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Abstract

Ensuring fairness is essential for ethical decision-
making in various domains. Informally, a neu-
ral network is considered fair if it treats similar
individuals similarly in a given task. We intro-
duce FaVeR (Fairness Verification and Repair), a
framework for efficiently verifying and repairing
pre-trained neural networks with respect to indi-
vidual fairness properties. FaVeR ensures fairness
via iterative search of high-sensitivity neurons and
backward adjustment of their weights, guided by
counterexamples generated from fairness verifica-
tion using satisfiability modulo convex program-
ming. By addressing fairness at the neuronal level,
FaVeR aims to minimize the impact of neural net-
work repair on overall performance. Empirical
evaluations on common fairness datasets show that
FaVeR achieves a 100% fairness repair rate across
all models with an accuracy reduction of less than
2.27% and significantly lower average runtime than
alternative repair methods.

1 Introduction

Deep neural networks (DNNs) are increasingly utilized to
make critical decisions across various domains, including fi-
nance, healthcare, and law enforcement. These decisions sig-
nificantly impact individuals’ lives, making it imperative that
the outcomes be fair and unbiased. However, models trained
on historical data are often prone to biases based on protected
attributes such as race, gender, and age. These biases can lead
to unfair and discriminatory decisions, raising ethical and le-
gal concerns. Addressing these concerns is essential not only
for ensuring ethical artificial intelligence (AI) practices but
also for complying with regulatory standards and maintain-
ing public trust. Fairness properties in machine learning can
be broadly classified into two categories: group fairness and
individual fairness. Group fairness evaluates the behavior of
the model for different demographic groups to ensure that no
group is systematically disadvantaged [Albarghouthi et al.,
2017; Bastani et al., 2019]. Metrics such as demographic
parity, equal opportunity, and disparate impact fall into this
category. However, enforcing group fairness can still lead

to unfair treatment of individuals within the groups. In con-
trast, individual fairness ensures that individuals with similar
unprotected attributes, such as qualifications or experience,
receive similar outcomes, regardless of their protected at-
tributes, e.g., age, race [Zhang er al., 2020; Zheng et al., 2022;
Fayyazi et al., 2025]. This concept is closely aligned with the
principle of treating similar cases consistently and is essen-
tial for situations where decisions are made on an individual
basis. This paper aims to ensure individual fairness of DNNs
through a fairness verification and repair process.

Several methods have been proposed to verify the fair-
ness of machine learning models. Techniques based on sat-
isfiability modulo theories (SMT) [Benussi et al., 2022] and
mixed integer linear programming (MILP) [Biswas and Ra-
jan, 2023; Mohammadi er al., 2023] have been effective in
verifying individual fairness properties. SMT-based tech-
niques use logical constraints to ensure that the model be-
haves consistently across certain categories of inputs, while
MILP-based approaches formulate the fairness verification
problem as a MILP problem, where the presence of inte-
ger variables significantly increases computational complex-
ity. As a result, these techniques may not scale well to large
networks due to the combinatorial explosion of possible con-
figurations and the high computational complexity involved.

However, researchers have employed various strategies
to repair unfair models, including pre-processing, post-
processing, and in-processing methods [Barocas er al.,
2023]. Pre-processing methods involve modifying the train-
ing data to remove biases before model training, while post-
processing techniques adjust the model’s predictions to en-
sure fairness after training. However, both strategies oper-
ate externally to the model’s internal mechanics, often failing
to correct biases learned in the latent representations, par-
ticularly in DNNs that learn complex, latent features. In-
processing methods address this limitation by directly modi-
fying the model’s parameters during training or through post-
hoc adjustments to incorporate fairness constraints. While
effective, these methods must balance fairness improvements
with computational efficiency and model accuracy.

In this context, we introduce a novel framework, named
FaVeR (Fairness Verification and Repair), that efficiently ad-
dresses both the verification and repair of individual fairness
properties in DNNs, as shown in Figure 1. Our approach
is twofold. First, we encode the fairness verification prob-
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Figure 1: High-level view of the FaVeR workflow.

Counterexample

lem into a satisfiability modulo convex programming (SMC)
problem, which efficiently integrates logical reasoning with
numerical optimization in an iterative way. As a second step,
if the network is unfair, FaVeR focuses on a targeted re-
pair process guided by the counterexamples generated by the
SMC procedure. High-sensitivity neurons are identified us-
ing a sensitivity score, which is calculated from a difference
in activation values. A backward weight adaptation process
then begins from the last DNN layers, iteratively modifying
the weights of the high-sensitivity neurons until fairness is
achieved or a maximum number of iterations is reached.

The main contributions of our work are summarized as
follows: (i) We introduce FaVeR, a framework that effi-
ciently verifies and repairs DNNs for individual fairness using
an SMC-based encoding and a backward neuron adaptation
method for high-sensitivity neurons. (ii) We characterize the
fairness guarantees of our approach, iteratively incorporating
new counterexamples and adjusting high-sensitivity neurons.
(iii) We illustrate the applicability of FaVeR to a wide range
of DNN architectures and datasets, showing that it is a versa-
tile tool for fairness repair in various applications.

2 Preliminaries

We introduce the foundational concepts and formulate the
problem addressed by FaVeR.

2.1 Neural Network

We define a neural network (NN) f : X — ) as a com-
position of linear functions and activation functions, where
X C RM is a bounded input domain and Y is the output
domain.

Definition 1 (Feedforward Function of a NN). Let ¢ denote
the activation function, | € {1,...,L}, and let W= ¢
R™*"-1 gnd b)) € R™ denote the weight matrix and bias
vector for layer l. Then, the pre-activation and activation of
the i-th neuron in layer | are, respectively:

np—1
a? = ST w4 b e {1, LY,
j=1

2V = (b(agl)), le{l,...,L -1}, 2 = agL),

K2 7

where the last layer is assumed to be linear, leading to the
following expression forl € {1,...,L — 1},

xD —g(a®) = g(W-Dx(-D 4 p0),
where ¢ is applied element-wise, x(0) — X;n = X, and
x(H) = all) = f(x) denotes the logit output. In a classifica-
tion problem, the output is given by f(x) = arg max; f;(x).
In a regression problem, we have f(x) = f(x).

2.2 Individual Fairness

Intuitively, individual fairness requires that all “similar” in-
puts get “similar” outputs from the model. Formally, as-
sume X = (x1,Z2,...,73)7 is an instance from a dataset
with M attribute values, where the set of attributes is de-
noted as A = {Ay,..., Ay} and aT denotes the transpose
of a € RM. The set of protected attributes (PA), such as age
or race, is denoted by P, where P C A.

Definition 2 (Individual Fairness). The model f is individ-
ually fair if there exists no pair (x,X’') of data points in the
input domain X such that: (1) Va, A, € A\ P: o = 2;
(2) 3B, Ap € P: xp # xg; and (3) f(x) # f(X).

This definition assumes a classification setting where the
model output is discrete (e.g., a set of class labels) and
the inputs associated with protected attributes are also dis-
crete. In this context, differences are detected via value (la-
bel) mismatch. For regression or continuous outputs, con-
dition (3) can be relaxed to a thresholded difference, e.g.,
|f(x)—f(x)] > 6. Definition 2 [Dwork et al., 2012] requires
that two individuals with identical values for the unprotected
attributes, but differing in the protected attributes, produce
the same output. If this is not the case for a pair (x,x’),
then we say that individual fairness is violated and (x,x’) is
a counterexample for individual fairness. For example, sup-
pose that we use NN to predict whether an individual’s in-
come exceeds $50K, with race designated as a protected
attribute. According to individual fairness, if two individuals
with identical attributes, such as occupation and work
experience, but differing in race, are assigned different
income predictions, the model is unfair. Definition 2 is often
impractical in the real world due to its strict requirements on
unprotected attributes. It can then be relaxed to the following
notion of e-fairness.

Definition 3 (e-Fairness). The model f is individually e-fair
if there is no pair (x,x’') of data points in the input domain
X such that: (1) Vo, A, € A\ P: |xq — 2| < €0y (2)
38, Ap € P: xg # aj3; and (3) f(x) # f(x').

This relaxed definition [Biswas and Rajan, 2023] extends
standard individual fairness by allowing small deviations in
unprotected attributes, making it suitable for real-world ap-
plications where exact equality is unrealistic. For example,
if two individuals who differ only slightly in an unprotected
attribute but have different values in a protected attribute are
assigned different predicted classes, the model is still consid-
ered unfair under e-fairness.
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2.3 Satisfiability Modulo Convex Programming

The fairness verification problem can be translated into a sat-
isfiability problem for a class of first-order formulas over
Boolean variables and convex constraints, which can be
solved using the SMC approach. SMC was shown to be ef-
fective in handling combinatorial problems over discrete and
continuous variables [Shoukry ef al., 2017; Shoukry et al.,
2018] by adopting a lazy coordination of a Boolean satis-
fiability (SAT) solver and a convex solver, inspired by the
lazy SMT paradigm [Barrett and Tinelli, 2018]. In SMC, the
SAT solver efficiently reasons about combinations of Boolean
constraints to suggest possible assignments, while the convex
solver checks their consistency and returns an infeasibility
certificate when conflicts arise.

2.4 NN Fairness Verification and Repair

We formalize two core tasks: verifying whether a pre-trained
NN satisfies a fairness property, and repairing the network if
a violation is detected.

Problem 1 (NN Verification). Given a pre-trained NN model
f and a set of protected attributes P, determine whether there
exists a counterexample pair (x,x') € X? such that:

o |xq —al| <eqforall A, € A\ P,
* x5 # x for at least one Ag € P,

* fx) # FX).

Problem 2 (Verification-Guided Repair). Given a pre-
trained NN model [ and a counterexample pair (x,x’),
find [’ such that f'(x) = f'(x), where f' is a NN obtained
via fairness-oriented repair of f.

By iteratively solving Problem 1 and Problem 2, FaVeR aims
to construct a modified neural network that satisfies the e-
fairness property. We choose €, = 0 for individual fairness.

3 FaVeR: Fairness Verification and Repair

We detail our methodology, covering the SMC encoding of
the fairness property and the verification problem as well as
the repair procedure.

3.1 SMC-Based Verification

We encode the verification problem into a satisfiability prob-
lem for an SMC formula, and solve it by coordinating de-
cision procedures based on SAT solving and convex pro-
gramming. Based on Definition 1, for each neuron i in
layer I = 1,...,L — 1, we encode the ReLU activation

(b(a(-l)) = max(0, a(l)) using a Boolean variable ml(»l), which

i 7

indicates the activation region:
(m = (@ =A@ =aP)) A @

(ﬁmgﬂ = (@ <0)n @ = 0))) .

This encoding is applied to all neurons across layers. The
complete feedforward behavior is captured by:

A

L
=1

_1(X<z> — ) A (xB) = aB) A

L
/\ (a(l) = wWhi-D50-1) 4 b(l)). )
=1

To verify fairness, we encode the constraints from Defini-
tions 2 and 3 using Boolean variables. We introduce m§0> for
each protected attribute Ag and m(L) for the output layer. We
define:

0 0
Pp = /\ ((mg)%xgzx/@)/\(—'mg)—>w57éx:3))
AgeP

A ( \/ mg)))

AgeP

Do 1= /\ ((xa —zh <Y A (20 —
Aq EA\P

o= (m<L> - f(x) > f(x’)) A (ﬁm“> = f(x) < f(X’)) ;

m:)c 2 —625))) 9

where ¢,,, ¢, and ¢, enforce attribute constraints and output
difference conditions for a fairness counterexample. To detect
a fairness violation, we solve for an assignment to input pairs
(x,x’) such that at least one of the protected attributes differs,

the unprotected ones remain similar (within egl)), and the final
output f(x) differs from f(x’). For individual fairness, we

set all e&l ) to zero. We combine the constraints as

¢ = Pp N Pu N o, 3)

and check the satisfiability of ® in conjunction with the NN
constraints in (1) and (2) using an SMC solver. The solver
decomposes the problem into SAT and convex constraint fea-
sibility subproblems over Boolean and real-valued variables,
respectively. It then incrementally refines its search space by
evaluating the feasibility of each Boolean assignment using
convex programming to efficiently detect fairness counterex-
amples [Shoukry et al., 2017; Naik and Nuzzo, 2020].

3.2 Counterexample-Guided Repair

When the SMC solver discovers a counterexample, FaVeR
carries out a targeted repair process that refines the weights of
the high-sensitivity neurons —neurons exhibiting significant
difference in activation between the counterexample inputs x
and x’. Our procedure aims to iteratively adjust these weights
starting from the last layer and moving backward until the
network becomes fair.

High-Sensitivity Neuron Search

FaVeR identifies high-sensitivity neurons by comparing their
activation values under inputs x and x’. If the activation dif-
ference exceeds a threshold +, then we obtain a candidate
neuron for weight refinement.

Definition 4 (Sensitivity Score). Let N' = {n;}Y, be the
set of all neurons in the network, and let o;(x) denote the
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activation of neuron n,; given input X. For a counterexample
pair (x,x’), the sensitivity score S; of the i-th neuron is

Si = loi(x) — a:(x')]. “)
A neuron n; is considered a high-sensitivity neuron if

1
S; > v, where v = f(max S; + £n1<nNS)

2M<i<N

This threshold highlights neurons with large activation devi-
ation S; relative to the overall range of sensitivity scores.
Backward Neuron Adaptation

Let N denote the set of neurons in layer I, nl(.l) the -th

neuron within the layer, and Si(l) the corresponding sensitiv-

ity score. We apply the following post-hoc adaptation rule

to each high-sensitivity neuron nl(.l)

from L down to 1:
WY e w D Aaw ), (5)

b b Ab,
AW =
AbY =

, iterating over the layers

77)\51gn( (11— 1)) S(l ll 1)

n)\51gn( l)) S’(l

where W( =1 denotes the row of welghts associated with
all the neurons in layer l—1 connecting to the i-th neuron in
layer [, 7 is the step size, and A controls the fairness-accuracy
trade-off. These parameters are selected empirically on a
held-out validation set to balance fairness improvement and
accuracy retention, in the same spirit as cross-validation in
training. We stop repairing once the accuracy drop exceeds a
tolerance, so we usually apply the update only on a subset of
K layers.

In the following, we show that the same amount of weight
perturbation can produce a larger shift in the first-order logits
of a neural network when performed to neurons that are closer
to the output layer. Therefore, applying the adaptations in
reverse layer order m, = (L, L—1, ..., 1) tends to maximize
the impact on the norm of the first-order logit perturbation
for any prefix length K < L, thus requiring fewer weight
adjustments to achieve the desired unfairness reduction.

Theorem 1 (Logit Shift Maximization). Ler (x,x’) be a

counterexample and f : X — R" the network logit func-
tion. For each layer | € {1,...,L} and neuron i €

{1,...,n}, we define its influence matrix slice
N('l) _ a(f(x) - f(xl)) R 7L XN1-1
i ow i1 ’

capturing how perturbations to the incoming weights of neu-
ron i affect the output logits [Goodfellow et al., 2016; Mon-

tavon et al., 2018]. For a weight-slice update AWZ-(YZ:’FI) €
R™~1, the corresponding first-order logit perturbation is
AYD = ) AW,

If neuron i in layer | and neuron j in layer k < [ receive up-

dates of equal norm, i.e., i(’l:’lfl)HQ = ||AV[/j(”f’k*1)||2 =
¢, then we obtain
l) (k
mex, NavZll, = max Ay,
AW lle= Aw; 5 le=

Proof. By the gradient attenuation property of neural net-
works [Hochreiter, 1998; Bengio er al., 1994], we obtain

Nz > D2 = > 2.

By the properties of spectral norms, we also have

~ (1
max ”Ay( )H = max
(1,1=1) v 112 (z 1-1)
law;: llz= AW, 2=

WA

=[]
and similarly,

mae [JAy) ], = el

k,k—
awFF D=

Since [ > k, we also have ||;¢1 )|| > Huék) |l2- Therefore, we
conclude

max
1,0—
law =D =

max

HAY(Z
(kyk=1)y _
AW+ |y =c

I, > 4551l

O

Algorithm 1 details FaVeR. The algorithm begins with a
pre-trained network f and produces a repaired network f’.
Each iteration calls the SMC solver to find a counterexample
(x,x’) (line 8). If none exists, fairness is certified and f’
is returned (line 10). Otherwise, we compute the sensitivity
score S; for each neuron n,, and select the high-sensitivity set
of neurons S (lines 13-15). For each n, € S, from layer L to
1, we check whether it has already been adapted (line 18). If

not, its weight row W(l 1 and bias b( ) are updated using
(5) (lines 20-22). If the resulting accuracy degradation stays
within o, the update is accepted and n, is added to the adapted
set A; otherwise, the change is reverted (lines 23-26). This
process ensures fairness violations are resolved with minimal
impact on the predictive performance and avoids redundant
updates to previously repaired neurons.

3.3 Formal Guarantees of FaVeR

We discuss the formal guarantees offered by FaVeR. In each
repair iteration, FaVeR updates the neurons with a signifi-
cantly large influence on the NN output. The following theo-
rem states that, for small weight perturbations, such updates
strictly reduce model unfairness.

Theorem 2 (Local Unfairness Reduction). Let ft X =
R™ be the network’s logit function after t repair steps, and
let (x¢,X,) be a counterexample for f,. We define the current
logit difference and its unfairness as follows:

d; = ft(xt) - fAt(X:s) € R,

Let S; be the set of high-sensitivity neurons at iteration t.
Suppose we pick one neuron n; € S; in layer | and apply
the update in (5). Let ft+1 and d;41 be the logit function
and difference after the update. Then, for small perturbations
N

decreases.

Up = [|d¢]|2-

a2, we obtain Uy < Uy, i.e., unfairness strictly
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Algorithm 1: Fairness Verification and Repair

1: Definitions:

2: NO: set of neurons in layer I, [ = 1,...,L; N =
Ulel N

: C: set of counterexamples; A: set of adapted neurons

: Input: NN model f, protected attributes P, fairness
property ®, parameters 7, A, max iterations 7', accuracy
tolerance o

5: Output: Repaired classifier f’

6: fl<f,C+0, A0

7:

8

B W

fort =1to 7T do
(x,x") <~ SMC_Solver(f’", @, P)
9:  if x = None then
10: return f’
11:  C<+CU{(x,x")}
12:  for (x,x') € Cdo

13: S; < |0’1‘(X) — O'i(X/)|7 Vn; € N

14: v %(maxi S; + min; S;)

15: S« {n,eN|S; >~}

16: for | = L downto 1 do

17: forn, € SN N do

18: if n; € A then

19: continue

20: Weola < Wi(f:’l_l), bola < bgl)

21: WY e w D A Y
22: bg”’ My AONY

23: if |Lace(f") — Lace(f)] < aLace(f) then
24: A AUV}

25: else

26: Wi(’l:’lil) — Woa, bl(»l) < bola

27: return [’

Proof. Under the assumption of small weight perturbation,
by a first-order Taylor expansion of f; around the current
weights, the change in logit difference becomes

9 fi(x) _ 9 fi(x})
owlhi=t g

ni—1

dt+1 _dt ~ Z

j=1

AW B
g

3

gi; € R™"
We now evaluate the change in the norm:
Upr = Up = [[desallz — [Idel]2.

For small updates, the derivative of the unfairness norm along
the (dt+1 — dt) direction gives

4l
ldel2

By substituting the Taylor approximation above, we obtain

[detllz = lldelle = (digr —dy).

U. U, ~ - dtT ..AW(U*U
iU D g g AW
j=1

N————
vi,i,5>0

where v ; ; > 0 holds since a high-sensitivity neuron satisfies
d; g1.4,; > 0. Finally, plugging in the weight update formula

from (5) yields
np—1
Uper —Up = —nASi Y vy [WSY] < 0,
j=1

since 17, A, S;, 1155, |W; ;| are all positive, which leads to the
(local) inequality U1 < Uy. O

Theorem 3 (Progress and Termination). Let ft be the logit
network at iteration t and let N be the set of neurons. Then,
Algorithm 1 terminates after at most |N'| accepted updates.
At any iteration t, we have L. (ft) < (14 a)Lace (fo).
Moreover, if any (local) update is applied upon termination
at some iteration t*, we have Uy~ < Ul.

4 Experimental Results

We discuss the empirical effectiveness of FaVeR.

4.1 Experimental Setup

FaVeR is built using Python, with models trained via the
Keras APIs [Urban et al., 2020]. In alignment with previous
research [Biswas and Rajan, 2023], we utilized Z3 [De Moura
and Bjgrner, 2008] and Gurobi [Gurobi Optimization, LLC,
2023] to solve SAT and convex problems, respectively. All
the experiments were carried out on a 3.4-GHz AMD EPYC
7763 64-core processor with 32 GB of memory.

Benchmarks. We evaluated FaVeR on three datasets,
namely, Bank Marketing (BM), Adult Census (AC), and Ger-
man Credit (GC), which were also used to evaluate Fairify
[Biswas and Rajan, 2023], as well as on the Compas (CP)
dataset from FairQuant [Kim et al., 2024], as detailed in the
column “Datasets” of Table 1. We relaxed individual fairness
with € = 0.01. We used A = 0.01 for the regularization pa-
rameter and o = 0.02 for the accuracy tolerance to balance
fairness and accuracy. These values were selected as they
consistently achieved high repair rates while maintaining ac-
curacy across the tested models.

Fairness Metrics. We evaluated fairness using two metrics
adapted from prior work [Dwork et al., 2012; Krishna et al.,
2022; Zhou et al., 2003]:

¢ Pairwise Disagreement Fraction (PD). PD measures
the fraction of randomly sampled similar input pairs
(x4,%x;) whose predicted labels differ. A lower PD
indicates fewer disagreements among similar samples,
hence higher fairness.

* Local Consistency (LC). For each sample x;, LC mea-
sures the fraction of its k-nearest neighbors, computed
in the input space of unprotected attributes, that share
the same predicted label, and then averages this over all
samples. Higher LC indicates more consistent local pre-
dictions.

We report both metrics before and after fairness repair, show-
ing how effectively disagreements among similar inputs are
reduced (PD) and local agreement is promoted (LC).
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Datasets Verification Repair
PA [ Model [ #Layers | #Neurons || Fairify Ver. | Fairify Time (s) [ FaVeR Ver. | FaVeR Time (s) || Init. Acc. | Final Acc. | Init. PD | Final PD | Init. LC [ Final LC | Time (s)
BM4[ 5 318 SAT 49.98 SAT 2.80 89.04% | 86.88% | 15.00% | 033% | 97.46% | 99.97% | 49.58
L, [BMS| 4 49 SAT 29.61 SAT 0.25 86.88% | 86.88% | 18.33% | 033% | 96.80% | 99.97% | 18.39
2[BM6| 4 35 SAT 24.84 SAT 045 8791% | 86.88% | 7.00% | 0 [99.18% | 1 7.75
BM7| 4 145 SAT 31.64 SAT 0.38 87.93% | 87.78% | 18.67% | O [9424% | 1 30.89
BMS8| 7 141 UNK 79.08 SAT 1.66 88.72% | 86.88% | 11.67% | 0 [ 98.64% | 1 2572
Gel| 3 64 SAT 17.08 SAT 0.50 7133% | 69.33% |2833% | 0 |7907% | 1 5.70
Gc2| 3 114 SAT 4733 SAT 3.68 7133% | 69.33% |3400% | 0 [ 8347% | |1 140.36
glac3| 3 23 SAT 14.18 SAT 0.08 7137% | 69.33% |5133% | 0 | 7160% | 1 1.04
GC4| 4 24 SAT 17.64 SAT 0.11 7067% | 69.33% | 6.67% | 0 | 9840% | 1 0.23
GC5| 7 138 UNK 51.53 UNSAT 26.11 6933% | 6933% | 0 0 I I 26.11
AC-L| 4 45 SAT 32.26 SAT 0.65 8124% | 7936% | 0.03% | 0 [ 99.67% | | 8.96
AC2| 3 121 SAT 126.45 SAT 10.12 84.48% | 8221% | 133% | 531% |97.71% | 98.02% | 16.50
AC3 | 3 23 SAT 57.56 SAT 1.07 8425% | 82.00% | 7.00% | 4.67% |97.76% | 98.12% | 8.43
AC4| 4 221 UNK 12845 UNSAT 1118 76.09% | 76.09% | 1.67% | 1.67% | 99.94% | 99.94% | 11.18
ACS | 4 149 SAT 118.08 SAT 19.57 7337% | 11.92% | 377% | 3.61% | 99.27% | 99.34% | 40.58
glace| 4 45 SAT 37.89 SAT 1.45 8277% | 8149% | 037% | 0 [ 99.87% | | 9.37
“[ACT| 7 145 SAT 58.46 SAT 332 81.03% | 7874% | 600% | 0 [ 98.64% | 1 252
ACS| 4 10 SAT 34.26 SAT 0.49 82.15% | 8193% | 001% | 0 [99.93% | |1 5.98
ACY | 4 40 SAT 3536 SAT 1.72 8395% | 8395% |1333%| 0 |9633% | | 7.74
AC-10] 6 20 SAT 70.67 SAT 5.91 83.80% | 83.80% | 1.00% | 0 [9970% | 1 1119
AC-11] 6 40 UNK 55.40 SAT 351 84.04% | 8404% | 1.67% | 0.63% | 98.80% | 99.78% | 12.94
AC-12] 11 45 UNK 114.19 SAT 1161 7170% | 7555% |47.61% | 0 [ 9445% | 1 25.66
CP-1| 2 24 SAT 2711 SAT 0.37 7203% | 7133% | 7.03% | 0 [9775% | 1 0.58
glep2| s 124 SAT 6324 SAT 1.02 72.68% | 71.65% | 133% | 0 [99.07% | 1 170
#|cp3| 3 600 UNK 1000+ UNSAT 142 72.14% | 72.14% | 0 0 1 1 1.88
CP4| 4 900 UNK 1000+ SAT 123 73.65% | 7225% | 331% | 0 [9949% | 1 1.94

Table 1: Benchmarks and experimental results for fairness verification and repair of NNs.

4.2 Individual Fairness Verification

Comparison with Fairify. The “Verification” columns in
Table 1 present a comparison between our SMC-based verifi-
cation method and Fairify [Biswas and Rajan, 2023] in terms
of the verification results and runtime, showing the efficiency
of SMC-based verification. Our method required, on average,
approximately 20x less runtime than Fairify, while also de-
livering accurate verification results. In this context, SAT in-
dicates that a counterexample exists, meaning that the model
is unfair, and UNSAT denotes that the model is fair. UNK
indicates cases where the solver could not conclusively deter-
mine fairness violations.

Scalability. For the CP dataset, the model sizes scale from
24 to 900. While Fairify fails to provide results for CP-3
and CP-4, FaVeR successfully solves these problems within a
reasonable time frame, demonstrating its capability to handle
more complex models.

4.3 Repair for Individual Fairness

The “Repair” column in Table 1 presents the fairness metrics
before (“Init.”) and after (“Final”) repair, along with the total
runtime of FaVeR applied to various models. FaVeR success-
fully repaired all models (the SMC solver output was UNSAT
after the repair procedure) with acceptable execution times,
while maintaining a low accuracy decrease.

Effectiveness of the Neuron Selection Method. Figure 2a
shows runtime comparisons on the Bank models, contrasting
random neuron selection (orange bars) with our sensitivity-
based neuron selection approach (blue bars) to repair. By

targeting only the neurons that are most responsible for un-
fair outputs, our method typically reduces the time needed to
reach a fair network, illustrating its practical gains.

Comparison with REGLO. Table 2 compares FaVeR with
the state-of-the-art method REGLO [Fu et al., 2024]. In
our experiments, FaVeR consistently achieves a 100% repair
rate with higher accuracy: 80.09% vs. 62.97% on AC, and
87.06% vs. 27.87% on BM. Both methods achieve 69.33% on
GC. Figure 2b tracks the changes in accuracy of the repaired
AC-2 model over repair iterations, showing that FaVeR can
achieve a significantly smaller reduction in accuracy while
attaining fairness in four repair iterations. It also achieves a
shorter run-time in most models.

Fairness—Accuracy Trade-offs. FaVeR keeps accuracy
loss low (average <2.27%, as shown in Table 1), but the exact
loss can vary with model size and data. Networks with fewer
neurons (e.g., AC-7) tend to lose more accuracy (2.29%) be-
cause small weight changes have a larger impact. Datasets
where one class appears much more than others (e.g., GC-1)
are harder to repair, since the model tends to favor the major-
ity class; bigger changes are needed to correct unfair behav-
iors, which lead to greater accuracy loss. In models where
features are highly interconnected (e.g., BM-4), even small
changes can unintentionally affect multiple outputs. Using
larger fairness parameters (), 7y) incentivizes improving fair-
ness, which can also reduce accuracy.
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... FaVeR REGLO
Model | Mean Initial Accuracy - - - -
Mean Accuracy | Repair Rate | Mean Runtime | Mean Accuracy | Repair Rate | Mean Runtime
BM 88.14% 87.06% 100% 26.47 s 27.87% 60% 35.81s
GC 71.60% 69.33% 100% 30.27 s 69.33% 100% 1.75 s
AC 82.33% 80.09 % 100% 15.09 s 62.97% 100 % 15.39 s
Table 2: Comparison of FaVeR and REGLO
Mohammadi et al., 2023] provide effective solutions but suf-
Il Sensitive [l Random —— FaVeR REGLO fer from high computational costs, making them impractical
O _
- < 84 6x 827 for large-scale NNs.
2100 | | T 82N ST 5.3 Neural Network Repair
— Q | — . . .
= = 80 Methods for NN repair can generally be categorized into pre-
é 50 § 78 - . processing, in-processing, and post-processing approaches.
2 276 1 | Our approach falls into the post-processing category, since
& ol 3 we adjust the weights of specific, high-sensitivity neurons
L to enhance fairness. Pre-processing methods [Barocas et al.,
4 5 6 7 8 0 1.2 3 45 2023] mitigate bias by altering the training data distribution,
BM models # of repair iterations for instance, through reweighting or feature transformation.
@ ®) In-processing methods [Dasu et al., 2024; Li et al., 2024;

Figure 2: (a) Runtime comparisons between random and sensitivity-
based neuron selection approaches for FaVeR; (b) Comparison be-
tween FaVeR and REGLO on the AC-2 model: Changes in accuracy
over repair iterations.

5 Related Work

This section reviews key literature on fairness verification and
repair, which is related to FaVeR.

5.1 Individual Fairness vs. Group Fairness

Fairness properties in machine learning are often categorized
as individual fairness and group fairness. Individual fairness
requires that similar individuals, i.e., individuals differing
only in protected attributes, receive similar outcomes [Dwork
et al., 2012; Bechavod and Ligett, 2017]. Group fairness, on
the other hand, ensures equitable outcomes across protected
groups using metrics like demographic parity and equalized
odds [Hardt et al., 2016; Hardt and Barocas, 2017]. While
group fairness addresses population-level bias, it does not en-
sure fair treatment for every pair of similar individuals. Our
work focuses on individual fairness verification and repair,
ensuring consistent predictions for individuals with identical
non-protected attributes.

5.2 Individual Fairness Verification

Our SMC-based method differs from existing techniques for
verifying individual fairness properties of NNs, by virtue
of its iterative approach efficiently coordinating SAT solv-
ing and convex programming to attack the complexity of
the verification problem. SMT-based methods [Benussi et
al., 2022] verify individual fairness by formulating it as a
satisfiability problem and leveraging SMT solvers. How-
ever, their scalability is limited for large networks. Sim-
ilarly, MILP-based approaches [Biswas and Rajan, 2023;

Gao et al., 2022; Fu et al., 2024] address bias by directly
modifying the model while learning. For example, the ad-
versarial training framework RUNNER [Li et al., 2024] in-
tegrates fairness constraints during training using adversar-
ial examples, although this increases computational over-
head. Other post-processing techniques [Nguyen et al., 2023;
Li ef al., 2023] adjust weights in pre-trained models to im-
prove fairness empirically, but they often rely on heuristic up-
dates and lack a principled verification mechanism. Finally,
REGLO [Fu er al., 2024] proposes a provable repair method
for ReLU networks by solving a convex program to compute
minimal weight changes to satisfy fairness constraints. While
effective, REGLO applies a global linearization of the net-
work around specific inputs, which may overlook important
nonlinearities of the model. Moreover, its objective function
does not encourage preserving accuracy, e.g., via explicit reg-
ularization terms. This may lead to degraded performance,
e.g., in our experiments, especially in deeper models where
fairness conflicts with test accuracy and generalization.

6 Conclusion

We introduced FaVeR, a framework for the verification and
repair of deep neural networks with respect to individual fair-
ness properties. FaVeR leverages satisfiability modulo con-
vex programming-based verification to guide the dynamic
weight adaptation of high-sensitivity neurons, encouraging
the satisfaction of the fairness specification with minimal im-
pact on accuracy. Our theoretical analysis shows that the pro-
posed adjustments effectively reduce the influence of high-
sensitivity neurons on the overall fairness metric. Empirical
results highlight the efficiency and effectiveness of FaVeR,
achieving a 100% repair success rate in all the datasets tested,
while maintaining high accuracy and low runtime.
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