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Abstract

Inconsistency measures quantify the degree of con-
flict within a set of propositions. They can be
broadly categorized into global measures, which
assess the overall inconsistency of a set, and local
measures, which evaluate the contribution of sin-
gle formulas to the overall inconsistency. This pa-
per investigates the relationship between these two
classes of measures through the lens of marginal
contributions and pooling mechanisms. We pro-
pose a systematic framework for deriving local in-
consistency measures from global ones by employ-
ing notions of marginal contributions inspired by
cooperative game theory, including Shapley and
Banzhaf values. Conversely, we explore methods
for constructing global inconsistency measures by
aggregating local contributions using various pool-
ing techniques. A key research question arises:
which combinations of marginal contribution no-
tions (maC) and pooling mechanisms (P) are com-
patible? Compatibility is defined such that, given
a global measure I, applying (P) to the marginal
contributions derived from I yields the same result
as directly applying I, and vice versa. We ana-
lyze this compatibility condition and identify spe-
cific pairs of methods, (maC) and (P), that satisfy it
across various inconsistency frameworks. Our find-
ings provide a deeper understanding of the inter-
play between global and local inconsistency mea-
sures, providing a foundation for designing prin-
cipled and interpretable inconsistency evaluation
methods in logic-based systems.

1 Introduction
Both human and artificial agents have to deal with inconsis-
tent information. Reasoning with inconsistency is therefore a
central topic both in philosophical logic as well as in Artificial
Intelligence (AI). One particular question of interest is to both
understand and determine how inconsistent a set of formulas
(or knowledge base) is. It is sensible to consider some knowl-
edge bases more inconsistent than others. This is clearly so
when comparing a consistent with an inconsistent knowledge

base. But, even among inconsistent knowledge bases differ-
ences can be made. Suppose that we are given two bases
K1 = {p, q,¬(p ∧ q)} and K2 = K1 ∪ {¬p}. When compar-
ing K1 with K2, many would consider K2 more inconsistent
than K1. In recent years, the underlying intuitions have been
made precise in terms of a variety of inconsistency measures
that allow for determining how inconsistent a knowledge base
is (see [Thimm and Wallner, 2019] for an overview).1

Similarly, one may ask how much a given formula con-
tributes to the inconsistency of a knowledge base. E.g., it
would seem intuitive to take the formula p to contribute more
to the inconsistency of the knowledge base K2 than q. Less
research effort has been devoted to this question, i.e., to mea-
sures that quantify the responsability of a formula to the over-
all inconsistency ([Hunter and Konieczny, 2010; Mu, 2015;
Ribeiro and Thimm, 2021; Raddaoui et al., 2024]). Let us
call such measures local inconsistency measures and distin-
guish them from global inconsistency measures that assess
the inconsistency of knowledge bases as a whole. In what fol-
lows, when the context is clear we will refer to global (resp.
local) inconsistency measures simply as global (resp. local)
measures.

As far as we know and apart of the work by [Hunter and
Konieczny, 2010] (discussed in Section 4), these two classes
of measures have been studied independently, leaving the
relationship between them unexplored. However, local and
global measures can be related by two intuitive methods:

Method g2l via Marginal Contributions. A simple and
natural method to obtain a local measure based on
a global measure Ig is to determine the marginal
contribution a formula has to a given knowledge base
relative to Ig . For this, game-theoretic concepts can and
have been employed, such as Shapley value or Banzhaf
value (more on that below).

1Applications of such measures are diverse, including network
intrusion detection [McAreavey et al., 2011], conflicts management
in ontologies [Ma et al., 2007] and rule-based expert systems in in-
ternal medicine [Picado-Muiño, 2011], reasoning with temporal and
spatial information [Condotta et al., 2016; Kuhlmann and Corea,
2024], software requirements engineering and business processes
[Mu et al., 2012; Corea et al., 2022], answer set programming [Ul-
bricht et al., 2020], nonmonotonic reasoning [Arieli et al., 2024],
belief revision [Ribeiro and Thimm, 2021], and databases [Livshits
et al., 2021; Grant et al., 2021; Parisi and Grant, 2023].
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≡

local measure Il

local measure g2l(Ig)
by marg. contributions
• Shapley value
• Banzhaf value
• simple marg. contr.

global measure l2g(Il)
by pooling marg. contributions
• incremental sum
• simple sum
• Bsum

global measure Ig

α ∈ K

K

Figure 1: A schematic description of our framework: transforming
local measures to global ones by pooling and transforming global
measures to local ones by marginal contributions.

Method l2g via Pooling. Similarly, given a local measure, a
simple and natural method to obtain a global measure is
to pool the individual contributions of the formulas in
the knowledge base (for instance by summing up).

We now state a basic desideratum for these methods:

Good fit. Suppose a local measure Il = g2l(Ig) that is ob-
tained by determining marginal contributions relative
to a global measure Ig . When applying the pooling
method to Il, resulting in l2g(Il), we expect Ig(K) =
l2g(Il)(K) for any knowledge base K, since pooling the
marginal contributions of the formulas in K should make
up the inconsistency of K, in toto (see Fig. 1). Similarly,
where Ig is obtained by a pooling method on the basis
of a local measure Il (so, Ig = l2g(Il)), we expect that
Il = g2l(Ig) for an adequate way of obtaining marginal
contributions of formulas in K.

This motivates the central research question in this paper,
namely to identify retracting pairs2 of methods g2l and l2g,
i.e., Il = g2l(l2g(Il)) and Ig = l2g(g2l(Ig)), that provide a
good fit by satisfying the two desiderata:

1. Given a global measure Ig , Ig = l2g(g2l(Ig)). In this
case, we say that Ig retracts under ⟨g2l, l2g⟩.

2. Given a local measure Il, Il = g2l(l2g(Il)). In this
case, we say that Il retracts under ⟨l2g, g2l⟩.

Another way of looking at this research question underly-
ing item 1 is to ask (similarly for item 2): for a given method
of generating a local measure from global one by means of
marginal contribution (such as using Shapley or Banzhaf val-
ues), what is the adequate pooling method that gives rise to
the same global measure when applied to the induced local
measure?

Let us describe the two methods g2l and l2g in more detail.
From global to local measures (g2l). Local measures are
inspired by the game-theoretic notion of marginal contribu-
tion which is a measure of how much a player contributes to
the utility generated by a collaborative group of agents.

For our setting, we are interested in the marginal contribu-
tion of a formula α to the inconsistency of a knowledge base

2In category theory, a morphism f : X → X ′ is a retraction of
a morphism g : X ′ → X in category theory, in case f ◦ g = 1X .

K as measured by a global measure Ig . Let K⊖α = K\{α}
and K ⊕ α = K ∪ {α}. A straightforward way would be to
define the local measure as follows:

(simple marginal contribution)

maC(I)(α,K) = Ig(K)− Ig(K ⊖ α)

Other approaches take inspiration from cooperative game
theory3 (for an introduction to this theory, see [Chalkiadakis
et al., 2011]). Two well-known solution concepts that make
use of the notion of marginal contribution are the Shapley
value, and the Banzhaf value. The local measures derived
from these indices can be defined as follows:

(Shapley value, [Shapley, 1953]) Shapley(I)(α,K) =∑
S⊆K⊖α

η(|S|, |K|) ·maC(I)(α,S ⊕ α),

where η(k, n) = k!·(n−k−1)!
n! = 1

n

(
n−1
k

)−1
.

(Banzhaf value, [Banzhaf, 1965])

Bzf(I)(α,K) =
∑

S⊆K⊖α

maC(I)(α,S ⊕ α)

2|K|−1

Actually, the marginal contribution of a player in a coopera-
tive game measures the difference a player makes to the pay-
off of a given coalition by joining it. In our context, players
are the formulas that constitute the knowledge base K, sub-
sets of K take the role of coalitions, and the notion of payoff
generated by a coalition is replaced by the inconsistency de-
gree of a given subset S of K.
From local to global measures by pooling (l2g). Given a
local measure Il, we may obtain a global measure by aggre-
gating the inconsistency contributions of each formula in a
given knowledge base. For instance, we can sum up the in-
dividual contributions of the formulas in K measured by Il.
Again, there are various options how to sum up, e.g., where
K = {α1, . . . , αn}:

sum(I)(K) =

n∑
i=1

Il(αi,K) (simple sum)

incsum(I)(K) =
n∑

i=1

Il(αi,K[i]) (incremental sum)

where K[i] = {α1, . . . , αi}. Of course, this list is by
no means exhaustive. E.g., one may want to average over
sums or use entirely different approaches such as considering
max(I)(K) = maxα∈K I(α,K).

3Collaborative game theory has a wide spectrum of applica-
tion domains, including cooperative scheduling and task allocation,
queuing problems [Maniquet, 2003], handling inconsistent informa-
tion [Hunter and Konieczny, 2010; Amgoud et al., 2017], explain-
able AI [Lundberg and Lee, 2017; Sundararajan and Najmi, 2020;
Karczmarz et al., 2022], influence maximization in social networks
[Narayanam and Narahari, 2011], and machine learning literature
[Ghorbani et al., 2020; Agussurja et al., 2022; Bian et al., 2022],
among others.
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Central Result. The main result of our study is that for
each of the three g2l-approaches to obtain local measures via
marginal contributions from global measures, a l2g-pooling
method can be identified, under which we obtain retracting
pairs of measures, and vice versa. For instance, a global mea-
sure I retracts under simple marginal contributions and incre-
mental sums. Moreover, we identify properties global mea-
sures have to satisfy in order to be a good fit with their local
measures induced by Shapley values and with sums. A simi-
lar result is obtained for Banzhaf values for a specific type of
sum (which we dub Bsum, see Def. 9).

From a more general perspective, this paper shows that
game-theoretic techniques can be successfully imported to
the study of inconsistency in logic-based systems, as first in-
dicated in [Hunter and Konieczny, 2010]. In particular, they
can give rise to local measures that are a good fit with their
global counterparts. Table 1 summarizes the main results pre-
sented in the paper.

simple sum incr. sum Bsum

simple
marginal
contrib.

Il rob. under
perm. (Cor.1)
all Ig (Thm.2)

Shapley
Iλ, λ mon.

& rel. (Cor.7)
all Ig (Cor.5)

Banzhaf all Il (Thm.5)
all Ig (Cor.8)

Table 1: Overview: Results

The paper has the following structure. In Section 2, we
introduce basic terminology. Section 3 discusses simple
marginal contributions and their retraction under incremen-
tal sums, while Section 4 presents a similar retraction result
of Shapley values with sums. Section 5 shows how local and
global inconsistency measures retract under Banzhaf values
and Bsum. We summarize our findings in Section 6 and dis-
cuss some future work.

2 Formal Setup
In this paper, we assume that there is a Boolean language
L(V ) built on a finite set of propositional variables V and
the standard connectives (¬, ∨, ∧, →). Greek letters α, β,
etc. will be used to denote well-formed formulas from the
language L(V ). From now on, we shall denote by ⊢ the clas-
sical consequence relation. A knowledge base is a finite set of
propositional formulas. We write K for the class of all knowl-
edge bases defined over the language L(V ). A knowledge
base K ∈ K is said to be inconsistent if there is a formula α
such that K ⊢ α and K ⊢ ¬α. Otherwise, K is consistent.

Let us now present some key concepts that are essential
for reasoning with inconsistent information. Given K ∈ K,
a subset of formulas M ⊆ K is a minimal inconsistent set
of K iff M is inconsistent and ∀α ∈ M , M ⊖ α is consis-
tent. Similarly, M is a maximal consistent set of K iff M is
consistent and ∀α ∈ K \ M , M ⊕ α is inconsistent. More-
over, the subset M ⊆ K is a minimal correction set of K iff

K \M is consistent, and ∀α ∈ M , (K \M)⊕ α is inconsis-
tent. For convenience, we shall simply write mi(K), ms(K)
and mc(K) as an abbreviation for the set of minimal incon-
sistent sets, maximal consistent sets and minimal correction
sets of K, respectively. We also define mi(α,K) = {M ∈
mi(K) | α ∈ M}, ms(α,K) = {M ∈ ms(K) | α ∈ M}, and
mc(α,K) = {M ∈ mc(K) | α ∈ M} = {K \ M | M ∈
ms(K), α ∈ M}. The formulas in K that are individually in-
consistent are called self contradictory or simply paradoxical
formulas and denoted as ⊥(K) = {α ∈ K | α ⊢ ⊥}. Let
us also define prob(K) to be the set of problematic formu-
las, i.e., those that appear in at least one conflict. Formally,
prob(K) =

⋃
mi(K). Any self contradictory formula is, by

definition, problematic.

2.1 A Closer Look at Inconsistency Measures
We now take a closer look at global and local inconsistency
measures. In this work, we restrict our attention to Tarskian
propositional logic.

Definition 1. A global inconsistency measure is a function
Ig on K that maps each knowledge base K to a real value,
i.e., Ig : K → R+

0 ∪ {∞}.

Intuitively, the greater the inconsistency in K, the higher
the value returned by Ig . In the literature, some basic re-
quirements have been studied to characterize desirable global
measures. Below are two of these properties:

• Consistency: Ig(K) = 0 iff prob(K) = ∅.

• Monotonicity: Ig(K ∪ K′) ≥ Ig(K).

Example 1. Table 2 presents some well-studied global mea-
sures from literature. For further discussions on these mea-
sures and their properties, we refer to, e.g., [Hunter and
Konieczny, 2010; Besnard, 2014].

Id(K) =
{
0 |mi(K)| = 0

1 else
I#(K) = |mi(K)|
Imi(K) =

∑
M∈mi(K)

1

|M |
Iprob(K) = |prob(K)|
Ims(K) = (|ms(K)|+ |⊥(K)|)− 1

Table 2: Some examples of global measures

We now define local measures in knowledge bases. Let for
this K = {(α,K) | K ∈ K, α ∈ K}.

Definition 2. A local inconsistency measure is a function
Il on K that associates a real value to each formula α in a
knowledge base K, i.e., Il : K → R+

0 ∪ {∞}.

Similar to global measures, the two following basic prop-
erties are required to characterize reasonable local measures
[Ribeiro and Thimm, 2021; Raddaoui et al., 2024]:

• Consistency: Il(α,K) = 0, if prob(K) = ∅.

• Blame: Il(α,K) > 0, iff α ∈ prob(K).
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Example 2. In Table 3, we list some examples of local mea-
sures that have been investigated in several proposals. We re-
fer to, e.g., [Raddaoui et al., 2024] and the references therein
for further discussions on these measures.

Id(α,K) =
{
0 |mi(α,K)| = 0

1 else
I#(α,K) = |mi(α,K)|
Imi(α,K) =

∑
M∈mi(α,K)

1

|M |

Iprob(α,K) =
{
|prob(K)| − |prob(K ⊖ α)| α /∈ ⊥(K)

∞ else

Table 3: Some examples of local measures

Numerous global and local inconsistency measures have
been proposed; yet the relationships between them remain un-
explored, apart of the work by [Hunter and Konieczny, 2010]
(see Section 4). In what follows, we will provide links in
terms of identifying retracting pairs of measures.

3 Simple Marginal Contributions and
Incremental Sums

Global measures may give rise to local measures by assess-
ing the so-called marginal contribution of a formula to the
overall inconsistency, that is, the difference between the in-
consistency value when the formula is in the knowledge base
and what can be the degree of inconsistency without its con-
tribution to the conflict. In the same way, local measures
can be utilized to evaluate the overall inconsistency of the
knowledge base. Let us first formally introduce the notion of
marginal contribution measure.

Definition 3. Let Il be a local measure. Then, Il is called a
marginal contribution measure if there exists a global mea-
sure Ig such that Il(α,K) = Ig(K) − Ig(K ⊖ α), for all
knowledge bases K ∈ K and all α ∈ K.

Obviously, given a global measure Ig , we can induce
the marginal contribution measure maC(Ig) defined as
maC(Ig)(α,K) = Ig(K)− Ig(K⊖ α). That is, global mea-
sures can seamlessly be applied to determine the contribution
of single formulas to the inconsistency of the knowledge base.

However, one can also go the other way around. As we
will see in the rest of this section, marginal contribution mea-
sures give naturally rise to global measures, if they fulfill the
following requirement (Def. 4).

Where K = {α1, . . . , αn} is a knowledge base and π is a
permutation on the set {1, . . . , n}, we define the ordered sets
K[i] = {α1, . . . , αi} and K[π(i)] = {απ(1), . . . , απ(i)}.

Definition 4. A local measure Il is robust under permuta-
tion iff for any knowledge base K = {α1, . . . , αn} and any
permutation π over {1, . . . , n},

n∑
i=1

Il(αi,K[i]) =
n∑

i=1

Il(απ(i),K[π(i)])

Local measures that are robust under permutation induce
global measures in terms of their incremental sums.
Definition 5. Let K = {α1, . . . , αn} be a knowledge base,
and Il a local measure robust under permutation. Then, the
global measure Ig induced by Il is defined as:

Ig(K) =
n∑

i=1

Il(αi,K[i])

The requirement for robustness under permutation ensures
that the induced global measure Ig is well-defined.

Theorem 1 shows that any local measure Il that is robust
under permutation is identical to the marginal contribution
measure relative to the induced global measure obtained by
pooling Il under incremental sum.
Theorem 1. Let Il be a local measure that is robust under
permutation. For any knowledge base K ∈ K and any α ∈ K,
we have Il(α,K) = maC(incsum(Il))(α,K).

Proof. Let K = {α1, . . . , αn}. We note:

maC(incsum(Il))(αn,K) =

incsum(Il)(K)− incsum(Il)(K ⊖ αn) =

n∑
i=1

Il(αi,K[i])−
n−1∑
i=1

Il(αi,K[i]) = Il(αn,K)

Corollary 1. Every local measure that is robust under per-
mutation retracts under ⟨incsum,maC⟩.

We now present the following property for local measures,
which we show to be sufficient to ensure the robustness under
permutation:

Switching Where α, β /∈ K,

Il(α,K ⊕ α) + Il(β,K ⊕ α⊕ β) =

Il(β,K ⊕ β) + Il(α,K ⊕ α⊕ β).

Proposition 1. Every marginal contribution measure satis-
fies switching.

Proof. Let Il be a marginal contribution measure for the
global measure Ig . We have:

Il(α,K ⊕ α) + Il(β,K ⊕ α⊕ β) =

(Ig(K ⊕ α)− Ig(K)) + (Ig(K ⊕ α⊕ β)− Ig(K ⊕ α)) =

Ig(K ⊕ α⊕ β)− Ig(K) =

(Ig(K ⊕ β)− Ig(K)) + (Ig(K ⊕ α⊕ β)− Ig(K ⊕ β)) =

Il(β,K ⊕ β) + Il(α,K ⊕ α⊕ β)

Notably, with the exception of the measure Id all of the
local measures in Table 3 satisfy the property of switching.
Proposition 2. The local measures I#, Imi and Iprob satisfy
switching.

The following example shows that the local measure Id
violates the property of switching.
Example 3. Consider the knowledge base K = {¬q}, α = p
and β = ¬p∧ q. We have that Id(α,K⊕α)+Id(β,K⊕α⊕
β) = 0 + 1 ̸= 1 + 1 = Id(β,K ⊕ β) + Id(α,K ⊕ α⊕ β).
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Lemma 1. A local measure is robust under permutation iff it
satisfies switching.

From the previous results (Proposition 1 and Lemma 1), it
follows directly that:
Corollary 2. Every marginal contribution measure is robust
under permutation.

Corollary 3 is an immediate consequence of the above
claim.
Corollary 3. The local measures I#, Imi, and Iprob are ro-
bust under permutation.

The following result shows that given a global measure Ig ,
applying the incremental sum to the marginal contribution de-
rived from Ig yields the same result as directly applying Ig .
Theorem 2. Every global measure Ig retracts under
⟨maC, incsum⟩. That is, Ig(K) = incsum(maC(Ig))(K), for
any knowledge base K ∈ K.

Proof. Let K = {α1, . . . , αn}. We have,
incsum(maC(Ig))(K) =

∑n
i=1 Ig(K[i]) − Ig(K[i] ⊖ αi) =

Ig(K)− Ig(∅) = Ig(K).

4 Shapley Values and Simple Sums
Since a single formula can interact with other formulas to
produce inconsistency within a knowledge base, it may be
desirable to assess its marginal contribution to the overall in-
consistency by averaging across all possible subsets where it
plays a role in causing conflicts. This can be effectively quan-
tified using the Shapley value, a standard solution concept in
cooperative game theory.4

The Shapley value is axiomatized by (adjusted to the con-
text of global inconsistency measures I and I ′) the following
properties. Let for this S be a game-theoretic power index.

Efficiency.
∑

α∈K S(I)(α,K) = I(K).

Symmetry. S(I)(α,K) = S(I)(β,K), if for all sets C ⊆
K \ {α, β} we have I(C ⊕ α) = I(C ⊕ β).

Dummy. S(I)(α,K) = 0, if ∀C ⊆ K, I(C) = I(C ⊕ α).
Additivity. S(I ⊕ I ′)(α,K) = S(I)(α,K) + S(I ′)(α,K),

with (I ⊕ I ′) denoting K 7→ I(K) + I ′(K).

Theorem 3 ([Shapley, 1953]). The Shapley value is the
unique function that satisfies efficiency, symmetry, dummy
and additivity.

We now examine the retracting pairs of inconsistency mea-
sures using the Shapley value. One direction follows imme-
diately with the Efficiency property and Theorem 3.
Corollary 4. Let Ig be a global measure. Then, for all knowl-
edge bases K, Ig(K) = sum(Shapley(Ig))(K).

4Let us briefly recall the notion of Shapley values from co-
operative game theory. Let N = {1, . . . , n} be a set of play-
ers and v : ℘(N) → R be a function that assigns a numerical
value to every coalition S ⊆ N (with v(∅) = 0), representing
its performance. The Shapley value is defined by Shapley(i, v) =∑

S⊆N\{i} η(|S|, |N |) · (v(S ∪ {i}) − v(S)) where η(k, n) =
k!·(n−k−1)!

n!
. It represents a fair way of distributing the total pay-

off to the collaborating players.

Corollary 5. Every global measure Ig retracts under
⟨Shapley, sum⟩.

The following discrete global measure will help us
compartmentalize inconsistency measures (see Cor. 6 and
Lemma 8). Where M is a set of formulas, let

I⊆
M : K 7→

{
1 M ⊆ K
0 else

We note that, in general, the I⊆
M measure does not satisfy

the Consistency property.

Lemma 2. Given K ∈ K, we have the following properties
for the global measure I⊆

M :

M -monotonicity I⊆
M (K) = I⊆

M (K ⊕ α) for all α /∈ M

1-monotonicity I⊆
M (K) = 1 implies I⊆

M (K ⊕ α) = 1

Lemma 3. Let S be a game-theoretic power index satisfying
efficiency, dummy and symmetry. Let K ∈ K and α ∈ K.
Where M is a set of formulas,5

S(I⊆
M )(α,K) =

{
0 α /∈ M
1

|M | else.

Proof. Let C ⊆ K. Suppose α /∈ M . If I⊆
M (C) = 0, then

I⊆
M (C ⊕ α) = 0 by M -monotonicity. If I⊆

M (C) = 1, then
I⊆
M (C ⊕ α) = 1 by 1-monotonicity. By Dummy, we have,

(1), S(I⊆
M ,K)(α) = 0.

By Efficiency,
∑

β∈K S(I⊆
M )(β,K) = I⊆

M (K). By (1), we
have, (2), I⊆

M (K) =
∑

β∈K∩M S(I⊆
M )(β,K).

Let now α, β ∈ K ∩ M be such that α ̸= β, and C ⊆
K\{α, β}. Then, I⊆

M (C) = 0 = I⊆
M (C⊕α) = I⊆

M (C⊕β).
So, by Symmetry we have, (3), S(I⊆

M ,K)(α) =

S(I⊆
M ,K)(β). By (2) and (3), S(I⊆

M )(α,K) = 1
|M | .

Building on Lemma 3, the following corollary provides an
expression for the Shapley value of the global measure I⊆

M .

Corollary 6. Let K be a knowledge base and α ∈ K. Then,

Shapley(I⊆
M )(α,K) =

{
0 α /∈ M
1

|M | else.

In the following, we work with functions that assign to
each knowledge base a set of its subsets, for instance, its min-
imal inconsistent sets (i.e., λ : K 7→ mi(K)).

Definition 6. Let λ : K → ℘℘(L(V )) be a function that
maps sets of formulas to sets of sets of formulas in such a
way that λ(K) ∈ ℘℘(K). Then,

• λ is monotonic if λ(K) ⊆ λ(K ⊕ α),

• λ is relevant if for all M ∈ λ(K ⊕ α) \ λ(K), α ∈ M .

5This lemma can also be found in [Hunter and Konieczny,
2010, Lemma 1]. There the authors observe that the local measure
Il(α,K) =

∑
M∈mi(K),α∈M

1
|M| retracts for ⟨sum, Shapley⟩. We

here generalize this result.
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We let λα(K) = {M ∈ λ(K) | α ∈ M}.

Lemma 4. If λ : K → ℘℘(L(V )) is monotonic and relevant,
so is λα.

Example 4. The functions λmi : K 7→ mi(K) and λprob :
K 7→ {{α} | α ∈ prob(K)} are monotonic and relevant,
unlike λ : K 7→ ms(K) which is not monotonic.

Lemma 5. Let λ : K → ℘℘(L(V )) be monotonic and rele-
vant. Where C ⊆ K ∈ K and α /∈ C, we have:∑

M∈λ(C⊕α)

I⊆
M (C ⊕ α)−

∑
M∈λ(C)

I⊆
M (C) =

∑
M∈λα(K)

maC(I⊆
M )(α,M).

Definition 7. Let λ : K → ℘℘(L(V )) be as in Def. 6. We
call a global measure Ig λ-additive iff Ig(K) = |λ(K)|.
Example 5. Examples of λ-additive global measures are
I#(K) = |mi(K)| and Iprob(K) = |prob(K)|.
Definition 8. Where λ : K → ℘℘(L(V ) as in Def. 6,
let Iλ be the local measure that maps (α,K) ∈ K to∑

M∈λα(K)
1

|M | .

Lemma 6. Where λ : K → ℘℘(L(V ) as in Def. 6, sum(Iλ)
is λ-additive.

Proof. We have, sum(Iλ)(K) =
∑

α∈K
∑

M∈λα(K)
1

|M | =∑
M∈λ(K)

|M |
|M | = |λ(K)|.

Example 6. We have sum(Iλmi)(K) = |λmi(K)| = |mi(K)|
and sum(Iλprob

)(K) = |λprob(K)| = |prob(K)|.
The next result presents the formulation of λ-additive

global measures as follows.

Lemma 7. Let K be a knowledge base. If a global measure
Ig is λ-additive, then Ig(K) = sum(Iλ)(K).

Based on Lemma 7, we can characterize the λ-additive
global measures as follows.

Lemma 8. Let K be a knowledge base and Ig be a λ-additive
global measure. Then, Ig(K) =

∑
M∈λ(K) I

⊆
M (K).

We now give a characterization of the local measures in-
duced by λ-additive global measures using the Shapley value.

Theorem 4. Let K be a knowledge base, α ∈ K and let
λ : K → ℘℘(L(V )) be monotonic and relevant. Then,6

Shapley(sum(Iλ))(α,K) =

Shapley(
⊕

M∈λα(K)

I⊆
M )(α,K) = Iλ(α,K).

Proof. By the additivity of the Shapley value,∑
M∈λα(K)

Shapley(I⊆
M )(α,K) = Shapley(

⊕
M∈λα(K)

I⊆
M )(α,K).

6We let
⊕

{I1, . . . , In} = I1 ⊕ . . .⊕ In.

By Corollary 6, Shapley(
⊕

M∈λα(K) I
⊆
M )(α,K) =∑

M∈λα(K)
1

|M | . So, we need to show that

Shapley(sum(Iλ))(α,K) =
∑

M∈λα(K)

Shapley(I⊆
M )(α,K).

We have, where (†) by Lemma 5 and (⋆) by Lemmas 6 and 8
and ηKC = η(|C|, |K|),

Shapley(sum(Iλ))(α,K) =∑
C⊆K⊖α

ηKC (sum(Iλ)(C ⊕ α)− sum(Iλ)(C)) =⋆

∑
C⊆K⊖α

ηKC

 ∑
M∈λ(C⊕α)

I⊆
M (C ⊕ α)−

∑
M∈λ(C)

I⊆
M (C)

 =†

∑
C⊆K⊖α

ηKC
∑

M∈λα(K)

maC(I⊆
M )(α,C) =

∑
M∈λα(K)

∑
C⊆K⊖α

ηKCmaC(I⊆
M )(α,C) =

∑
M∈λα(K)

Shapley(I⊆
M )(α,K).

The next result shows, under certain conditions, the retrac-
tion of local measures for the pair ⟨sum, Shapley⟩.
Corollary 7. Every local measure Iλ for which λ is mono-
tonic and relevant, retracts under ⟨sum, Shapley⟩. That is,
Iλ(α,K) = Shapley(sum(Iλ))(α,K), for any knowledge
base K ∈ K and α ∈ K.
Example 7. For instance, Iλmi = Shapley(sum(Iλmi)) =
Shapley(Imi) and Iλprob

= Id = Shapley(sum(Iλprob
)) =

Shapley(Iprob).

5 Banzhaf Values and Bsums
Another approach of assessing the marginal contribution of
single formulas to the inconsistency of the knowledge base
is by using the Banzhaf value. This index, introduced by
[Banzhaf, 1965], is a standard technique in game theory that
addresses the issue of double counting associated with the
Shapley value (Narukawa, Modeling Decisions, 1998, p.202).

The Banzhaf index measures the average marginal con-
tribution across all subsets of a given knowledge base. In
Corollary 8 and Theorem 5, we show that both global and lo-
cal measures retract for Banzhaf values relative to a specific
pooling method, named Bsum, which is defined below.
Definition 9 (Bsum). Let Il be a local measure, K =
{α1, . . . , αn} ∈ K and α ∈ K.7 We define inductively:

I⋆
l (α,K) =


Il(α,K) |K| = 1

Il(α,K) · 2|K|−1 −
∑
S⊊K
α∈S

I⋆
l (α, S) else

We let Bsum(Il)(K) =
∑n

i=1 I⋆
l (αi,K[i]).

The next result shows that the measure Bzf(Ig)⋆ is a
marginal contribution measure.

7For the moment, we consider this an ordered set, but as we will
see this is inconsequential (Prop. 3).
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Lemma 9. Let Ig be a global measure, K be a knowledge
base, and α ∈ K. Then, Bzf(Ig)⋆(α,K) = maC(Ig)(α,K).

Proof. We show this via induction on the size |K|.
Assume the case |K| = 1. Then, K = {α} and

Bzf(Ig)⋆(α,K) = Bzf(Ig)(α,K) = Ig({α})− Ig(∅).
For the inductive step, assume |K| = n + 1.

We have, Bzf(Ig)⋆(α,K) = Bzf(Ig)(α,K) · 2|K|−1 −∑
S⊊K
α∈S

Bzf(Ig)⋆(α, S). By the inductive hypothesis, for ev-

ery S ⊊ K for which α ∈ S, Bzf(Ig)⋆(α, S) = Ig(S) −
Ig(S ⊖ α). So, Bzf(Ig)⋆(α,K) =∑
S⊆K
α∈S

(Ig(S)− Ig(S ⊖ α))−
∑
S⊊K
α∈S

(Ig(S)− Ig(S ⊖ α)) =

Ig(K)− Ig(K ⊖ α) = maC(Ig)(α,K)

Proposition 3. Let Ig be a global measure, K =
{α1, . . . , αn} ∈ K, and π a permutation over {1, . . . , n}.
Then, we have:

Ig(K) = Bsum(Bzf(Ig))(K) =

n∑
i=1

Bzf(Ig)
⋆(απ(i),K[π(i)]).

Proof. By Cor. 2, Ig(K) = incsum(maC(Ig))(K) =

n∑
i=1

maC(Ig)(αi,K[i]) =
n∑

i=1

maC(απ(i),K[π(i)]).

By Lemma 9, Ig(K) = Bsum(Bzf(Ig))(K) =∑n
i=1 Bsum(Bzf(Ig))(απ(i),K[π(i)]).

The following result shows that global measures are a good
fit with their corresponding local measures induced by the
Banzhaf value and Bsum.

Corollary 8. Every global measure Ig retracts under
⟨Bzf,Bsum⟩. That is, Ig(K) = Bsum(Bzf(Ig))(K), for any
knowledge base K ∈ K.

The last theorem shows the retraction of local measures
for the pair ⟨Bsum,Bzf⟩: for any local measure Il, applying
the marginal contribution measure Bzf to the global measure
induced by Il yields the same result as applying Il directly.

Theorem 5. Every local measure Il retracts under
⟨Bsum,Bzf⟩. That is, Il(α,K) = Bzf(Bsum(Il))(α,K) for
all knowledge bases K ∈ K and all α ∈ K.

Proof. We have: Bzf(Bsum(Il))(α,K) =

1

2|K|−1
·

∑
S⊆K⊖α

maC(Bsum(Il))(α, S ⊕ α) =

1

2|K|−1
·

∑
S⊆K⊖α

(Bsum(Il)(S ⊕ α)− Bsum(Il)(S)).

Note that for every S = {α1, . . . , αn} ⊆ K with α ∈ S,
Bsum(Il)(S⊕α)−Bsum(Il)(S) =

∑n
i=1 I⋆

l (αi, S⊕α[i])−

∑n−1
i=1 I⋆

l (αi, S[i]) = I⋆
l (α, S ⊕ α). So,

1

2|K|−1
·

∑
S⊆K⊖α

(Bsum(Il)(S ⊕ α)− Bsum(Il)(S)) =

1

2|K|−1
·

∑
S⊆K⊖α

I⋆
l (α, S ⊕ α) =

1

2|K|−1
·

I⋆
l (α,K) +

∑
S⊊K⊖α

(α, S ⊕ α)

 =

1

2|K|−1
·

Il(α,K) · 2|K|−1 −
∑

S⊊K,α∈S

I⋆
l (α, S)+

∑
S⊊K⊖α

(α, S ⊕ α)

 = Il(α,K).

Consequently, Il(α,K) = Bzf(Bsum(Il))(α,K).

6 Summary and Future Work
A number of different approaches to measuring inconsistency
have been proposed in the AI literature. In this paper, we have
provided a systematic study of global and local measures,
where the former measure the degree to which knowledge
bases are inconsistent, while the latter evaluate the degree
to which a given formula contributes to the overall incon-
sistency. We have identified different ways in which global
measures induce local ones by following the idea of marginal
contributions, inspired by notions from game theory (such
as the Shapley and Banzhaf values). We did not stop there,
but also considered the opposite direction: by summing up
marginal contributions of the formulas of a knowledge base
one can obtain global measures. Finally, some combinations
of approaches to marginal contributions and approaches to
summing up turned out to be good fits in the sense that they
retract.

Our work can be seen as a systematic way of continuing
the research of ideas introduced in [Hunter and Konieczny,
2010], where the Shapley value has been studied. In fu-
ture research, we will investigate several threads opened by
this paper. First, many formal properties have been stud-
ied for global (e.g., [Hunter and Konieczny, 2010; Besnard,
2014]) and local measures (e.g., [Ribeiro and Thimm, 2021;
Raddaoui et al., 2024]), but it is not understood which proper-
ties warrant which other properties for induced local or global
measures. Second, the topic of computational complexity re-
mains an open question. It is worth noting that, despite the
computational hardness of Shapley and Banzhaf values, var-
ious methods exist that make them feasible in practice ([Fa-
tima et al., 2008]), which is why they have been found use-
ful in other areas of AI, such as XAI (e.g., [Lundberg and
Lee, 2017; Karczmarz et al., 2022]). Third, recently connec-
tions have been made between inconsistency measures and
formal argumentation (e.g., [Amgoud and Ben-Naim, 2015;
Heyninck et al., 2023]). Indeed, local measures may be use-
ful to determine how much a given argument contributes to
disagreements (see [Amgoud and Ben-Naim, 2017]).
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