2015, Paris, France, June 29–July 1,
2015, Proceedings 14, pages 273–285. Springer, 2015.

[Delling et al., 2015b] Daniel Delling, Thomas Pajor, and
Renato F Werneck. Round-based public transit routing.
Transportation Science, 49(3):591–604, 2015.

[Dibbelt et al., 2014] Julian Dibbelt, Ben Strasser, and
Dorothea Wagner. Delay-robust journeys in timetable
networks with minimum expected arrival time. In 14th
Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (2014). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2014.

[Dibbelt et al., 2018] Julian Dibbelt, Thomas Pajor, Ben
Strasser, and Dorothea Wagner. Connection scan algo-
rithm. Journal of Experimental Algorithmics (JEA), 23:1–
56, 2018.

[Dijkstra, 1959] Edsger W. Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[D’Emidio and Khan, 2019] Mattia D’Emidio and Imran
Khan. Dynamic public transit labeling. In International
Conference on Computational Science and Its Applica-
tions, pages 103–117. Springer, 2019.

[Hansen, 2001] Ingo A Hansen. Improving railway punc-
tuality by automatic piloting. In ITSC 2001. 2001 IEEE
Intelligent Transportation Systems. Proceedings (Cat. No.
01TH8585), pages 792–797. IEEE, 2001.

[Marković et al., 2015] Nikola Marković, Sanjin
Milinković, Konstantin S Tikhonov, and Paul Schon-
feld. Analyzing passenger train arrival delays with
support vector regression. Transportation Research Part
C: Emerging Technologies, 56:251–262, 2015.

[Phan and Viennot, 2019] Duc-Minh Phan and Laurent Vi-
ennot. Fast public transit routing with unrestricted walking
through hub labeling. In International Symposium on Ex-
perimental Algorithms, pages 237–247. Springer, 2019.

[Redmond et al., 2022] Michael Redmond, Ann Melissa
Campbell, and Jan Fabian Ehmke. Reliability in public
transit networks considering backup itineraries. European
Journal of Operational Research, 300(3):852–864, 2022.

[Simmons, 1992] Reid G Simmons. Concurrent planning
and execution for autonomous robots. IEEE Control Sys-
tems Magazine, 12(1):46–50, 1992.

[Zhang et al., 2024] Yue Zhang, Zhe Chen, Daniel Harabor,
Pierre Le Bodic, and Peter J. Stuckey. Planning and execu-
tion in multi-agent path finding: Models and algorithms.
In Proceedings of the Thirty-Fourth International Con-
ference on Automated Planning and Scheduling, ICAPS
2024, Banff, Alberta, Canada, June 1-6, 2024, pages 707–
715. AAAI Press, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


