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Abstract

The proportional veto principle, which captures the
idea that a candidate vetoed by a large group of
voters should not be chosen, has been studied for
ranked ballots in single-winner voting. We intro-
duce a version of this principle for approval ballots,
which we call flexible-voter representation (FVR).
We show that while the approval voting rule and
other natural scoring rules provide the optimal FVR
guarantee only for some flexibility threshold, there
exists a scoring rule that is FVR-optimal for all
thresholds simultaneously. We also extend our re-
sults to multi-winner voting.

1 Introduction

Voting is one of the most prominent approaches to collective
decision-making and has been studied extensively in several
disciplines, not least in social choice theory [Brams and Fish-
burn, 2002; Zwicker, 2016]. Some applications of voting re-
quire selecting a single winner, e.g., the president of a country
or the venue for an event. Other applications involve choos-
ing multiple winners, such as members of a council, places to
visit on a trip, or recipients of a research grant.

In several voting scenarios, a natural consideration is that
groups of voters should have the right to veto candidates that
they dislike, be it a politician whose views they disagree with
or a venue they find unsuitable. This intuition is formal-
ized by the concept of the proportional veto core, which was
proposed by Moulin [1981] and further studied by a num-
ber of authors [Moulin, 1982; Ianovski and Kondratev, 2021;
Kizilkaya and Kempe, 2023; Peters, 2023; Kondratev and
Tanovski, 2024]. The proportional veto core is defined for
single-winner voting when each voter expresses her prefer-
ence over candidates in the form of a strict ranking. Accord-
ing to this principle, a candidate a can be vetoed by a group of
voters T if there exists a sufficiently large set of candidates B
such that every voter in 1" prefers all candidates in B to a—
the required size of B depends on the size of T'. A significant
result by Moulin [1981] states that the proportional veto core
is always non-empty, i.e., there always exists a candidate that
is not vetoed by any group of voters.

While ranked ballots have been examined since the dawn
of social choice theory, an alternative method for eliciting

voter preferences, which has also received substantial atten-
tion in the literature, is via approval ballots [Brams and Fish-
burn, 2007; Laslier and Sanver, 2010]. In an approval bal-
lot, a voter may either approve or disapprove each candi-
date. In addition to their simplicity, approval ballots are quite
expressive, as voters are allowed to approve as many or as
few candidates as they wish. As Brandl and Peters [2022]
discussed, approval ballots arise naturally when preferences
are dichotomous—for example, when they correspond to
whether workers are available during various time slots, or
whether hiring committee members consider candidates to be
capable of performing a clearly defined task. Approval bal-
lots have been used in political contexts—including in the St.
Louis, Missouri mayoral and Fargo, North Dakota munici-
pal elections—as well as by professional groups such as the
American Mathematical Society.

A tempting approach for applying the proportional veto
principle to approval ballots is to convert the approval bal-
lots into ranked ballots by breaking ties arbitrarily, and ap-
ply the result of Moulin [1981] to obtain a candidate in the
proportional veto core of the ranked ballots. However, this
approach may lead to patently undesirable outcomes. For in-
stance, consider four candidates a, b, ¢, d and three voters who
approve {b, c}, {b,d}, {c,d}, respectively. One can convert
these approval ballots into the ranked ballots where voter 1
ranks b > ¢ > a = d, voter 2ranks b = d = a > ¢, and
voter 3 ranks ¢ > d > a > b. For these approval ballots,
voter 1 vetoes d for being last, and similarly voters 2 and 3
veto ¢ and b, respectively, leaving a as the only candidate in
the proportional veto core. However, the choice of a is clearly
suboptimal with respect to the original approval ballots, as it
is approved by none of the voters.

To formalize the proportional veto principle for approval
ballots, we introduce a concept of voter flexibility, which cor-
responds to the fraction of candidates that a voter approves.
Intuitively, in single-winner voting, if a group of voters is suf-
ficiently large and each voter in the group is sufficiently flexi-
ble, we would like to ensure that at least one voter in the group
approves the chosen candidate. Put differently, a sufficiently
large and sufficiently flexible group has the power to veto a
candidate that the entire group disapproves. While consider-
ing flexibility is natural in any setting where approval voting
is employed, it may be especially useful in applications such
as participatory budgeting, where voters sometimes partici-
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pate to support a single project that aligns with a particular
cause. Indeed, rules that reward flexibility could encourage
voters to approve more projects, lead to chosen projects with
broader consensus, and provide greater legitimacy to the pro-
cess.! As another example, consider a group of countries de-
ciding the location(s) for hosting an international event. In
this scenario, flexibility could help motivate the representa-
tives of each country to vote beyond merely their own coun-
try or close allies. We refer to our principle as flexible-voter
representation (FVR).

We highlight that FVR is more robust than proportional
veto for ranked ballots. In particular, for a candidate a to be
vetoed by a group 7', FVR does not require every voter in T’
to approve all candidates in some set B and disapprove a—
instead, it only requires all voters in 7" to approve sufficiently
many (but not necessarily the same) candidates and disap-
prove a. We discuss this distinction further in Section 1.2,
but note here that FVR is particularly suited to approval bal-
lots, where voter flexibility can be defined naturally.

1.1 Overview of Results

In Section 2, we focus on single-winner voting. For s €
(0,1), we say that a voter is s-flexible if she approves at least
an s-fraction of the candidates. For each voting rule R and
each s, we denote by FVR(R, s) the smallest value of 7 such
that whenever a group of voters constitutes more than an r-
fraction of the voters and each voter in the group is s-flexible,
at least one voter in the group approves the candidate chosen
by R. The lower FVR(R, s) is, the stronger the guarantee
that the rule R provides for the threshold s.

We first derive a general lower bound: for any rule R and
any s, it holds that FVR(R,s) > 1 — s. Moreover, this
bound is tight in the sense that for each s, the rule R thresholds
which chooses a candidate with the most approvals among s-
flexible voters, achieves FVR(Rg_ reshold; $) = 1 — s. How-
ever, as each rule R mresholq 18 tailored to a specific value of s,
a rule with strong guarantees for all values of s simultane-
ously would be more desirable. We show that the classic ap-
proval voting rule, which chooses a candidate with the most
approvals overall, yields FVR(R, s) = 1is for all s; this
essentially matches the lower bound for s close to 0, but be-
comes further away as s increases. To achieve better guaran-
tees for larger s, we consider placing more weight on voters
with higher flexibility. Specifically, we let the contribution of
a voter to the score of each of her approved candidates be the
voter’s flexibility raised to the p-th power, where p > O is a
given parameter. For each p, we determine the exact FVR of
the p-power scoring rule—we find that it matches the lower
bound at s = ﬁ, but not at other values of s.

From the aforementioned results, one may be tempted to
believe that there is an inevitable trade-off between optimiz-
ing for different thresholds s. Strikingly, we show that this
is not the case: there is in fact a rule Ropr that is FVR-
optimal, meaning that FVR(R,s) = 1 — s for all s simul-
taneously. One may interpret this result as demonstrating that

'We also remark that proportionality is a central guarantee be-
hind the method of equal shares, which has been used for participa-
tory budgeting in Poland and Switzerland [Boehmer er al., 2024].

an approval-ballot analog of the proportional veto core is al-
ways non-empty. Like p-power scoring rules, Ropr can be
described as a scoring rule, with the scores chosen carefully.
We also establish a general theorem that can be used to deter-
mine FVR guarantees of arbitrary scoring rules—this theo-
rem allows us to characterize Ropr as the unique scoring rule
(up to scaling) that satisfies FVR-optimality.

In Section 3, we turn our attention to the more general set-
ting of multi-winner voting, where the goal is to choose a
set of k£ candidates (called a committee) from the m given
candidates; single-winner voting corresponds to k = 1. For
1 <t < k, we say that a voter t-approves a committee if she
approves at least ¢ candidates in the committee. Unlike in the
single-winner setting, it will be more convenient to state our
bounds including their dependency on m (rather than in the
worst case over all m). Specifically, we let FVR(R, s,t,m)
be the smallest value of r such that whenever a group of voters
constitutes more than an r-fraction of the voters, each voter is
s-flexible, and there are m candidates, then at least one voter
in the group t-approves the committee chosen by R.

Similarly to single-winner voting, we provide a lower
bound on FVR(R, s,t,m), which can be written in terms
of a hypergeometric random variable; for any s,t, m, k, we
present a rule for which this bound is tight. Moreover, if k
and t are fixed, we show that there exists a rule that yields the
optimal guarantee for all m and s. This rule operates by itera-
tively choosing a candidate using a scoring rule; however, the
weight assigned to each voter in this procedure depends non-
trivially on the voter’s preference and the candidates added
thus far. On the other hand, we prove that if we fix s (and
k,m), it may not be possible to achieve FVR-optimality for
different values of ¢ at the same time. We also demonstrate the
incompatibility between FVR-optimality and other notions of
representation in the multi-winner literature.

1.2 Additional Discussion

As mentioned earlier, in single-winner voting, FVR can be
viewed as an approval-ballot analog of the proportional veto
core for ranked ballots [Moulin, 1981]. However, in order for
a group of voters to veto a candidate a, FVR does not require
the voters in the group to commonly approve a set of candi-
dates and disapprove a—instead, it is enough that these voters
approve sufficiently many candidates and disapprove a. To
highlight the difference that this distinction makes, note that
strengthening the proportional veto core along the lines of our
FVR definition may lead to an empty core. Indeed, if there are
two voters with rankings a > b > c and ¢ > b > a over three
candidates, then this more demanding notion would rule out
c (as the first voter ranks it last), a (as the second voter ranks
it last), and b (as both voters rank it second-last), leaving no
viable candidate.” In the approval setting, FVR takes advan-
tage of the dichotomous nature of the preferences to achieve
a stronger guarantee.

Another related concept is justified representation (JR)
[Aziz et al., 2017], which has received significant attention

2We formalize this in the full version of our paper [Halpern et al.,
2025]. Note that the proportional veto core does not rule out b, since
the two voters do not agree on a candidate that is preferred to b.
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recently in the context of multi-winner (approval) voting. JR
captures the idea that if a group of voters is sufficiently large
and all voters in the group approve a common candidate,
then at least one candidate approved by some voter in the
group should be selected. While FVR bears some similar-
ity to JR, a major difference is that FVR does not require
voters in the group to approve any candidate in common, but
only that these voters be sufficiently flexible. Note that in
single-winner voting, JR does not provide any meaningful
guarantee, and neither do its various strengthenings [Aziz et
al., 2017; Sanchez-Fernandez et al., 2017, Peters et al., 2021,
Brill and Peters, 2023].

2 Single-Winner Voting
2.1 Preliminaries

For each positive integer ¢, let [¢] := {1,2,...,t}. Thereis a
set N of n voters and a set M of m candidates. Each voter ¢
has an approval set A; C M. An instance consists of N,
M, and (A;);cn. For a candidate a € M, let N, := {i €
N | a € A;} be the set of voters who approve it. For a voter
i € N, let f; := |A;]/m be the fraction of candidates that
1 approves. In single-winner voting, a rule chooses a single
candidate from each instance.

For s € (0,1), we say that a voter i is s-flexible if f; > s.
Given a rule R, we are interested in, for each s € (0, 1), the
smallest » € [0,1] (as a function of s) such that whenever
a group of strictly more than rn voters (i.e., more than an
r-fraction of the voters) are all s-flexible, at least one voter
in the group approves the candidate chosen by the rule.> We
refer to this condition as the FVR condition, and denote this
value of r by FVR(R, s). Note that FVR(R, s) is always
well-defined. Indeed, » = 1 satisfies the FVR condition vacu-
ously; if some r satisfies the condition then every r’ > r does
as well; and if for some 7 it holds that every r’ > r satisfies
the condition, then r also satisfies the condition (because the
condition is phrased as “strictly more than rn voters”). The
smaller the value FVR(R, s), the stronger the FVR guarantee
provided by the rule R for the threshold s.

Example 2.1. Consider a rule R that always returns the first
candidate, regardless of the voters’ approvals. We claim that
FVR(R,s) = 1 for all s € (0,1), i.e., this rule offers the
worst possible FVR guarantees. Indeed, for any s € (0, 1),
consider an instance where each of the n voters approves all
m candidates except the first candidate, where m > ﬁ All
voters are s-flexible but none of them approves the candidate
chosen by R, so the FVR condition holds only for r = 1.

2.2 Lower Bound

We first derive a lower bound on the FVR guarantee achiev-
able by any rule.

Theorem 2.2. For any rule R and any s € (0,1), we have
FVR(R,s) > 1 — s. Moreover, for each s € (0,1), there
exists a rule R such that FVR(R,s) =1 — s.

3If s = 1, the answer is clearly r = 0 regardless of the rule, so
we do not consider this trivial case.

Proof. For the first statement, consider any rule R and any
s € (0,1), and take any r < 1 — s. It suffices to show
that there exists an instance where a group of at least rn vot-
ers are all s-flexible but do not approve the candidate cho-
sen by R. Consider an instance with sufficiently large n and
m (to be made more precise later). Assume that each of
the n voters approves exactly [sm] candidates (so all vot-
ers are s-flexible), and the voters distribute their approvals as
equally as possible.* Hence, each candidate receives at most

{M—‘ approvals. Observe that

{n[smr‘ <n(sm+1)+1:n.sm—|—1+1.
m m m

As m grows, 5”2:1 converges to s, son - + 1 converges

to sn + 1. Since s < 1 — 7, we have sn + 1 < (1 — 7)n for
sufficiently large n. This means that for sufficiently large n
and m, each candidate is approved by at most (1 —r)n voters.
Consequently, no matter which candidate R chooses, at least
rn voters disapprove it.

For the second statement, fix s € (0,1). Consider the rule
R mreshold that chooses a candidate a with the highest number
of approvals among s-flexible voters, breaking ties arbitrarily;
in particular, the rule ignores voters who are not s-flexible. It
suffices to show that whenever a group of more than (1 — s)n
voters are all s-flexible, at least one voter in the group ap-
proves a. Since each s-flexible voter approves at least an s-
fraction of the candidates, the candidates are approved by at
least an s-fraction of the s-flexible voters on average. By defi-
nition of the rule R reshold> the candidate a is approved by at
least an s-fraction of the s-flexible voters, which means that
at most a (1—s)-fraction of the s-flexible voters disapprove a.
Since the number of s-flexible voters is at most 7, this implies
that at most (1 — s)n voters who are s-flexible disapprove a.
It follows that in any group of more than (1 — s)n voters who
are s-flexible, at least one voter in the group approves a. [l

sm+1

While the rule R hreshold in the proof of Theorem 2.2
achieves the optimal FVR guarantee for the corresponding
flexibility threshold s, it is tailored to only one threshold s,
which leads to unwanted effects—for instance, the rule com-
pletely ignores voters who are almost s-flexible. As such, it
would be more desirable to have a rule that yields good guar-
antees for several thresholds s simultaneously.

2.3 Approval Voting Rule

We next analyze the classic approval voting rule, which se-
lects a candidate with the highest number of approvals, break-
ing ties arbitrarily. For this rule, we determine the tight FVR
guarantee for every s.

Theorem 2.3. Let Rypproval be the approval voting rule. For
each s € (0,1), we have FVR(Rapproval; $) = ﬁ
Proof. Fix s € (0,1).

FVR(Rapprovala S) < =

We first show the upper bound
< s Take an arbitrary instance, and

“For example, we can let the voters distribute their approvals one
voter after another. In each voter’s turn, the voter approves [sm/]
candidates that have received the fewest approvals so far, breaking
ties arbitrarily.
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consider a group B of more than Tlrs - n voters, all of whom

are s-flexible. The total number of approvals made by the
voters in B is greater than Tlrs -n - sm. Since there are m
candidates, there exists a candidate a approved by more than
1J1rs ‘n-s= 1frs - n voters in B. On the other hand, a can-
didate that is not approved by any voter in B has an approval
score of less than (1 — 1J1rs )n = 14 -n. In particular, such a
candidate is approved by fewer voters than a. Hence, the can-
didate chosen by the approval voting rule must be approved
by some voter in B.

Next, we show that FVR(Rypproval, 8) > Tlrs Take any

r < %ﬂ, It suffices to show that there exists an instance
where a group of at least rn voters are all s-flexible but do
not approve the candidate chosen by the approval voting rule.
Consider an instance with sufficiently large n and m (to be
made more precise later). Let C be a group of [rn] vot-
ers, and assume that all voters in N \ C' approve a com-
mon candidate a (and no other candidate). Moreover, as-
sume that each voter in C' approves exactly [sm] candidates
in M \ {a}, and these voters distribute their approvals among
these candidates as equally as possible. Note that a receives
n—[rn] = [ (1—r)n| approvals, while every other candidate
[rn]-[sm] 1

m—1 1+s?
-n when n is suf-

receives at most approvals. Since r <

have 1—7 > A=, andso [(1—7)n| > {3
ficiently large. Hence, a receives more than ﬁ -n approvals
S

for sufficiently large n. On the other hand, note that
(rn+ 1)(sm+1)

we

{ m—1 —‘< m—1 1
:(rn—|—1)~ST:lel+1.

sm+1
> m—1

sm+1 4 1

m—1

1

1 1+s
haYe rns+s+1 < 75 ‘ns = 5 -1 for sufficiently 1arge n.
This means that for sufficiently large n and m, each candidate
in M \ {a} receives at most 3 - n approvals. Consequently,
the approval voting rule chooses the candidate a, which is

approved by none of the voters in C'. O

Comparing Theorems 2.2 and 2.3, we find that the FVR
guarantee of the approval voting rule is essentially optimal
for s close to 0, but gets further from optimal as s increases.

As m grows converges to s, so (rn + 1) -

converges to (rn+1)s+1 = rns+s+1. Since r <

, We

2.4 Power Scoring Rules

To achieve better guarantees for larger s, an enticing idea is
to give more weight to voters with higher flexibility. How-
ever, unlike the rule R hreshola in the proof of Theorem 2.2
where this weight is binary (according to whether a voter is
s-flexible), we shall use a smoother weighting scheme.

To this end, for each real number p > 0, we define the p-
power approval score of candidate a as SC(a) := Yoy f7
(recall that N, denotes the set of voters who approve a). We
consider the p-power scoring rule, which chooses a candidate
that maximizes the p-power approval score, breaking ties ar-
bitrarily. Note that if p = 0, then }_, .y fF' = |N,|, so the
rule reduces to the approval voting rule which we already an-
alyzed in Theorem 2.3. As p increases, the rule places more

1w
0.8 1
0.6
=
=
= 0.4 |
—— Optimal
||— p=0
0.2 e p—1
...... p:Q
0 : : : : /
0 0.2 0.4 0.6 0.8 1

Figure 1: FVR guarantees of p-power scoring rules for flexibility
thresholds s € (0, 1), compared to the optimal guarantees indicated
by the thick line. For p = 1,2, the guarantees match the optimal
ones at s = 1/2,2/3, respectively.

importance on voters with high flexibility. For each p, we
derive tight FVR guarantees for the corresponding rule.

Theorem 2.4. For each p > 0, let Ry power be the p-
power scoring rule.  For each s € (0,1), we have
1

FVR(Ry power; 8) = T G

The proof of Theorem 2.4, along with all other missing
proofs, can be found in the full version of our paper [Halpern
et al., 2025]. Comparing Theorem 2.4 with Theorem 2.2, we
find that the FVR guarantee of the p-power scoring rule is
optimal only at s = p/(1 + p). Indeed, one can verify that

! =1 —= sP(1 = P
14 (sQ4p)tie -7 (1—s) = (14 p)tte’
pP

Within the range © € [0, 1], basic calculus shows that the
function 2” (1—x) is maximized at v = 72—, and the resulting
maximum is #. Hence, the only s for which the FVR
guarantee of the p-power scoring rule is optimal is s =

and the corresponding guarantee is ﬁ

The FVR guarantees of p-power scoring rules for p = 0
(i.e., approval voting rule), 1, and 2, as well as the optimal
guarantees, are illustrated in Figure 1.

2
1+p?

2.5 Optimal Scoring Rule

Our discussion thus far raises an obvious question: is there
an inherent trade-off between optimizing for different values
of s, or does there exist a rule that achieves the optimal FVR
guarantee for all s simultaneously (that is, a rule whose guar-
antees exactly match the thick line in Figure 1)? Perhaps sur-
prisingly, we show that such a rule in fact exists, and more-
over, comes from a simple class called scoring rules [Fish-
burn, 1979].

>In the original definition, these are called simple scoring rules,
but for conciseness, we drop the word ‘simple’.
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To define scoring rules, let a weight function be a func-
tion w : QN (0,1) — Ry( mapping each flexibility to a
weight. From this, we define the w-score of a candidate a
to be sC¥(a) = > ;cn. w(fi). We assume without loss of
generality that w(1) = 0; if a voter 4 has f; = 1, then she ap-
proves all candidates, so modifying w(1) changes the scores
of all candidates by a constant. We call a weight function w
nontrivial if w(f) > 0 for some f € (0,1).° We say that
a rule is parameterized by w if it always picks a candidate
maximizing SC*, and we call it a scoring rule if it is param-
eterized by some nontrivial w. Note that all of the rules we
have considered so far are scoring rules: R threshold 1S param-
eterized by w(f) = I[f > s], Rapproval is parameterized by
w(f) =1, and Ry.power is parameterized by w(f) = f7.

For our optimal rule, unlike the power rules we have seen,
we will choose the weight function w(f) = ﬁ Specifi-
cally, let Ropr be the rule that assigns a score of Y, 1_—1ﬁ
to each candidate a and selects a candidate with the highest
score, breaking ties arbitrarily.” We say that a rule R is FVR-
optimal if FVR(R,s) =1 — sforall s € (0,1).

Theorem 2.5. The rule Ropr is FVR-optimal.

Proof. Observe that an equlvalent formulation of Ropr is that
each voter i distributes = points to each candidate that
the voter disapproves, and ROPT chooses a candidate with
the lowest total p01nts In this formulation, each voter ¢ dis-
tributes a total of ;= fl -(1— f;)m = m points,® so at most nm
points are dlstrlbuted overall. This means that the candidate a
chosen by Ropr receives at most n points.

Next, fix any s € (0, 1), and consider a group of s-flexible
voters who all disapprove a. Since each voter in the group
gives at least i points to a, the size of the group is at most
(1 — s)n. It follows that whenever a group of more than (1 —
s)n voters are all s-flexible, at least one voter in the group
approves a. O

2.6 General Weight Function Analysis

Theorems 2.3 to 2.5 provide analyses for specific scoring
rules. What can we say about scoring rules more broadly?
In the following theorem, we analyze the FVR guarantees of
arbitrary scoring rules. Given a weight function w, let R*
denote a scoring rule parameterized by w.

Theorem 2.6. Let w be a nontrivial weight function. Then,

FVR(RY,s) = — 2
p+ ¥s

where p := sup (1 — f) - w(f) and p, = infy>, f-w(f);
if p = oo, the ratio is defined to be 1. Further, if w is nonde-
creasing, then s = s - w(s) and the bound simplifies to

) = P
p+s-w(s)
SIf w(f) = 0 for all f, then the w-scores of all candidates will
be equal.
"If a voter approves all candidates, we simply ignore that voter.

8 Again, we ignore voters who approve all candidates. Note that
voters who approve none of the candidates also distribute points.

FVR(RY, s

Proof. Fix w, R¥, and s € (0,1). We first bound
FVR(RY,s) from above. If p = oo then the bound holds
trivially, so assume that p < oco. Fix an instance and let a*
be the candidate chosen by R™. Let B be a set of s-flexible
voters who disapprove a*, and let B = N \ B be the set of re-
maining voters. Note that SC*(a*) < >,z w(f;), because
no voter in B can contribute to the score of a*. Consider now
the average score of all candidates, which is equal to

%mebizgy

a€EM aceM i€N,
— A w() = Y fiwlh),
i€EN €N

where the second equality holds because each voter ¢ con-
tributes w( f;) points to each of exactly | A;| candidates. Since
a* has the largest w-score, it must have w-score at least the
average. This implies that

S wfi) = firw(fi) = sc¥(a”) - — Z sc®
i€B iEN aeM
On the other hand,
dow(fo) = fi-w(f)
i€B iEN
=S w(fi) = | D firwlf)+ ) fi-w(f)
i€eB i€B i€B

=Y (= fi)wfi) =Y fi-w(fi)

i€B i€EB
< (n—|B)p — |Bles,

where the inequality holds by the definitions of p and ¢y, as
fi > sfori € B. Finally, observe that

(n—|B|)p—|Blps >0 <= np>|B|(p+ ¢s)
N 1Bl . _»
n p+s09

Note that since w is nontrivial, we have p > 0, and so p +
s > 0 and the last transition is valid.

The remainder of the proof, which bounds FVR(RY, s)
from below, is left to the full paper [Halpern e al., 2025]. [

Theorem 2.6 is a powerful tool that allows us to analyze
arbitrary scoring rules. Indeed, Theorems 2.3 to 2.5 could be
proven as consequences (although we keep them separate for
exposition). In addition, we can derive other nontrivial conse-
quences, including the following fact that Ropr is essentially
the unique scoring rule that ensures FVR-optimality.

Theorem 2.7. Suppose that R™ is FVR-optimal for some
nontrivial weight function w. Then there exists a positive
real number c such that w(f) = < forall f.

3 Multi-Winner Voting

3.1 Preliminaries

In this section, we turn to the more general setting of multi-
winner voting. Given an instance, our rules R now choose a
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subset of winning candidates of a given size k. We refer to
a subset of k candidates as a k-committee (or just committee
if k is clear from the context) and refer to a rule that selects
a k-committee as a k-committee rule. Assume without loss
of generality that k& < m, since if k& = m, there is a single
k-committee which also makes all voters maximally happy.

To generalize the FVR condition to the multi-winner set-
ting, we need to generalize the notion of a voter “approving
the chosen candidate” to “approving the chosen committee.”
Two natural generalizations immediately come to mind. Fix
a committee W. A quite lenient notion we could consider is
to say that a voter ¢ approves W if she approves at least one
of the committee members (i.e., W N A; # @), while a much
more stringent requirement is that ¢ approves W only if she
approves all of the committee members (i.e., W C A;). We
will generalize both of these notions at once by introducing
an additional (positive integer) parameter ¢ < k, and saying
that a voter t-approves a committee W if she approves at least
t of the committee members (i.e., |[W N A4;| > t). If a voter
does not t-approve a committee (i.e., |W N A;| < t), we will
say that she t-disapproves it. The earlier notions correspond
to the special cases of t = 1 and ¢ = k, respectively.

With this generalization in hand, we can now extend the
notion of FVR to the multi-winner setting. Unlike in the
single-winner setting, it will be more convenient to state
our guarantees including their dependency on m (rather than
in the worst case over all m), although we will primarily
be interested in the behavior of these bounds as m grows
large. This is because in some cases, unlike in the single-
winner setting, as m grows, the worst case may occur for
a fixed finite m rather than in the limit. With this in mind,
for a k-committee rule R, we define FVR(R, s,t,m) as the
largest possible fraction of voters that are all s-flexible, yet
t-disapprove the chosen committee when choosing from m
candidates using R.

3.2 Lower Bound

We begin by deriving a lower bound analogous to Theo-
rem 2.2 from the single-winner setting. Let h(P, K, ¢;-) and
H(P,K,/;-) be the probability mass function and cumula-
tive distribution function of a hypergeometric random vari-
able with population size P, population success size K, and
draw size ¢, respectively.” In other words, this is the distri-
bution over the number of “good” elements sampled when
taking a random subset of size £ out of P elements where K
of the elements are good.

Theorem 3.1. For any k-committee rule R, any s € (0, 1),
and any t < k, we have

FVR(R,s,t,m) > H(m, [sm], k;t — 1).
Additionally, there exists a k-committee rule R (tailored to
this (s,t) combination) for which this is tight.

The proof of this theorem (along with other results about
multi-winner voting) relies on the following correspondence

9 (O[]
Recall that h(P, K, ¢;t) = t(% fort € {0,1,...,¢},
L

and H(P, K, t;t) = >5,_, h(P, K, £;t') for the same range of .

between the number of candidates approved and the number
of k-committees which are ¢-approved.

Lemma 3.2. If a voter approves exactly ¢ candidates, then
she t-approves a (1 — H(m, £, k;t — 1))-fraction of all k-
committees.

Proof. This follows from the definition of the hypergeomet-
ric distribution. Define the population to be the m candi-
dates and a “success” to be the ¢ candidates approved by
the voter. Then, if we pick a k-committee uniformly at ran-
dom, the probability that the voter approves at most ¢ — 1
candidates on the committee is H(m, ¢, k;t — 1). There-
fore, the voter t-approves the committee with probability
1—H(m, kit —1). O

While the bound in Theorem 3.1 may not be the most
natural-looking, note that as m grows large, the hypergeo-
metric distribution with parameters m, [sm], k approaches a
binomial Bin(k, s) distribution. Hence, the FVR bound ap-
proaches

AN ,
Z <t’> st (1 —s)kt.

t’'=0

Although still unwieldy, the binomial limit gives us a pathway
to gain more intuition on this bound. By standard concentra-
tion inequalities, if s < t/k, then this bound is exponentially
close to 1, whereas if s > t/k, then it is exponentially close
to 0. Further, we can see that it simplifies in some special

cases. Indeed, when £k = 1 (so ¢t = 1), the hypergeometric

bound simplifies to 1 — % This is always at most 1 — s

and approaches 1 — s as m grows; hence, it coincides with
the single-winner bound (Theorem 2.2). When we fix ¢t = 1
but let £ be arbitrary, the limiting binomial bound simplifies
to (1 — s)k. If we fix t = k, it simplifies to 1 — s*. For finite
m, the hypergeometric distribution is slightly more concen-
trated than the binomial distribution—for ¢ < sk, the bino-
mial bound is an overestimate, while for ¢ > sk, it is an
underestimate. Specifically, for ¢ = 1 the hypergeometric
bound is always less than the binomial limit, and for ¢ = k it
is always more. This aligns with the fact that when sampling
without replacement, getting O success is less likely than with
replacement. Similarly, getting &k (out of k) successes is less
likely without replacement than with replacement.

3.3 Simultaneously-Optimal Rules

We will say that a k-committee rule R is FVR-optimal for
(s,t) if for all m, FVR(R, s,t,m) = H(m, [sm], k;t — 1).
As with the single-winner setting, Theorem 3.1 implies that
for any fixed (s, t), we can find an FVR-optimal rule for this
combination. However, what if we wish to attain optimality
for multiple choices of (s,t) simultaneously? We first show
that for a fixed ¢, we can achieve optimality over all s via
a simple algorithm. Given k and ¢, we construct what we
call a (k,t)-expanded instance as follows. The candidates
in this expanded instance are all (’}') possible committees of
size k. Each voter approves a committee W exactly when she
t-approves W in the original instance. We have the following.
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Theorem 3.3. Fix k and t. Let Rf;;anded be the rule that runs

Ropr on the (k,t)-expanded instance and selects the winning
committee. Then, for all s € (0,1), fo";anded is FVR-optimal
Sor (s,t).

This theorem shows that we can directly generalize our
single-winner rule to be optimal (in a certain sense) in the

multi-winner setting. However, a downside of R/, .4 18

that, in its current implementation, it runs in time exponen-
tial in k, as we must construct an instance with (']?) candi-
dates. Hence, a natural question is whether we can obtain
the same guarantees with a polynomial-time algorithm. We
show next that this is indeed possible using a greedy algo-
rithm, which effectively applies the method of conditional

expectations, presented as Algorithm 1.

Algorithm 1 (k, t) Sequential Algorithm

C+«+10
forj=1,....,kdo

fori=1,...,nsuchthat 4; \ C # 0 do

w; — h(m—j 1,|£Z>RC7'|‘A3‘7,12;5,_151)1 |[A;NC)

Leta; € M\ C be a candidate maximizing D ;. n w;,
breaking ties arbitrarily.

C+Cu {aj}
return C

At each step, the algorithm chooses a candidate that max-
imizes a certain score among the remaining candidates, and
adds it to the committee. However, unlike in our previous
scoring rules, the weight given to each voter ¢ now depends
not only on #’s flexibility, but also on the size of the current
committee and the number of candidates in that committee
approved by ¢. The algorithm yields the following guarantee.
Theorem 3.4. Fix k and t. Let Rflg be the rule induced by
Algorithm 1. Then, forall s € (0,1), R:i’gt is FVR-optimal for
(s,t).

To gain some intuition about the algorithm, note that for the
(k, t)-expanded instance in Theorem 3.3 (and in the proof of
Theorem 2.5), we need not choose a committee maximizing
the w-score (for the optimal w( f) = ﬁ); instead, it is suffi-
cient to choose one with above-average score. In other words,
if we pick a committee ¥ uniformly at random, E[sc™ (W)]
would be sufficient for optimal guarantees. However, a priori,
it is possible that only a single committee W* has sc(W*) >
E[sc(W)] while all others are strictly below, where we drop
the superscript w for convenience. To get around this and
“round” the random committee into a deterministic one, we
greedily construct C' = {aq,...,ax} such that at each step,
Elsc(W) | {a1,...,a;} € W] > E[sc(W)]. The weighting
rule we use essentially tells us the marginal gain to the score
of permanently adding each possible candidate a. On aver-
age, adding each does not change the expectation, so adding
one with the largest marginal gain can only improve the con-
ditional expectation, thereby giving the desired bound.

Next, we show that unlike the positive results we found for
simultaneous optimality over s in Theorems 3.3 and 3.4, the

same does not hold for ¢.

Theorem 3.5. For any k > 2 and t < |k/2|, no rule is
simultaneously FVR-optimal for (1/2,t) and (1/2, k).

3.4 Compatibility with Other Notions of
Representation

Finally, we address the compatibility between FVR and other
notions of representation. While several such notions have
been proposed in the literature [Aziz et al., 2017; Sénchez-
Fernandez et al., 2017; Peters et al., 2021; Brill and Peters,
2023], one of the weakest is justified representation (JR). We
show that FVR-optimality is incompatible even with JR; this
implies a similar incompatibility with stronger representation
notions (see the discussion in Section 1.2).

Recall that a committee W of size k is said to satisfy JR
if there is no blocking coalition T of voters which fulfills the
following properties:

1. Large: |T| > n/k;

2. Cohesive: (\;cr Ai # 05

3. Unrepresented: W N A; = () foralli € T.
We establish the following incompatibility.

Theorem 3.6. For each k > 1, there exists s such that no
k-committee rule is FVR-optimal for (s, 1) and satisfies JR at
the same time.

4 Discussion

In this paper, we have introduced the notion of voter flexi-
bility and a corresponding objective, flexible-voter represen-
tation (FVR), under approval voting. In the single-winner
setting, we present a simple rule that is simultaneously opti-
mal for all flexibility thresholds. In the multi-winner setting,
while some impossibilities exist, we still find a polynomial-
time rule which makes similar guarantees, once the definition
of “approving a committee” (i.e., the parameter ¢) is fixed.

One may wonder what the practical implications of these
objectives are. That is, should we care more about voters
who are flexible? The answer certainly depends on the con-
text. For example, consider an election in which Party A
runs 20 candidates whereas Party B runs only 2. In this set-
ting, Party A voters are not necessarily “more flexible” than
Party B voters, and it may be preferable to simply take the
approval winner. On the other hand, consider a setting where
a community is deciding on one of several projects to fund.
In this case, we may wish to reward voters who are more
flexible. Indeed, the flexibility of such voters may indicate
that they find their disapproved projects strongly unaccept-
able. Furthermore, encouraging flexibility can help achieve
consensus, an inherently difficult task if few voters are flexi-
ble and no candidate has a reasonably-sized base.

More broadly, we believe that flexibility is an interesting
foundational metric in its own right. Even when the chosen
rules are not FVR-optimal, flexible-voter representation can
be used to compare various candidates and weigh them ac-
cording to their total support. Applied in a way suitable to
the context, flexibility measures can help ensure a more de-
sirable outcome in approval-based voting scenarios.
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