
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Finding Possible Winners in Spatial Voting with Incomplete Information

Hadas Shachnai1 , Rotem Shavitt1∗ and Andreas Wiese2
1Technion – Israel Institute of Technology, Israel

2Technical University of Munich, Germany
hadas@cs.technion.ac.il, rshavitt@gmail.com, andreas.wiese@tum.de

Abstract
We consider a spatial voting model where both
candidates and voters are positioned in the d-
dimensional Euclidean space, and each voter ranks
candidates based on their proximity to the voter’s
ideal point. We focus on the scenario where the
given information about the locations of the vot-
ers’ ideal points is incomplete; for each dimension,
only an interval of possible values is known. In
this context, we investigate the computational com-
plexity of determining the possible winners under
positional scoring rules. Our results show that the
possible winner problem in one dimension is solv-
able in polynomial time for all k-truncated voting
rules with constant k. Moreover, for some scor-
ing rules for which the possible winner problem is
NP-complete, such as approval voting for any di-
mension or k-approval for d ≥ 2 dimensions, we
give an FPT algorithm parameterized by the num-
ber of candidates. Finally, we classify tractable and
intractable settings of the weighted possible winner
problem in one dimension, and resolve the com-
putational complexity of the weighted case for all
two-valued positional scoring rules when d = 1.

1 Introduction
The spatial model of voting associates voters and candidates
with points in the d-dimensional Euclidean space, i.e., in Rd.
Each dimension corresponds to an issue on which the vot-
ers and the candidates have an opinion; this opinion is de-
fined by the coordinate of the voter or candidate in this di-
mension. Voters prefer candidates closer to their respec-
tive point (measured as the Euclidean distance in Rd) over
those who are further away. Hence, for each voter this in-
duces an order of the candidates. In the social choice liter-
ature, preferences with this structure are often referred to as
(d-)Euclidean preferences [Bogomolnaia and Laslier, 2007;
Elkind et al., 2022]. The most common example of a spatial
model is a political spectrum, such as the traditional left-right
axis where d = 1, but issue spaces can be of higher dimension
(see, e.g., [Alós-Ferrer and Granić, 2015]).

∗Corresponding author

We consider a common scenario where the point in Rd

of each candidate is known precisely, e.g., from the election
campaign, but for the voters’ preferences only partial infor-
mation is available. For each voter and each of the d dimen-
sions, we assume that we are given an interval which contains
the opinion of the voter corresponding to this dimension. This
model captures the real-world uncertainty present in political
elections, where it is difficult to determine precisely which
party a voter supports. However, we can often estimate a
general range for their political views—for example, whether
they lean left or right. From this partial information we can
identify a set of possible preference orders for the voter.

We study voting systems in which there is a global scoring
vector s⃗m = (sm(1), sm(2), ..., sm(m)), depending on the
number of candidates, with sm(1) ≥ sm(2) ≥ ... ≥ sm(m)
such that each voter assigns a score of sm(1) to her favorite
candidate, a score of sm(2) to her second favorite candidate,
and so on. Also, we study approval voting where each voter
vj casts a vote to each candidate whose opinion is within a
given approval radius ρj of the point in Rd corresponding
to vj . In both settings, we say that a candidate can win the
election if no other candidate receives a higher total score.

Since the precise opinion of each voter is not known, it
is unclear which candidate will win the election. Two key
questions arising in this setting are whether a specific can-
didate can be a possible winner (who wins in at least one
scenario by the opinions of the voters) or a necessary win-
ner (one who wins in every possible scenario). These ques-
tions, introduced in the seminal work of [Konczak and Lang,
2005], have garnered significant attention in various settings
involving incomplete information about voters’ preferences
(see Section 1.1).

The necessary winner problem (NW) is well understood in
this model, thanks to a thorough study in [Imber et al., 2024].
However, the complexity of PW⟨d⟩, i.e., the possible win-
ner problem with incomplete voters’ information in d dimen-
sions, is known only for certain classes of positional scoring
rules. Specifically, as shown in [Imber et al., 2024], PW⟨1⟩
is solvable in polynomial time for all two-valued rules, i.e.,
rules in which the vector s⃗ contains only two different val-
ues, and for two specific families of rules with more than two
values. On the other hand, PW⟨d⟩ is NP-complete for any
number of dimensions d ≥ 2, already for the (relatively sim-
ple) scoring vector s⃗ = (1, 1, 1, 0, ..., 0) [Imber et al., 2024].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Problem k-approval Multi-valued positional scoring rules Approval voting

PW⟨1⟩ in P [Imber et al., 2024] in P for any k-truncated scoring
rule for a constant k [Theorem 1]

NP-c [Imber et al., 2024]
FPT in m [Theorem 3]

PW⟨d⟩ NP-c for k ≥ 3, d ≥ 2 [Imber et al., 2024],
FPT in m [Theorem 2] FPT in m [Theorem 2] NP-c [Imber et al., 2024]

FPT in m [Theorem 3]

WPW⟨1⟩ in P if k(m) ≥ m
2 ∀m ∈ N,

otherwise NP-c [Theorem 4]
NP-c for Borda with m ≥ 4

[Theorem 5] NP-c [Imber et al., 2024]

Table 1: Our results for PW⟨1⟩, PW⟨d⟩ for d ≥ 2, and WPW⟨1⟩ and corresponding previous results for these problems.

These previous results leave several intriguing questions
open: (1) Is PW⟨1⟩ still tractable for other positional scoring
rules with more than two values, e.g., for s⃗ = (2, 1, 0, ..., 0)?
(2) For voting rules under which PW⟨d⟩ is NP-complete, can
we devise parameterized algorithms? (3) What happens if
each voter is associated with a weight, e.g., representing a
group of voters sharing the same (unknown) common opin-
ion, or members with varying levels of influence in a board of
directors? Is the weighted possible winner problem WPW⟨d⟩
harder than PW⟨d⟩? We answer all three questions positively,
see Table 1 for an overview.

First, we present a polynomial-time algorithm for PW⟨1⟩
for any scoring rule with a constant number of non-
zero entries. Such scoring rules are very common
in real-life voting systems: the Eurovision Song Con-
test [Stockemer et al., 2018]) uses the scoring vector
(12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0..., 0) and the NBA MVP contest
uses (10, 7, 5, 3, 1, 0, . . . , 0). Also, this class contains the k-
truncated Borda rule (k, k − 1, ..., 1, 0, . . . , 0) which is used
in the NCAA Football Division 1A Coaches’ poll for k = 25.

Such scoring rules are popular because ranking all candi-
dates becomes impractical when their number is large. More-
over, voters often lack strong preferences beyond their top
choices, making the order among lower-ranked candidates ir-
relevant. Also, keeping the number of positive entries fixed
ensures stability in the voting system in repeated contests as
described above, where the number of candidates may vary,
and a voting rule that depends on this number complicates the
process and hinders comparisons across events.

Our algorithm reduces PW to the problem of shapes
scheduling. To the best of our knowledge, this scheduling
setting has not been studied before and it might be of in-
dependent interest. We solve the resulting instances of this
problem, building on a technique of [Baptiste, 2000].

In real elections, the number of candidates m (with realistic
chances of winning) is typically rather small. This motivates
us to choose m as a fixed parameter. We show that for any di-
mension d (not necessarily constant or bounded by a fixed
parameter) the problem PW⟨d⟩ becomes fixed-parameter
tractable (FPT) for any positional scoring rule and also for
approval voting (we use standard terminology in parameter-
ized complexity [Downey et al., 2013; Cygan et al., 2015;
Niedermeier, 2002]). Thus, we can solve the problem in time
f(m) · nO(1), for some computable function f .

Finally, we prove that WPW⟨d⟩ is NP-complete already
when d = 1 and m = 4 under the Borda scoring rule.

In contrast, our result above shows that the corresponding
unweighted case admits a polynomial time algorithm. In
addition, we resolve the computational complexity of the
weighted possible winner problem for all two-valued posi-
tional scoring rules when d = 1, by distinguishing between
scoring rules which remain tractable, and others under which
WPW⟨1⟩ becomes NP-complete (for short, NP-c).

1.1 Related Work
In voting theory, partial information has been explored un-
der various voting models. [Konczak and Lang, 2005] in-
troduced the partial order model, where each voter’s pref-
erences are specified as a partial order rather than a complete
ranking. They also formulated the two fundamental problems
of necessary winner and possible winner, which analyze the
conditions under which candidates can be guaranteed or po-
tentially elected given the incomplete preferences. [Betzler
and Dorn, 2010] established the computational complexity
of PW within the partial order model for all scoring rules
except for (2, 1, . . . , 1, 0). Specifically, they show that PW
is solvable in polynomial time under the plurality and veto
voting rules, while for other scoring rules it is NP-complete.
[Baumeister and Rothe, 2012] extended the hardness results
to the (2, 1, . . . , 1, 0) voting rule.

Truncated voting rules (or truncated ballots) are used to
simplify voting procedures. [Baumeister et al., 2012a] study
the complexity of determining a PW given truncated ballots.
[Yang, 2017] and [Terzopoulou and Endriss, 2021] studied
elections under different variants of truncated Borda scoring
rules. [Doğan and Giritligil, 2014] investigated the likelihood
of choosing the Borda outcome using a truncated scoring rule.

Weighted voting models, where voter influence is
weighted, have been explored extensively [Bartholdi et al.,
1989; Brandt et al., 2016; Conitzer and Sandholm, 2002;
Conitzer et al., 2007]. [Pini et al., 2011] studied NW and PW
with weighted voters in the partial orders model, and showed
NP-hardness results for Borda, Copland, Simpson, and STV
rules. [Walsh, 2007] extended these results to cases where the
number of candidates is bounded. [Baumeister et al., 2012b]
analyzed weighted PW where voter preferences are known
but weights are unknown.

Spatial voting generalizes single-peaked preferences by
embedding voters and candidates in a multidimensional
space, where preferences are single-peaked along certain di-
mensions. Single-peaked preferences, first studied by [Black,
1948], have been widely analyzed for their simplifying ef-
fects on voting problems such as manipulation and winner

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

determination under many voting rules [Brandt et al., 2015;
Moulin, 1984]. [Faliszewski et al., 2009] show that NP-
hardness of manipulation and control vanishes under single-
peak preferences. On the other hand, the hardness result re-
mains for weighted elections. In Section 5 we adjust some of
these results for WPW⟨1⟩.

Additional related work is discussed in the full version of
the paper [Shachnai et al., 2025].

2 Preliminaries
Spatial Voting. Let V = {v1, . . . , vn} denote the set of
voters and C = {c1, . . . , cm} the set of candidates, where
m ≥ 2 to avoid trivial cases. Every candidate has a position
in the d-dimensional space representing their opinions on d
issues.1 Each voter vi has a ranking Ri over all candidates.
The collection of all rankings for all the voters forms a rank-
ing profile, denoted by R = (R1, . . . , Rn).

A spatial voting profile T = (T1, ..., Tn) consists of n
points, where Tj = ⟨Tj,1, . . . , Tj,d⟩ ∈ Rd represents voter
vj’s opinion on d issues. Given a spatial voting profile T,
RT = (RT1 , ..., RTn) is the derived ranking profile, where
each voter vj ranks candidates in C according to their dis-
tance from vj’s opinion, Tj . The closest candidate is ranked
first, and the farthest is ranked in position m in vj’s prefer-
ences. Tie breaking rule is arbitrary but fixed for all voters.

Voting Rules. A voting rule is a function that maps a rank-
ing profile to a nonempty set of winners. This paper fo-
cuses mainly on positional scoring rules, where candidates
earn points based on their rank positions. A positional scoring
rule r is defined as a sequence {s⃗m}m≥2 of m-dimensional
score vectors s⃗m = (sm(1), . . . , sm(m)). For each m ∈ N
the vector s⃗m consists of m natural numbers that satisfy
sm(1) ≥ · · · ≥ sm(m), and s1(m) > sm(m).

For a ranking profile R = (R1, ..., Rn) and a positional
scoring rule r with a score vector s⃗m, the score assigned to
candidate c by voter vj is s(Rj , c) = sm(i), where c is ranked
in the i-th position in Rj . The total score of candidate c is de-
noted by s(R, c) =

∑n
j=1 s(Rj , c). Examples for positional

scoring rules include plurality (1, 0, ..., 0), veto (1, ..., 1, 0),
k-approval (1, . . . , 1, 0, . . . , 0) where the number of ‘1’ en-
tries is k, and the Borda rule, where the scoring vector is
(m− 1,m− 2, ..., 0).

A two-valued positional scoring rule consists of two values
which are w.l.o.g. ‘1’ and ‘0’. Such rules can be described as
k(m)-approval, where for m candidates, the m-dimensional
score vector s⃗m consists of k(m) ’1’ entries. Note that
throughout the paper, when using the term k-approval, we
refer to a fixed value of k (which does not depend on m).

One focus of this paper is a subclass of positional scor-
ing rules called truncated scoring rules [Doğan and Giritligil,
2014]. In a k-truncated scoring rule, each score vector s⃗m has
strictly positive values only in its first k entries. Thus, a it al-
lows voters to allocate score to exactly k candidates.

Partial Spatial Voting. [Imber et al., 2024] introduced
the partial spatial voting model, where voters’ prefer-
ences are incompletely specified. This model is repre-

1For the case of d = 1, we assume c1 < c2 < · · · < cm.

sented by a partial spatial profile P = (P1, . . . , Pn),
where each voter vj is described as a vector of intervals
Pj = ⟨[ℓj,1, uj,1], . . . , [ℓj,d, uj,d]⟩, and [ℓj,i, uj,i] represents
the lower and upper bounds of vj’s ideal point in each is-
sue. The precise positions of the candidates are assumed to
be known. A spatial voting profile T = (T1, . . . , Tn) is a spa-
tial completion of P if, for every voter vj , Tj,i ∈ [ℓj,i, uj,i].
The ranking profile RT is then derived from this completion.

Definition 1. Given a partial profile P and a candidate c∗ ∈
C, the possible winner problem under a voting rule r asks
whether there exists a profile completion T of P such that c∗
is a winner w.r.t. r, i.e., s(RT, c

∗) ≥ s(RT, c) ∀ c ∈ C.

Spatial Approval Voting. In approval voting, voters par-
tition candidates into “approved” and “unapproved” groups,
selecting the candidate with the highest approval count. Un-
like k-approval, the number of approvals per voter varies. In
spatial settings, each voter vj has an approval radius ρj ∈ R
and approves candidates within a distance ρj . Given a spatial
completion T, the approval set for voter vj is ATj

= {c ∈
C : ∥Tj − c∥2 ≤ ρj}. Approval regions correspond to in-
tersections of d-dimensional spheres and the voter’s position
rectangle.

3 PW⟨1⟩ with k-Truncated Voting Rules
In this section we establish that PW⟨1⟩ with any k-truncated
voting rule can be solved in polynomial time when k is con-
stant. To do so, we introduce a new multi-machine scheduling
problem, termed shapes scheduling, where processing a job
requires varying machine resources over time. We then pro-
vide a polynomial-time reduction from PW⟨1⟩ to the shapes
scheduling problem. In the reduction, every voter becomes
a job, and the resources used to process it reflect the score
the voter hands to candidates. Finally, we present a dynamic
programming algorithm to efficiently solve shapes schedul-
ing instances.

3.1 The Shapes Scheduling Problem
In shapes scheduling each job may use multiple machines,
in a quantity that changes over the processing time. Each
scheduling option is referred to as a shape, which specifies
the number of machines required at any time throughout pro-
cessing. Assume that time is slotted. We first present the
notion of a shape. Let [r] denote the set {1, . . . , r}.

Definition 2. Let p ∈ N. A shape f is a vector
(Mf

0 , ...,M
f
p−1) such that Mf

i ∈ N0 for each i ∈ {0} ∪
[p− 1]. We denote by p the processing time of f .

The intuition is that if job j is scheduled at time t ∈ N
with a shape f and a processing time p then for each i ∈
{0} ∪ [p − 1], during the interval [t + i, t + i + 1) job j

occupies Mf
i machines. For instance, consider the shape f =

(2, 1) with p = 2. Figure 1 shows two ways to schedule the
job at time t using f , both satisfying the requirement of two
machines during [t, t+1) and one machine during [t+1, t+2).
Note that the machine indices are irrelevant, and there is no
requirement to use the same machine across consecutive time
slots. Additionally, preemption is not allowed.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

t t+ 1 t+ 2 t t+ 1 t+ 2

Mr

Mℓ

Mk

Figure 1: Two schedule options for a job at time t by shape f =
(2, 1) with processing time p = 2.

In the shapes scheduling problem we are given a set of M
identical machines for some M ∈ N, and a set of jobs J . Each
job j ∈ J is associated with (i) a processing time pj ∈ N, (ii)
a release time rj ∈ N0, (iii) a deadline dj ∈ N with rj+pj ≤
dj , and (iv) a set of shapes F (j)

t , each with processing time
pj , for any time t ∈ N0 such that rj ≤ t ≤ dj − pj .

The goal is to select for each job j ∈ J a starting time Sj ∈
N0 satisfying rj ≤ Sj ≤ dj − pj and a shape f (j) ∈ F (j)

t .
Given these starting times and shapes, for each time t ∈ N we
denote the number of busy machines during [t, t+1) by M(t).

Formally, we define M(t) :=
∑

j∈J:Sj≤t<Sj+pj
Mf(j)

t−Sj
. We

require for each t ∈ N0 that M(t) ≤ M , i.e., at most M
machines are used during the interval [t, t+ 1).

3.2 Reduction from PW⟨1⟩ to Shapes Scheduling
We show how we can reduce PW⟨1⟩ to the shapes scheduling
problem. Given an instance of PW⟨1⟩, the release times and
deadlines of our jobs will be in the interval [1,m + 1]; intu-
itively, for each i ∈ [m], the interval [i, i+ 1) corresponds to
candidate ci. For each voter vj ∈ V we define a job j ∈ J as
follows. We set pj = k. Let iL be the smallest index such that
candidate ciL receives a positive score from vj if Tj = ℓj . We
set rj = iL. Similarly, let iR be the largest index such that
candidate ciR receives a positive score from vj if Tj = uj .
We set dj = iR + 1.

Lemma 1. For each possible position Tj ∈ [ℓj , uj] for voter
vj , only candidates in {ciL , ..., ciR} receive a score from vj .

Next, we define the set of allowed shapes for j. Consider a
value t ∈ [m] with rj ≤ t ≤ dj −k. Let Tj,t denote the set of
possible positions Tj for vj such that exactly the candidates
ct, ..., ct+k−1 receive a score, meaning these candidates are
the top k candidates in RTj

. For each Tj ∈ Tj,t and each
i ∈ {0}∪ [k−1], s(RTj , ct+i) is the score that candidate ct+i

receives from voter vj if it is positioned at Tj . This yields a
shape (s(RTj , ct), ..., s(RTj , ct+k−1)).

Figure 2 illustrates two possible positions of voter vj , de-
noted Tj and T ′

j . Let the scoring rule be 2-truncated Borda:
s = (2, 1, 0 . . . , 0). At Tj , the ranking of vj is RTj =
(c1, c2, c3), where the top two candidates are c1 and c2, im-
plying Tj ∈ Tj,1. As s(RTj , c1) = 2 and s(RTj , c2) = 1,
the resulting shape is f = (2, 1). At T ′

j , the ranking is
RT ′

j
= (c3, c2, c1), making c2 the lowest-indexed candidate

in the top two. Therefore, T ′
j ∈ Tj,2, resulting in the shape

f ′ = (1, 2).

c1 c2 c3T ′
j

c1 c2 c3Tj ⇒

⇒

2 3 4

1 2 3

Figure 2: Two positions of a voter vj and the corresponding shapes.

We define F (j)
t to be the set of all these shapes, i.e.,

F (j)
t :=

{
(s(RTj

, ct), ..., s(RTj
, ct+k−1)) : Tj ∈ Tj,t

}
. We

can compute the set F (j)
t by showing that there is a subset of

positions Tj in Tj,t that suffice for defining all shapes in F (j)
t ,

and that we can construct this subset efficiently.
Lemma 2. For each voter vj and each t ∈ [m] with rj ≤ t ≤
dj − k we can compute the set F (j)

t in time O(knm2).

Proof. For any pair of candidates ci < ch, the middle point
mi,h = ch−ci

2 separates the space into two regions: every
voter vj whose position is Tj ≤ mi,h prefers candidate ci
over ch, and every voter vj whose position is Tj > mi,h

prefers ch over ci. In this case, the tie breaking is in favor
of the lower indexed candidate, though it can be adjusted to
every fixed tie breaking rule. By finding the middle point for
each pair of candidates, we separate the space into

(
m
2

)
+

1 segments, where the ranking of candidates for all voters
positioned in a given segment are the same.

For each segment E, denote by RE the ranking pro-
file for voters positioned in segment E, i.e., RE =
(cℓ1 , cℓ2 , . . . , cℓm), where cℓ1 is the candidate who receives
the highest number of votes, cℓ2 the second to highest, and
so on. Let zE be the smallest index of a candidate who is in
the top k candidates in RE . Note that zE is a non-decreasing
series by the segment going left to right. We define a shape
f(E) = (M

f(E)
0 , . . . ,M

f(E)
k−1) for each segment as follows.

For each i ∈ {0} ∪ [k − 1], the ith entry in the shape vector,
M

f(E)
i , is the score candidate czE+i receives by the ranking

profile of segment E, i.e. Mf(E)
i = s(RE , czE+i). For each

voter vj and each t ∈ [m] with rj ≤ t ≤ dj − k, we can
compute the set F (j)

t . First, we define for every t ∈ [m],
Ft = {f(E)| ∀E : zE = t}. Let vj ∈ V with Pj = [ℓj , uj].

• For every t such that rj < t < dj − k: F (j)
t = Ft.

• F (j)
rj = {f(E)| ∀E : zE = rj ∧ (E ∩ [ℓj , uj] ̸= ∅)}.

• F (j)
dj

= {f(E)| ∀E : zE = dj−k∧ (E∩ [ℓj , uj] ̸= ∅)}.

It holds that F (j)
t ⊆ Ft for every job j and time t.

We constructed the set F (j)
t for each job j and each value

t ∈ [m] with rj ≤ t ≤ dj − k. Now we show that for each
job j, the possible starting times and their associated shapes
represent a possible assignment of scores by voter vj to the
candidates, depending on the position Tj of vj .

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Lemma 3. For each job j ∈ J there is a starting time Sj

and a shape f (j) ∈ F (j)
Sj

if and only if there is a position
Tj ∈ [ℓj , uj] for voter vj such that for every i ∈ {0}∪ [k−1],

vj gives a score of Mf(j)

i to candidate cSj+i.

Proof. We start with the first direction. Let j ∈ J be a job
scheduled at Sj in shape f (j) ∈ F (j)

Sj
. We define a position

Tj ∈ [ℓj , uj] such that vj gives a score of Mf(j)

i to candidate
cSj+i for all i ∈ {0} ∪ [k − 1]. As f (j) ∈ F (j)

Sj
, by the

construction of F (j)
Sj

there exists a segment E such that E ∩
Pj ̸= ∅, zE = Sj and f(E) = f (j). We define the position
of vj to be a point Tj ∈ E ∩ Pj , which is valid because
Tj ∈ Pj . Recall that the shape f(E) is defined such that for
each i ∈ {0}∪ [k−1], Mf(E)

i is the number of votes given to
czE+i by a voter positioned in E, as Mf(E)

i = s(RE , czE+i);
therefore, for every such i, the number of votes given by vj
to cSj+i is the number of votes given to czE+i, i.e., vj gives
M

f(E)
i votes to candidate cSj+i.
We continue with the second direction. Let Tj ∈ [ℓj , uj] be

a position for voter vj such that vj gives s(RTj
, cSj+i) votes

to candidate cSj+i for every i ∈ {0} ∪ [k − 1]. Let E be the
segment such that Tj ∈ E. We define the starting time of j,
to be Sj = zE and the scheduling shape of j to be f(E), and
show that rj ≤ Sj ≤ dj − k, Mf(E)

i = s(RTj
, cSj+i) for

every i ∈ {0} ∪ [k − 1] and f(E) ∈ F (j)
Sj

.
By Lemma 1, if candidate cSj receives a score from vj

then iL ≤ Sj , where ciL is the smallest candidate to receive
a positive number, and rj = iL ≤ Sj . Also, Sj + k − 1 ≤
iR, where cIR is the largest candidate to receive a positive
number, and dj = iR + 1 ≥ Sj + k. By definition of f(E),
M

f(E)
i = s(RTj

, cSj+i−1). By the construction of the shape
sets, for every segment E ∩ [ℓj , uj] with a scheduling time
rj ≤ Sj ≤ dj , it holds that f(E) ∈ F (j)

Sj
.

The next step is to combine Lemma 1 and Lemma 3 to
establish the correctness of the reduction.

Lemma 4. Let i∗ ∈ [m] be the index of candidate c∗. Then,
candidate c∗ is a possible winner if and only if there is a num-
ber M∗ ∈ {

∑
i∈I sm(i)|∀i ∈ I, i ∈ [k], |I| ≤ n} such that

for the set of jobs J there is a feasible schedule with M∗ ma-
chines such that all machines are busy during [i∗, i∗ + 1).

The intuition behind this is that every use of machine at a
time slot [t, t + 1) corresponds to a score given to candidate
t (Lemma 3); therefore, if all machines are busy at c∗, the
schedule corresponds to a profile completion in which candi-
date c∗ receives M∗ votes, and no other candidate receives
more, since there are only M∗ machines.

3.3 An Algorithm for Shapes Scheduling
Our algorithm decides if there is a solution to the shapes
scheduling instance which satisfies Lemma 4. The algorithm
exploits certain properties of the sets of possible shapes F (j)

t .
To this end, we define the notion of P -structured jobs.

Definition 3. Let J be a set of jobs in an instance of shapes
scheduling, and let P ∈ N. The set J is P -structured if

• pj = P for each job j ∈ J ,

• for each t ∈ N0 there is a global set Ft such that if
t ̸= rj , dj , then F (j)

t = Ft,

• There exists an order of the jobs such that, for every two
jobs j, j′ ∈ J , if j ≺ j′ then either dj < dj′ or dj = dj′

and F (j)
dj

⊆ F (j′)
dj′

.

Due to our construction of the instance J , we can show that
for P = k, the jobs are P -structured.

Lemma 5. The job set J generated by the reduction is P -
structured for P = k.

We now present an algorithm for any P -structured instance
of scheduling with shapes. Given a set of P -structured jobs
J , a candidate c∗ ∈ C, and a number of machines M∗, our
algorithm decides if there exists a schedule for J with M∗

machines such that all machines are busy at time c∗. Then,
we run the algorithm for every possible value of M∗. This
can be done in polynomial time since M∗ must be a com-
bination of n votes, each of value sm(1), sm(2), . . . , sm(k)
or 0. The heart of our algorithm is formalized as Lemma 6,
which generalizes a result of [Baptiste, 2000]. Intuitively, our
lemma states that if there is a feasible schedule with M∗ ma-
chines, then there is also a feasible schedule in which a job j′

with the latest deadline among all jobs in J starts at a time Sj′

such that the remaining jobs are split nicely into two parts:

• a set JL containing all jobs j ∈ J \ {j′} with rj < Sj′

and for each job j ∈ JL we have Sj ≤ Sj′ , and

• a set JR containing all jobs j ∈ J \ {j′} with rj ≥ Sj′ ;
thus, for each job j ∈ JR we have Sj ≥ Sj′ .

This allows to partition our problem into two independent
subproblems, one for JL and one for JR, on which we re-
curse. We define a total order ≺ for the jobs in J such that
for any two jobs j, j′ ∈ J we have j ≺ j′ if dj < dj′ , or if
dj = dj′ and F (j)

dj
⊆ F (j′)

dj′
. Such order exists by Lemma 5.

Using this order, we define the notation Uj′(t, t
′) for subsets

of jobs that we use below.

Definition 4. For any j′ ∈ J and t, t′ ∈ N0, let Uj′(t, t
′) =

{j | (j ⪯ j′) ∧ (t ≤ rj < t′)}.

Note that if j′ is the last job in the total order ≺ among
all jobs in J then J = Uj′(0, dj′). We now formalize the
partition of our problem into two independent subproblems.

Lemma 6. Consider an instance of shapes scheduling with a
set of P -structured jobs Uj′(t, t

′) where j′ ∈ Uj′(t, t
′), and

let j′′ ∈ Uj′(t, t
′) such that j ≺ j′′ for all j ∈ Uj′(t, t

′),
j ̸= j′. Assume there is a schedule with a corresponding
value M(t) for each t ∈ N0. Then there exists also a schedule
with job start times (Sj)j∈J , the same value M(t) for each
t ∈ N, and a partition of Uj′(t, t

′) into three sets {j′}, JL,and
JR such that

• JL = {j ∈ Uj′′(t, t
′) : rj < Sj′} = Uj′′(t, Sj′) and

Sj ≤ Sj′ for each job j ∈ JL, and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• JR = {j ∈ Uj′′(t, t
′) : rj ≥ Sj′} = Uj′′(Sj′ , t

′) and
Sj ≥ Sj′ for each job j ∈ JR.

Assume that in our given instance, job j′ is last in the to-
tal order ≺ of J . Algorithmically, we guess Sj′ in polyno-
mial time (as there are only a polynomial number of options).
Once we guess Sj′ correctly, we directly obtain JL and JR.
Note that during each time interval [t, t + 1) with t ∈ N0

and t < Sj′ we can process only jobs from JL. On the other
hand, during each time interval [t′, t′ + 1) with t′ ∈ N0 and
t′ ≥ Sj′ + P we can process only jobs from JR. During
[Sj′ , Sj′ +P) we may process jobs from JL but possibly also
jobs from JR. Therefore, we also guess how to split the avail-
able machines between these two job sets during these time
intervals. Formally, we define ML(t) to be the number of
machines allocated to JL at time t, and similarly MR(t) to
be the number of machines allocated to JR at time t. It must
hold that ML(t) + MR(t) + Mf

t ≤ M∗ for any t; there-
fore, we guess ML(Sj′), . . . ,ML(Sj′ + P − 1), and assign
the remaining machines to JR during [Sj′ , Sj′ + P), i.e., we
define MR(Sj′ + i) := M∗ − ML(Sj′ + i) − Mf

i for any
i ∈ {0} ∪ [P − 1]. Each value of ML(t) is a combination of
n votes, therefore belongs to the set {

∑
i∈I sm(i)|∀i ∈ I, i ∈

[k], |I| ≤ n}, meaning it has
(
n+k
n

)
= O(nk) options.

This yields independent subproblems for JL and JR on
which we recurse. To ensure that running time is polyno-
mial in the input size, we embed this recursion into a dynamic
program with a polynomial number of DP-cells. Each sub-
problem is associated with an interval [t, t′) and a job j′, and
we want to schedule the jobs j ≺ j′ that are released during
[t, t′), i.e. Uj′(t, t

′). During [t, t + P) ∪ [t′, t′ + P) we may
not have all M∗ machines available, as during these intervals
our subproblem may interact with other (previously defined)
subproblems. The DP-cell specifies how many machines are
available during these intervals.

Formally, each DP-cell is defined by a tuple
(j′, t, t′,Mt, . . . ,Mt+P−1,Mt′ , . . . ,Mt′+P−1) such that

• the values t, t′ ∈ N0 define an interval [t, t′),

• j′ ∈ J is the last job according to ≺ of the input jobs of
the subproblem,

• the values Mt, . . . ,Mt+P−1,∈ {M∗ −∑
i∈I sm(i)|∀i ∈ I, i ∈ [k], |I| ≤ n} de-

note the number of available machines during
[t, t+ 1), . . . , [t+ P − 1, t+ P).

• the values Mt′ , . . . ,Mt′+P−1 ∈ {
∑

i∈I sm(i)|∀i ∈
I, i ∈ [k], |I| ≤ n} denote the number of available ma-
chines during [t′, t′ + 1), . . . , [t′ + P − 1, t′ + P); note
that the time points t, . . . , t + P − 1, t′, . . . , t′ + P − 1
may not be pairwise distinct.

Recall that M(t) denotes the number of busy machines
during [t, t + 1). The goal of this subproblem is to com-
pute a schedule for the jobs Uj′(t, t

′) such that M(t + i) ≤
Mt+i,M(t′ + i) ≤ Mt′+i for any i ∈ {0} ∪ [P − 1], and
M(t′′) ≤ M∗ for each t′′ ∈ N0 with t + P ≤ t′′ < t′. For
i∗ being the index of candidate c∗, if i∗ ∈ {t+ P, ..., t′ − 1}
we require that M(i∗) = M∗; otherwise, we require that
M(i∗) = Mi∗ . Observe that the cell (n, 1,m − P +

1,M∗,M∗,M∗,M∗) corresponds to the main problem we
want to solve, where n is the last job in the order ≺ of J .
Based on these DP-cells, we can construct a dynamic pro-
gram which decides whether there exists a feasible schedule
for the given set of jobs.
Lemma 7. Assume we are given an instance of the shape
scheduling problem with a set of P -structured jobs, M∗ ma-
chines and a candidate c∗ ∈ C with index i∗ ∈ [m]. There is
an algorithm with a running time of O(n1+3P 2 · m3) which
decides whether the instance admits a feasible schedule in
which all machines are busy during [i∗, i∗ + 1).

Now, Lemmas 4 and 7 imply the next result.
Theorem 1. We can solve the possible winner problem for
any k-truncated voting rule in time O(n1+k+3k2 ·m3).

Our algorithm requires the input jobs to be P -structured,
allowing us to solve the problem in polynomial time for con-
stant P . In the full version of this paper [Shachnai et al.,
2025], we complement this by showing that scheduling with
shapes is strongly NP-hard if we lift these requirements.

4 Parameterized Algorithm for PW⟨d⟩
We present a parameterized algorithm for the PW problem in
the d-dimensional euclidean space for any d ≥ 1. Our fixed
parameter is the number of candidates m.

First, we describe our algorithm for positional scoring
rules. Recall that we are given a score vector s⃗m =
(sm(1), ..., sm(m)), and each voter gives a certain num-
ber of votes to each candidate, according to s⃗m. We say
that a vector z = (z1, ..., zm) ∈ Nm

0 is a voting vector if
z describes the number of votes that a voter may give to
each of the candidates, i.e., formally, if there is a permu-
tation σ : [m] → [m] such that zi = sm(σ(i)) for each
i ∈ [m]. We denote by Z the set of all voting vectors. Re-
call that each voter vj is described as a vector of intervals
Pj = ⟨[ℓj,1, uj,1], . . . , [ℓj,d, uj,d]⟩. In particular, each voter
vj may vote only for a subset of the voting vectors Z. We
characterize the voters by the subsets of Z to which they may
vote for. Therefore, for each subset of Z we introduce a cor-
responding type; formally, we define the set of types T to be
all subsets of Z. We say that a voter vj is of some type τ ∈ T
if vj may vote for exactly the subsets τ of Z. One key in-
sight is that to solve the PW problem, for each voter vj we
need to know only the type of vj . Moreover, there are only
|T| = 2|Z| ≤ 2m! types, a quantity that depends solely on m
and not on the number of voters n. For each type τ ∈ T de-
note by nτ the number of voters of type τ . We can compute
the type of each voter vj by checking for each z ∈ Z whether
vj may vote according to z. We can do this by solving a lin-
ear program that verifies whether there exists a valid position
Tj satisfying d(Tj , ci) ≥ d(Tj , ch) for every two candidates
ci, ch such that ci receives a higher score than ch.
Lemma 8. For each voter vj and each vector z ∈ Z of a
score vector s⃗m, we can check in polynomial time whether vj
may vote according to z.

Let i∗ ∈ [m] be the index of the candidate c∗ for which
we want to determine whether it can win the election, i.e.,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ci∗ = c∗. We formulate an integer linear program that tries
to compute an outcome of the election in which c∗ wins. For
each type τ ∈ T and each voting vector z ∈ Z, we introduce
a variable xz

τ which denotes the number of voters of type τ
that vote according to the voting vector z.∑

τ∈T

∑
z∈Z

xz
τ · zi ≤ M∗ ∀i = [m] \ {i∗}

∑
τ∈T

∑
z∈Z

xz
τ · zi∗ = M∗

∑
z∈Z

xz
τ = nτ ∀τ ∈ T

xz
τ ∈ N0 ∀τ ∈ T, ∀z ∈ Z

M∗ ∈ N

The integer program has a solution if and only if there is
an outcome of the election in which c∗ receives M∗ votes
(for some value M∗ ∈ N), and no other candidate receives
more than M∗ votes, i.e., c∗ is a possible winner. The num-
ber of variables is bounded by 1 + |T||Z| ≤ 1 + m! · 2m!.
Hence, we can solve the program in a running time of
the form (log(sm(1)))O(1)f(m) using algorithms for inte-
ger programs in fixed dimensions, e.g., [Lenstra Jr, 1983;
Reis and Rothvoss, 2023]. A similar technique is used, e.g.
in [Kimelfeld et al., 2019].
Theorem 2. For every positional scoring rule and any d ≥ 1,
PW⟨d⟩ can be solved in time (n · log(sm(1)))O(1)f(m) for
some function f , i.e., PW⟨d⟩ is FPT for the parameter m.

Our algorithm can be adjusted to the setting of approval
voting: we set Z := {0, 1}m, i.e., all combinations of par-
titioning the candidates into approved and unapproved can-
didates. Then, for a voter vj and a voting vector z ∈ Z, vj
can vote by z if there is a valid position Tj such that for ev-
ery i ∈ [m], if zi = 1 then d(Tj , ci) ≤ ρj , and if zi = 0,
d(Tj , ci) > ρj . This can be checked by solving a set of in-
equalities, which by [Grigor’ev and Vorobjov Jr, 1988] can
be solved in O(f(m)) time.
Lemma 9. For each voter vj and each vector z ∈ Z of ap-
proval voting, we can check in polynomial time whether vj
may vote according to z.
Theorem 3. For any fixed d ≥ 1, PW⟨d⟩ with approval vot-
ing can be solved in time nO(1)f(m) for some function f , i.e.,
it is FPT for the parameter m.

5 Spatial Voting with Weighted Voters
In weighted spatial voting, every voter vj is associated with
a weight wj , and the score contributed by voter vj to candi-
date c is s(Rj , c) = wj ·sm(i), where c is ranked in position i
according to vj’s preference Rj , and (sm(1), . . . , sm(m))
represents the score vector.

The NW problem in weighted spatial voting remains
tractable for every positional scoring rule and fixed dimen-
sion, using an algorithm of [Imber et al., 2024] for the un-
weighted variant. Indeed, we can solve the problem by com-
puting the maximal score difference s(Rj , c) − s(Rj , c

∗)

across all rankings Rj derived from a spatial completion Tj

of Pj for every candidate c ̸= c∗, as in the unweighted case.
We investigate the PW problem in the weighted spatial vot-

ing model in one dimension, denoted as WPW⟨1⟩. We start
with two-valued positional scoring rules, denoted by k(m)-
approval, and distinguish between those that are tractable and
those that are NP-complete.
Theorem 4. Let k(m)-approval be a two-valued scoring
rule. If for every m ∈ N, it holds that k(m) ≥ m

2 , WPW⟨1⟩
with k(m)-approval is in P. Otherwise, it is NP-complete.

Proof. Let k(m) be a function such that k(m) ≥ m
2 for all

m ∈ N. Given an instance with m candidates, let k = k(m).
We prove separately for k = m

2 and k > m
2 . When k > m

2 ,
candidates cm−k+1, . . . , ck are always in the top k, receiving
maximal scores. Any c∗ in this set is a possible winner. A
candidate not in this set can only be a possible winner if there
exists a profile completion placing c∗ in the top k of every
voter. This can be verified in polynomial time.

For k = m
2 , w.l.o.g c∗ is in the first half of the candidates.

We prove c∗ is a possible winner if and only if it is a possible
winner under a specific profile completion T, in which every
voter vj that can vote for c∗ is positioned at Tj = ℓj , and
the rest are positioned at Tj = uj . For the forward direction,
starting from a profile completion T′ where c∗ is a winner,
we adjust voters one by one.

1. If vj can vote for c∗, then by moving its position to ℓj the
scores for candidates c > c∗ increase by wj only if c∗’s
score also increases. Candidates c < c∗ never outscore
c∗ since voters for c also vote for c∗.

2. If vj cannot vote for c∗, then it must vote for cm
2 +1. By

moving the position to uj only candidates c > cm
2 +1

may increase their scores, but such candidates cannot
outscore cm

2 +1, which remains with the same score as
before, therefore does not surpass c∗.

In both cases, c∗ remains a possible winner. After all adjust-
ments, c∗ is a possible winner under T. We give the hardness
result in the full version [Shachnai et al., 2025].

Next, we give a hardness result for the Borda voting rule.
Theorem 5. WPW⟨1⟩ with the Borda voting rule is NP-
complete already when the number of candidates is m = 4.

6 Conclusion
In this paper, we investigate the computational complexity of
PW, which naturally arises in spatial voting with incomplete
voter information. We point to several interesting directions
for future work. While we show that PW⟨1⟩ is in P for any k-
truncated scoring rule and any constant k, the complexity of
the problem remains open under certain natural scoring rules,
such as Borda. Notably, a hardness result for PW⟨1⟩ under
Borda would also resolve the computational complexity of
manipulation under Borda in the single-peaked model, which
has remained unresolved for over a decade [Faliszewski et
al., 2009]. It would also be interesting to identify a natural
parameter for which WPW⟨1⟩ is FPT. Finally, the complexity
of WPW⟨d⟩ remains open already under certain two-valued
positional scoring rules when d ≥ 2.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
We thank Aviram Imber and Benny Kimelfeld for stimulat-
ing discussions that motivated this study and for helpful com-
ments on an earlier version of the paper.

References
[Alós-Ferrer and Granić, 2015] Carlos Alós-Ferrer and

Georg Dura Granić. Political space representations with
approval data. Electoral Studies, 39:56–71, January 2015.

[Baptiste, 2000] Philippe Baptiste. Scheduling equal-length
jobs on identical parallel machines. Discrete Applied
Mathematics, 103(1-3):21–32, 2000.

[Bartholdi et al., 1989] John J Bartholdi, Craig A Tovey, and
Michael A Trick. The computational difficulty of manipu-
lating an election. Social choice and welfare, 6:227–241,
1989.

[Baumeister and Rothe, 2012] Dorothea Baumeister and
Jörg Rothe. Taking the final step to a full dichotomy
of the possible winner problem in pure scoring rules.
Information Processing Letters, 112(5):186–190, 2012.

[Baumeister et al., 2012a] Dorothea Baumeister, Piotr Fal-
iszewski, Jérôme Lang, and Jörg Rothe. Campaigns for
lazy voters: truncated ballots. In AAMAS, pages 577–584,
2012.

[Baumeister et al., 2012b] Dorothea Baumeister, Magnus
Roos, Jörg Rothe, Lena Schend, and Lirong Xia. The
possible winner problem with uncertain weights. In ECAI
2012, pages 133–138. IOS Press, 2012.

[Betzler and Dorn, 2010] Nadja Betzler and Britta Dorn. To-
wards a dichotomy for the possible winner problem in
elections based on scoring rules. Journal of Computer and
System Sciences, 76(8):812–836, 2010.

[Black, 1948] Duncan Black. On the rationale of group
decision-making. Journal of political economy, 56(1):23–
34, 1948.

[Bogomolnaia and Laslier, 2007] Anna Bogomolnaia and
Jean-François Laslier. Euclidean preferences. Journal of
Mathematical Economics, 43(2):87–98, 2007.

[Brandt et al., 2015] Felix Brandt, Markus Brill, Edith
Hemaspaandra, and Lane A Hemaspaandra. Bypassing
combinatorial protections: Polynomial-time algorithms
for single-peaked electorates. Journal of Artificial Intel-
ligence Research, 53:439–496, 2015.

[Brandt et al., 2016] Felix Brandt, Vincent Conitzer, Ulle
Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University
Press, 2016.

[Conitzer and Sandholm, 2002] Vincent Conitzer and Tuo-
mas Sandholm. Complexity of manipulating elections
with few candidates. In AAAI/IAAI, pages 314–319, 2002.

[Conitzer et al., 2007] Vincent Conitzer, Tuomas Sandholm,
and Jérôme Lang. When are elections with few candi-
dates hard to manipulate? Journal of the ACM (JACM),
54(3):14–es, 2007.

[Cygan et al., 2015] Marek Cygan, Fedor V Fomin, Łukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parame-
terized algorithms, volume 5. 2015.

[Doğan and Giritligil, 2014] Onur Doğan and Ayça Ebru
Giritligil. Implementing the borda outcome via truncated
scoring rules: a computational study. Public Choice,
159:83–98, 2014.

[Downey et al., 2013] Rodney G Downey, Michael R Fel-
lows, et al. Fundamentals of parameterized complexity,
volume 4. 2013.

[Elkind et al., 2022] Edith Elkind, Martin Lackner, and Do-
minik Peters. Preference restrictions in computational so-
cial choice: A survey. arXiv preprint arXiv:2205.09092,
2022.

[Faliszewski et al., 2009] Piotr Faliszewski, Edith Hemas-
paandra, Lane A Hemaspaandra, and Jörg Rothe. The
shield that never was: Societies with single-peaked prefer-
ences are more open to manipulation and control. In Pro-
ceedings of the 12th Conference on Theoretical Aspects of
Rationality and Knowledge, pages 118–127, 2009.

[Grigor’ev and Vorobjov Jr, 1988] D Yu Grigor’ev and Nico-
lai N Vorobjov Jr. Solving systems of polynomial inequal-
ities in subexponential time. Journal of symbolic compu-
tation, 5(1-2):37–64, 1988.

[Imber et al., 2024] Aviram Imber, Jonas Israel, Markus
Brill, Hadas Shachnai, and Benny Kimelfeld. Spatial vot-
ing with incomplete voter information. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
pages 9790–9797, 2024.

[Kimelfeld et al., 2019] Benny Kimelfeld, Phokion G Ko-
laitis, and Muhammad Tibi. Query evaluation in election
databases. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, pages 32–46, 2019.

[Konczak and Lang, 2005] Kathrin Konczak and Jérôme
Lang. Voting procedures with incomplete preferences. In
Proc. IJCAI-05 Multidisciplinary Workshop on Advances
in Preference Handling, volume 20, 2005.

[Lenstra Jr, 1983] Hendrik W Lenstra Jr. Integer program-
ming with a fixed number of variables. Mathematics of
operations research, 8(4):538–548, 1983.

[Moulin, 1984] Hervé Moulin. Generalized condorcet-
winners for single peaked and single-plateau preferences.
Social Choice and Welfare, 1(2):127–147, 1984.

[Niedermeier, 2002] Rolf Niedermeier. Invitation to fixed-
parameter algorithms. Habilitationschrift, University of
Tübingen, 19, 2002.

[Pini et al., 2011] Maria Silvia Pini, Francesca Rossi, Kris-
ten Brent Venable, and Toby Walsh. Incompleteness and
incomparability in preference aggregation: Complexity re-
sults. Artificial Intelligence, 175(7-8):1272–1289, 2011.

[Reis and Rothvoss, 2023] Victor Reis and Thomas
Rothvoss. The subspace flatness conjecture and faster

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

integer programming. In 2023 IEEE 64th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2023),
pages 974–988, 2023.

[Shachnai et al., 2025] Hadas Shachnai, Rotem Shavitt, and
Andreas Wise. Finding possible winners in spatial
voting with incomplete information. arXiv preprint
arXiv:2505.12451, 2025.

[Stockemer et al., 2018] Daniel Stockemer, André Blais,
Filip Kostelka, and Chris Chhim. Voting in the eurovision
song contest. Politics, 38(4):428–442, 2018.

[Terzopoulou and Endriss, 2021] Zoi Terzopoulou and Ulle
Endriss. The borda class: An axiomatic study of the borda
rule on top-truncated preferences. Journal of Mathemati-
cal Economics, 92:31–40, 2021.

[Walsh, 2007] Toby Walsh. Uncertainty in preference elic-
itation and aggregation. In AAAI, volume 7, pages 3–8,
2007.

[Yang, 2017] Yongjie Yang. On the complexity of borda con-
trol in single-peaked elections. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Sys-
tems, pages 1178–1186, 2017.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

