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Abstract
Reinforcement Learning (RL) is a sampling-based
method for sequential decision-making, where a
learning agent iteratively converges to an opti-
mal policy by leveraging feedback from the en-
vironment in the form of scalar rewards. While
timing information is often abstracted in discrete-
time domains, time-critical applications—such as
queuing systems, population processes, and man-
ufacturing workflows—are naturally modeled as
Continuous-Time Markov Decision Processes (CT-
MDPs). Since the seminal work of Bradtke and
Duff, model-free RL for CTMDPs has become
well-understood. In many practical settings, how-
ever, high-quality information about system rates—
often derived from queuing theory—is available
and could be exploited to accelerate learning.
Yet classical RL algorithms for CTMDPs typi-
cally re-learn such parameters through sampling.
We propose Continuous-Time Reward Machines
(CTRMs), a framework that embeds reward func-
tions and real-time state-action dynamics into a uni-
fied structure. CTRMs enable RL agents to navi-
gate dense-time environments effectively, leverag-
ing both reward shaping and counterfactual expe-
riences to accelerate convergence. Empirical re-
sults demonstrate that CTRMs improve learning ef-
ficiency in time-critical settings.

1 Introduction
Reinforcement Learning (RL) provides a versatile framework
for sequential decision-making, enabling agents to learn op-
timal strategies in uncertain environments through feedback
in the form of rewards. A central challenge in RL is de-
signing reward functions that effectively encode task ob-
jectives, especially in safety-critical settings. Reward Ma-
chines [Icarte et al., 2022] offer a programmatic way to spec-
ify (non-Markovian) rewards using finite-state machines. By
employing them, designers can encode high-fidelity informa-
tion about the environment, which agents can exploit during
learning. As a result, reward machines support both reward
shaping and reduced sample complexity. This work investi-
gates their role in continuous-time domains.

RL for Continuous-Time Environments. Classic RL as-
sumes an abstract notion of time in the interaction between
an agent and its environment, typically modeled as discrete-
time Markov decision processes (DTMDPs), where each in-
teraction takes a fixed unit of time. However, in many
real-world, time-critical applications—such as queuing sys-
tems, manufacturing processes, and population dynamics—
actions incur variable delays. Continuous-time models, such
as semi-MDPs [Baykal-Gürsoy, 2011] and continuous-time
Markov decision processes (CTMDPs) [Guo and Hernández-
Lerma, 2009], support decision-making over dense time, cap-
turing the fluid and asynchronous nature of real-world inter-
actions. CTMDPs, in particular, model the duration of state
residence using exponential distributions governed by state-
action-specific rates, thus providing a principled way to rep-
resent stochastic timing.

Separation of Concerns. Accurately estimating transition
probabilities in real-world systems is challenging due to the
complexity and variability of underlying processes, which of-
ten depend on latent factors and fluctuating conditions. In
contrast, the timing of transitions—when governed by ex-
ponential rates—is typically more accessible and can of-
ten be derived from historical data or prior studies. These
rates provide a compact yet expressive characterization of
system dynamics and have been widely used in domains
such as network traffic [Becchi, 2008], engineering reliabil-
ity [O’Connor, 2011], and road traffic modeling [Oumaima et
al., 2020]. CTMDPs are well-suited for such systems, rep-
resenting transitions through exponential sojourn times. A
CTMDP can also be viewed as a DTMDP augmented with
rate information for each state-action pair. This perspective
motivates our approach: we decompose a CTMDP into a DT-
MDP and a finite-state automaton encoding rate information,
enabling a clear separation of concerns. This decomposition
isolates uncertainties associated with transition probabilities
from those related to time delays. Consequently, different
inference techniques can be applied: RL methods for esti-
mating transition probabilities, and empirical or theoretical
tools—such as those from queuing theory—for inferring rate
parameters.

Continuous-Time Reward Machines. Reward ma-
chines [Icarte et al., 2022] enable the encoding of non-
Markovian reward mechanisms in discrete-time settings.
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(a)

q2

q0

start

q1 < ¬hospital, 0, f2 >

< ¬package, 0, f1 >

< package, 0, f1 >

< hospital, 1, f2 >

(b)

Figure 1: (a) The grid world representing the autonomous driving
environment and (b) CTRM specifying the rewards and rates.

Analogously, we propose continuous-time reward machines
(CTRMs) to encode both non-Markovian rewards and rate
mechanisms in continuous-time environments. CTRMs gen-
eralize systems with exponential sojourn times by allowing
multiple rates for the same environment state, conditioned
on regular properties over past event occurrences. For
example, in an urban traffic system, the traversal speed of
an ambulance may depend on whether its emergency lights
are activated. This scenario can be modeled as a CTRM,
with distinct states representing such conditions. A standard
CTMDP is a special case of this framework, represented as a
DTMDP paired with a single-state CTRM encoding the rates.
In addition to rates, CTRMs encode rewards aligned with
learning objectives, providing high-fidelity representations
of environments with complex non-Markovian structure.

Example 1 (CTRMs). To illustrate the concept of CTRMs,
consider an autonomous vehicle operating in an urban road
network represented as a grid world (Figure 1a). Each grid
cell corresponds to a traffic intersection, where the vehicle
can move left, right, go straight, or make a U-turn. The
stochastic dynamics of intersection traversal times are mod-
eled using exponential distributions derived from historical
traffic data (inspired by [Oumaima et al., 2020]) and inte-
grated into a reward machine (Figure 1b) to encode task ob-
jectives.

The vehicle’s task is to fetch medical supplies from a de-
pot and deliver them to a hospital, starting from a distribu-
tion center. The reward machine encodes this task using three
states: q0 (navigating traffic without the package), q1 (deliv-
ery phase with the package), and q2 (accepting state upon
task completion). Transitions in the CTRM are labeled with
atomic propositions (e.g., package and hospital), rewards,
and rate functions. For instance, the transition to q2 yields a
positive reward, marking task completion. Rate functions f1
and f2 define average traversal times under varying traffic
conditions, with f2 prioritizing emergency deliveries. Grid
cells are color-coded by average intersection time: red, blue,
and green represent decreasing durations.

Contributions. We consider three scenarios: (1) the envi-
ronment and CTRM are entirely unknown (black-box RL),

(2) the CTRM structure is known but rate information is un-
available, and (3) the complete CTRM is known. In all cases,
the DTMDP environment is treated as unknown to the agent,
allowing us to assess the impact of varying levels of prior in-
formation. Our key contributions are as follows:

1. We introduce continuous-time reward machines
(CTRMs), modeled as finite-state automata whose
transitions are triggered by environmental events.
CTRMs enrich the modeling framework by encoding
both state-specific sojourn rates and reward functions
accessible to the learning agent.

2. Building on Q-learning for CTMDPs [Bradtke and Duff,
1994], we propose an algorithm for settings where the
system is modeled as a DTMDP and objectives are spec-
ified via CTRMs. This method applies even when the
agent lacks knowledge of the CTRM structure or rate
information, relying solely on observed transitions and
rewards. Modeling CTMDPs as DTMDPs paired with
CTRMs yields a novel, modular abstraction for reason-
ing about continuous-time behavior.

3. Inspired by reward machines [Icarte et al., 2022], we
leverage the known structure of CTRMs to generate
counterfactual experiences, allowing the agent to accel-
erate learning by simulating alternative outcomes. We
examine two scenarios: (1) when both structure and rate
information are available, and (2) when only structure
and rewards are known. For the latter, we introduce a
sampling-based approach to dynamically approximate
rates—representing the first use of counterfactual rea-
soning and rate estimation in the CTRM framework.

4. The reward shaping technique of [Ng et al., 1999] accel-
erates convergence in discrete-time settings by densify-
ing rewards while preserving optimality. Extending re-
ward shaping to continuous-time systems requires non-
trivial adaptation. We propose a novel reward shaping
scheme for CTRMs and formally prove its correctness
under both known and unknown rate settings, address-
ing a gap not covered in prior work.

5. We empirically validate our approaches on a range of
continuous-time benchmarks, demonstrating the bene-
fits of each method across levels of prior knowledge.

2 Preliminaries
We use the symbols N,R, R≥0, Q and Q≥0 to denote the sets
of natural numbers, real numbers, non-negative real numbers,
rational numbers, and non-negative rational numbers, respec-
tively. For n ∈ N, we write [n] for the set {1, . . . , n}. The
time domain is denoted by T and is defined as the set R≥0 of
non-negative real numbers.

Given a finite set A, a probability distribution over A is a
function p : A → [0, 1] ∩ Q such that

∑
a∈A p(a) = 1 and

Supp(p) = {a∈A | p(a)>0} is the support of p. We denote
the set of probability distributions on A by D(A).

Discrete-time MDP (DTMDP). A DTMDP is defined as a
tuple M = (S, s0,Act, P,AP, L) where S is the finite set of
states, s0 ∈ S is the initial state, Act is the finite set of actions,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

P : S×Act → p(S) is the transition probability function, AP
is the finite set of atomic proposition, and L : S → 2AP is the
labelling function that provides the set of atomic propositions
that are true in a state. To denote the set of available actions
in a state s, we use the notation Act(s).
Continuous-time MDP (CTMDP). A CTMDP [Puterman,
2014] is defined as M = (S, s0,Act, P, λ,AP, L), where the
exit rate function λ : S × Act → R≥0 is introduced, while
all other notations remain consistent with those of a DTMDP.
Starting from the initial state s0, an agent selects actions that
lead to transitions between states according to the distribution
P . The time spent in a state s is governed by an exponential
distribution with exit rate λ(s, a), which depends on the cho-
sen action a. The probability of transitioning from state s
to another state within time t under action a is given by the
cumulative distribution function F (t|s, a) = 1− e−λ(s,a)t.

In a CTMDP, an infinite run is an ω-word:
(s1, (τ1, a1), s2, (τ2, a2), . . .) ∈ S × ((R≥0 × Act) × S)ω ,
where si ∈ S, ai ∈ Act(si), and τi is the time spent in si.
Finite runs are sequences (s1, (τ1, a1), . . . , (τn−1, an−1), sn)
for n ∈ N. The sets of infinite and finite runs in M are
denoted by RunsM and FRM, and runs starting from a
state s are RunsM(s) and FRM(s). For any r ∈ FRM,
last(r) represents its last state.

To handle non-determinism, a scheduler (or policy)
σ:FRM → D(Act) maps finite runs to probability distri-
butions over actions available in last(r). A scheduler is de-
terministic if it always chooses a single action (Dirac distri-
bution), and randomized otherwise. It is stationary if deci-
sions are always consistent for runs ending in the same state
and pure if both deterministic and stationary. The set of all
schedulers for M is ΣM. Under a scheduler σ, the CTMDP
becomes a continuous-time Markov chain (CTMC), denoted
Mσ , where the non-determinism is resolved and transitions
depend only on the current state, not on actions. The cumula-
tive distribution function under σ is Fσ(t|s) = F (t|s, σ(s)).
The sets of infinite and finite runs in Mσ are RunsMσ and
FRM

σ , analogous to their CTMDP counterparts.
The behavior of M under scheduler σ starting from state s

is defined over a probability space (RunsMσ (s), θ,PrMσ (s)).
Here, the sample space RunsMσ (s) is the set of runs from
state s, θ is the σ-algebra, and PrMσ (s) is the probabil-
ity measure. The σ-algebra θ is defined such that for each
π ∈ FRM

σ (s) contains the set

Cylσ(π) = {η ∈ RunsMσ (s)|∃η′ ∈ RunsMσ : η = π · η′},
called the cylinder set of the finite path π. The unique
probability measure PrMσ (s) is defined such that for each
π = (s1, τ1, . . . , τn−1, sn) ∈ FRM

σ (s), it holds that

PrMσ (s)(π) =
n−1∏
i=0

Pσ(si, si+1) · Fσ(τi|si).

Given a random variable f : RunsMσ → R, we use
EM
σ (s){f} to denote the expectation of f over the runs of

Mσ . Lastly, for n ≥ 1, we denote Xn, Yn, Dn, and Tn as the
random variables representing the n-th state, the action taken
from the n-th state, time-delay in the n-th state, and cumula-
tive time up to the n-th state, respectively, with D0 = T0 = 0.

Discounted Reward Objective. A rewardful CTMDP,
(M, rewD, rewC), extends a CTMDP with reward func-
tions rewD : S × Act × S → R for discrete rewards and
rewC : S × Act × S → R for continuous rewards. Tak-
ing action a from state s to s′ in t time units yields a re-
ward rewD(s, a, s′)+t·rewC(s, a, s

′), discounted by a factor
e−αt, where α > 0 is the discount parameter. The expected
discounted reward DRMσ

(s, α) from s∈S under σ∈ΣM is:

EM
σ (s)

[ ∞∑
n=1

e−αTn−1
(
rewD(Xn, Yn, Xn+1)

+

∫ Tn

Tn−1

e−α(t−Tn−1)rewC(Xn, Yn, Xn+1)dt
)]
.

Here, rewD(Xn, Yn, Xn+1) is the discrete reward for
transitioning from Xn to Xn+1 via action Yn, while
rewC(Xn, Yn, Xn+1) is the continuous reward accrued over
t− Tn−1, both discounted by e−αTn−1 .

3 Continuous-Time Reward Machines
A reward machine (RM) [Icarte et al., 2022] is a finite state
machine defined as RM = (U , u0,F , δu, δr), where:

• U is the set of states, u0 is the initial state, and F ⊆ U is
the set of final states.

• δu : U × 2AP → U is the transition function, and δr :
U → [S × Act × S → R] maps each state to a discrete
reward function.

Each RM state maps transitions to rewards. Final states,
though optional, can mark task completion. We extend RMs
with timing rates per state-action pair, forming continuous-
time reward machines.

A continuous-time reward machine (CTRM) is defined as
RC = (U , u0,F , δu, δr, δc, βr), extending the RM with:

• δc : U → [S × Act × S → R≥0], a continuous reward
function based on state and transitions in the MDP; and

• βr : U → [S × Act → R≥0], a rate function specifying
the timing behavior of state-action pairs, varying with
the state of the CTRM.

These extensions allow CTRMs to capture timing behavior
and event-dependent changes in the environment, providing a
richer framework for modeling continuous-time systems.

3.1 Product Construction
Given an MDP M=(S, s0,Act, P,AP, L) and a
CTRM RC=(U , u0,F , δu, δr, δc, βr), we define
their product MRC

as a CTMDP with the form
((S′ , s′0,Act

′, P ′, λ, L′,AP′), rewD, rewC), where:
• S′ = S × U ; s′0 = (s0, u0); Act′ = Act;
• P ′((s, u), a, (s′, u′)) equals P (s, a, s′) if u ∈ F and
u′ = u, or u /∈ F and u′ = δu(u, L(s)), and equals
0, otherwise;

• L′(s, u) = L(s); AP′ = AP;
• exit rate λ((s, u), a) equals βr(u)(s, a) if a ∈ Act′(s),

and is 0 otherwise; and
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• the reward functions are defined as:

rewD((s, u), a, (s′, u′)) = δr(u)(s, a, s
′), and

rewC((s, u), a) = δc(u)(s, a).

3.2 Q-Learning
The extension of Q-learning [Watkins and Dayan, 1992] from
DTMDP environments to CTMDPs was proposed in [Bradtke
and Duff, 1994]. The algorithm estimates the Q-value, rep-
resenting the expected total discounted reward for starting in
state s, taking action a, and subsequently following policy σ.
The Q-value for a discounted sum objective with discount
factor α is given as:

Qσ(s, a)=r(s, a)+
λ(s, a)

λ(s, a)+α

∑
s′∈S

P (s, a, s′)Qσ(s
′, σ(s′)),

where r(s, a) is defined as∑
s′∈S

P (s, a, s′) · rewD(s, a, s′) +
rewC(s, a, s

′)

α+ λ(s, a)
.

The optimal Q-value, Q∗(s, a), can be characterized as

r(s, a)+
λ(s, a)

λ(s, a)+α

∑
s′∈S

P (s, a, s′) max
a′∈Act

Q∗(s′, a′).

Q-learning uses stochastic approximation to estimate
Q∗ [Sutton and Barto, 2018]. For a transition (s, a, s′) with
delay τ , the Q-value update is:

Q(k+1)(s, a) := (1− θk)Q(k)(s, a) + θk

(
rew(s, a, s′)

+ e−ατmax
a′

Q(k)(s′, a′)
)
, (1)

where rew(s, a, s′) = rewD(s, a, s′)+ 1−e−αt

α rewC(s, a, s
′),

and θk ∈ [0, 1] is the learning rate. When the rate parameter
λ is known, we use this information instead of the sampled
delay τ , and the Q-update becomes:

Q(k+1)(s, a) := (1− θk)Q(k)(s, a)+

θk

(
r(s, a) +

λ(s, a)

λ(s, a) + α
max
a′

Q(k)(s′, a′)
)
. (2)

Equation 2 differs from Equation 1 in both the reward func-
tion and the discounting approach. Equation 1 uses rew,
which is based on sampled times, while Equation 2 uses r, re-
flecting the expected time spent. Similarly, the discounting in
Equation 1 relies on sampled times, whereas in Equation 2, it
is computed using the expected timing behavior of the model.
As the objective is to estimate the expected discounted value
of a state-action pair, Equation 2 converges faster by leverag-
ing the known rate information for more precise updates.

4 CTRM Based Reinforcement Learning
In this section, we explore three reinforcement learning ap-
proaches for solving the product CTMDP, each utilizing dif-
ferent levels of information from the CTRM.

The first approach applies a standard RL algorithm for CT-
MDPs, treating the problem as a black box. It does not ex-
ploit the structure of the CTRM and instead relies solely on
observed transitions and rewards to learn an optimal policy.
While general-purpose, this method requires extensive explo-
ration due to its lack of prior knowledge about the environ-
ment’s dynamics.

The second approach leverages the known structure of the
CTRM to improve learning efficiency. By generating coun-
terfactual experiences based on CTRM transitions, the agent
significantly expands its experience set, reducing reliance on
exhaustive exploration. Additionally, embedded rate infor-
mation is used to estimate expected state residence times, en-
abling more informed policy updates and faster convergence.
We focus on pure schedulers, which suffice to achieve opti-
mality under the discounted objective [Puterman, 2014].

The third approach introduces a novel reward shaping (RS)
framework specifically designed for CTRMs. Unlike prior
work on potential-based RS for DTMDPs with reward ma-
chines [Icarte et al., 2022; Ng et al., 1999], extending these
techniques to CTRMs is non-trivial due to continuous-time
dynamics and varying rate parameters. To address these chal-
lenges, we propose an automated RS scheme that is both prac-
tical and provably optimal. Our approach accommodates sce-
narios in which rate information is either known or unknown
to the agent, marking a significant advancement in reward
shaping for continuous-time systems.

Next, we provide a detailed explanation of these ap-
proaches, with an emphasis on the theoretical foundations and
empirical performance of the proposed RS framework.

4.1 RL on Product CTMDP
In the previous section, we discussed RL algorithms for CT-
MDPs. When a CTRM is combined with an unknown DT-
MDP environment, their product yields a CTMDP, as de-
scribed in Section 3.1. Our initial approach applies the RL
method from [Bradtke and Duff, 1994] directly to this prod-
uct CTMDP. This method uses a tabular RL algorithm that
iteratively updates Q-values for state-action pairs in the prod-
uct CTMDP. An episode—defined as a sequence of interac-
tions between the agent and the environment starting from the
initial state—consists of l steps in which the agent selects ac-
tions and observes outcomes. Over k episodes, the algorithm
selects actions using an RL policy (e.g., ϵ-greedy), observes
the next state and a sampled time τ , and updates Q-values
according to Equation 1. At the end of training, the optimal
policy is extracted by selecting, for each state, the action with
the highest Q-value.

4.2 Counterfactual Experience RL for CTRMs
While the previous method provides an effective RL algo-
rithm for CTMDPs, it does not fully utilize the known struc-
ture of the CTRM. Inspired by [Icarte et al., 2022], we pro-
pose a counterfactual experience-based RL algorithm that
leverages the transition dynamics of the CTRM to generate
multiple experiences from a single transition in the unknown
environment. Consider an unknown DTMDP environment
M paired with a CTRM RC . Each step taken by the agent
provides the information (s, u, a, τ, r, s′, u′), where:
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• s′ is the next state observed when taking action a from
state s in M,

• u′ is the next state in the CTRM, determined by the tran-
sition δu(u, L(s)),

• τ is the sampled time, based on the rate βr(u)(s, a), and
• r is the reward, computed as

r = δr(u)(s, a, s
′) + τ · δc(u)(s, a).

As noted in [Icarte et al., 2022], only the transition
(s, a, s′) is unknown; the remaining information (u, r, τ, u′)
is determined by the known CTRM structure. By leverag-
ing this, the agent generates counterfactual experiences—
alternative outcomes that simulate multiple scenarios. For
each observed transition (s, a, s′), the agent generates the
corresponding (u, r, τ, u′) for each state u ∈ U , where τ =

1
βr(u)(s,a)

, representing the expected time spent based on the
rate. We define the set of counterfactual experiences as:

CE(s, a, s′)=
⋃
u∈U

{(s,u,a,τ,rew(s, a, s′),s′,δu(u, L(s)))},

where rew(s, u, a, s′) = δr(u)(s, a, s
′) + δc(u)(s,a)

βr(u)(s,a)+α .

Counterfactuals via Sampling. When the rates
βr(u)(s, a) are unknown but the CTRM structure is
available, the agent approximates the expected time spent
in a state by sampling transition times over n trials and
averaging the results, 1

β̂r(u)(s,a)
= 1

n

∑n−1
i=0 τi. Using

this approximation, the agent generates counterfactual
experiences (u, r, τ, u′), where

r = δr(u)(s, a, s
′) +

δc(u)(s, a)

β̂r(u)(s, a) + α

and u′ = δu(u, L(s)). This approach enables counterfac-
tual updates based on the CTRM structure, even without di-
rect access to rates. These counterfactual updates involve us-
ing Equation 2 for Q-value updates, as the approximated rate
is used for each experience. The Q-values are updated for
all counterfactual experiences generated, ensuring efficient
learning. Details of the algorithm and its empirical evalua-
tion are provided in Section 5.

4.3 Reward Shaping for CTRMs
Reward shaping (RS), introduced in [Ng et al., 1999], is a
technique for DTMDPs that assigns additional rewards to en-
sure the same optimal solutions for the discounted objective
as in the original system while giving giving faster conver-
gence. By introducing intermediate rewards, this method re-
duces the sporadic nature of rewards, creating a more con-
tinuous signal to guide the agent effectively toward its goals.
This smoother feedback accelerates learning and mitigates se-
quences of uninformative actions.

The approach in [Ng et al., 1999] defines an RS function
F (s, a, s′) = γϕ(s′) − ϕ(s), where γ is the discount factor
and ϕ is a potential function over states. Adding F to the orig-
inal rewards preserves the optimal policy’s value. This idea
was extended in [Icarte et al., 2022] to reward machines for

discrete systems, where potential functions were computed
via value iteration over the reward machine.

Adapting this approach to CTMDPs, however, is more
challenging. Unlike DTMDPs, CTMDPs involve continuous
reward rates, as described in Section 2, where rewards and
discounting depend not only on transitions but also on the
time spent in each state. To address this complexity, we pro-
pose a novel RS function specifically for CTRMs and provide
theoretical guarantees of its correctness, ensuring it preserves
the optimal policy under the discounted reward objective.

As outlined in Section 3.2, our RL algorithm uses two Q-
learning update equations (Equations 1 and 2) depending on
the availability of rate information. The reward shaping (RS)
function is accordingly defined in two forms. Below, we de-
scribe the general structure of the RS function and its varia-
tions based on the specific RL implementation.

Formally, the RS function comprises of two compo-
nents—one for scalar rewards and one for continuous re-
wards—defined as FS : S × Act × T × S → R and
FC : S × Act × T × S → R. For a transition (s, a, τ, s′),
where τ is the sampled time, the RS functions are given by:

FS(s, a, τ, s
′) = γ(s, a, τ ) · ϕS(s

′)− ϕS(s),

FC(s, a, τ, s
′) =

1

ω(s, a, τ )

(
γ(s, a, τ ) · ϕC(s

′)− ϕC(s)
)
,

where ϕS and ϕC are potential functions over states. The
functions γ : S × Act × T → R and ω : S × Act × T → R
vary based on the Q-learning update equation.
RS when the rates are unknown. When the rate λ(s, a) is
unknown to the agent, we use the Q-update equation 1. In this
case, the functions γ and ω are defined based on the sampled
time τ as γ(τ) = e−ατ and ω(τ) = 1−e−ατ

α , here α is the
discount parameter. These definitions rely on observed tran-
sitions, ensuring that the RS functions integrate seamlessly
with the RL algorithm.
RS when the rates are known. If the rate λ(s, a) is known,
we use the Q-update equation 2. Here, γ and ω are based
on the expected behavior of the model rather than the sam-
pled time. Specifically, γ(s, a) = λ(s,a)

α+λ(s,a) and ω(s, a) =
1

α+λ(s,a) . This approach leverages the additional rate infor-
mation to improve accuracy.
Theorem 1. Given a CTMDP M with scalar and contin-
uous reward functions rewD and rewC , and reward shap-
ing functions FS and FC , the optimal policies for the dis-
counted reward objective remain unchanged. Specifically,
for the rewardful CTMDPs MR = (M, rewD, rewC) and
M′

R = (M, rewD + FS , rewC + FC), the optimal policies
are identical.

Proof Sketch. In summary, the RS functions FS and FC are
designed to ensure that the cumulative reward difference be-
tween any two policies remains invariant. This invariance
guarantees that the ranking of policies under the discounted
reward objective is unaffected, preserving the optimal policy.
This result is established through algebraic manipulation of
the Q-value equations for both cases, demonstrating that the
additional rewards introduced by FS and FC do not alter the
value of the optimal policy.
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Theorem 1 establishes that adding rewards of the form FS

and FC does not alter the optimal policies. We now discuss
how to construct such a reward shaping function within a re-
inforcement learning (RL) framework.

As defined, FS and FC for a transition (s, a, t, s′) depend
on the exit rate λ(s, a) or the sampled time t, as well as po-
tential functions ϕS and ϕC . The CTRM framework provides
the agent with either the rate associated with each state-action
pair or with the sampled transition time, enabling computa-
tion of γ(s, a, t) and ω(s, a, t) dynamically during execution.

To compute the potential functions ϕS and ϕC , we adopt
the approach from [Icarte et al., 2022], applying value it-
eration over the reward machine with a fixed discount fac-
tor. This process assigns a value V (q) to each state q in the
reward machine, which is then used to define ϕS(s, q) and
ϕC(s, q) for each product CTMDP state (s, q). Specifically,
we set ϕS(s, q) = ϕC(s, q) = V (q), where V (q) is obtained
through value iteration on the CTRM.

For simplicity, we assume here that the rewards δc and δr
are functions of the form U × 2AP → R. This simplifica-
tion is necessary in the absence of prior knowledge about the
environment’s states for value iteration. However, if specific
reward values for each state in the reward machine are known
in advance, this restriction is not needed.

Reward shaping aims to enhance the guidance provided
to the agent by adjusting the rewards assigned by the re-
ward machine. Instead of relying solely on the origi-
nal rewards, δc and δr, shaping introduces adjusted re-
wards: δc(s, a, s′) + FC(s, a, s

′) for continuous rewards and
δr(s, a, s

′) + FS(s, a, s
′) for discrete rewards. Since reward

shaping only modifies rewards, it integrates seamlessly with
both RL approaches discussed earlier.

5 Experimental Results
In this section, we evaluate the performance of our proposed
approaches across benchmark environments to assess their
efficiency and effectiveness1. Each benchmark consists of
an unknown DTMDP environment and a CTRM specifying
the objective, with different levels of information available
to the learning agent. We compare three approaches: (1)
Baseline RL, which applies tabular Q-learning to the product
CTMDP without leveraging CTRM information, (2) Coun-
terfactual RL, which utilizes the CTRM structure to generate
counterfactual experiences, and (3) Counterfactual RL with
Sampling, which estimates rates dynamically when only the
CTRM structure is known. Each method is evaluated both
with and without reward shaping (RS). While we use tabular
Q-learning to isolate the effects of CTRMs, counterfactual
updates, and shaping, the framework is modular and compat-
ible with deep RL and model-based CTMDP solvers, as it
operates purely on sampled transition data.

For all experiments, we set the discount parameter α =
0.001 and learning rate θ = 0.1. The RL algorithms fol-
low an ϵ-greedy exploration strategy, with ϵ initially set to
0.7 and decaying exponentially at a rate of 0.01 to transition

1Our implementation can be accessed at: https://github.com/
falahamin1/Continuous-Time-Reward-Machines.git

from exploration to exploitation. Figure 2 presents the perfor-
mance of each approach across four benchmarks. The Y-axis
represents the average reward per step as a ratio of the opti-
mal value (normalized to 1 using value iteration), while the
X-axis shows the number of episodes. We conduct 10 inde-
pendent runs and report the median performance with shaded
regions indicating the 25th and 75th percentiles. Each graph
includes results for six approaches: the three methods with
and without reward shaping. Next, we provide descriptions
and performance analysis of our benchmarks.
1) Autonomous Vehicle in Urban Environment. This
benchmark, introduced in Section 1, models an autonomous
vehicle navigating a stochastic gridworld (121 states) with
varying traffic rates. The CTRM (3 states) encodes the ob-
jective of collecting a package and delivering it to a hospital.
As shown in Figure 2(a), the baseline RL approach struggles,
even with reward shaping. Counterfactual RL methods per-
form significantly better, with reward shaping further acceler-
ating convergence. Notably, counterfactual RL with sampling
performs comparably to the full-information variant, despite
lacking rate information.
2) Firefighter and Traffic Coordination. This benchmark
models an urban scenario where a firetruck and a car must
navigate interdependent routes to reach their respective des-
tinations. The firetruck’s movement initially slows traffic,
impacting the car’s progress until the path is cleared. The
CTRM encodes this objective by rewarding successful se-
quential task completion and adjusting movement rates based
on traffic dynamics. The environment comprises 64 states
with a 4-state CTRM. As shown in Figure 2(b), all meth-
ods perform poorly without reward shaping. However, with
reward shaping, performance improves significantly, with
counterfactual approaches achieving superior results.
3) Synchronized Firefighter and Traffic System. This
benchmark extends the Firefighter and Traffic Coordination
scenario by introducing synchronous decision-making, where
both the firetruck and the car select their actions simultane-
ously rather than sequentially. The CTRM encodes the objec-
tive of reaching their respective destinations while accounting
for the dynamic traffic conditions influenced by their joint
movement. As shown in Figure 2(c), counterfactual methods
outperform the baseline RL approach by effectively utilizing
structural information. However, unlike other benchmarks,
reward shaping does not provide a significant acceleration.
4) Treasure Hunt. Inspired by [Rens and Raskin, 2020],
this benchmark models an amateur treasure hunter exploring
a 121-cell gridworld to locate a hidden treasure and sell it
for profit. The agent must first obtain a map to reveal the
treasure’s location. After acquiring the map, the agent can
choose between two options: purchasing basic digging tools
at a lower cost or investing in both tools and a horse, which
allows for faster travel but at a higher expense. The CTRM
(7 states) encodes these sequential objectives and associated
rewards, with different travel rates depending on the agent’s
choices. As shown in Figure 2(d), counterfactual approaches
perform well with or without reward shaping. However, the
baseline RL method improves significantly with reward shap-
ing but struggles without it.
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Figure 2: Comparison of the three reinforcement learning approaches—Classic, Counterfactual, and Counterfactual with Sampling—across
the following benchmarks: (a) autonomous vehicle in an urban environment, (b) firefighter and traffic coordination, (c) synchronized fire-
fighter and traffic system, and (d) treasure hunt environment.

Key Takeaways. Our experimental evaluation highlights
several key trends. Counterfactual approaches consistently
outperform the baseline RL method across all benchmark en-
vironments. Reward shaping is shown to play a pivotal role
in accelerating learning and enhancing convergence in most
scenarios, but does not show much improvement for bench-
marks with small CTRMs. Finally, counterfactual RL with
sampling, despite lacking rate information, achieves perfor-
mance comparable to the full-information counterfactual ap-
proach, underscoring its effectiveness even in situations with
partial information.

6 Related Work
The use of structured rewards in reinforcement learning
has been extensively studied, particularly in the context of
discrete-time Markov decision processes (DTMDPs). Re-
ward machines, introduced in [Icarte et al., 2022], provide a
modular and formal framework for specifying learning objec-
tives using deterministic finite automata, where reward func-
tions are associated with automaton states. Building on [Ng et
al., 1999], reward shaping techniques tailored for reward ma-
chines were also proposed. Further improvements in shaping
methods appear in [Gupta et al., 2023].

Several works have explored formal structures for spec-
ifying rewards in RL. Logic-based frameworks have been
used to define objectives [Sadigh et al., 2014; Camacho
et al., 2019; Li et al., 2017; Jothimurugan et al., 2019;
Jiang et al., 2021; Vaezipoor et al., 2021], while automata-
based approaches have been applied in [Hahn et al., 2019;
Icarte et al., 2022; Hahn et al., 2023; Hahn et al., 2024],
including domains such as autonomous driving [Huang et
al., 2023]. Non-Markovian rewards have also been studied
through temporal logic [Brafman et al., 2018; Giacomo et al.,
2020] and active learning [Rens and Raskin, 2020]. Notably,
all of these approaches assume DTMDPs as the environment
model, leveraging their discrete-time structure.

Reinforcement learning algorithms for CTMDPs were first
introduced in [Bradtke and Duff, 1994]. Although CT-
MDPs have been extensively studied in the formal meth-
ods community for various objectives [Baier et al., 2005;

Rabe and Schewe, 2011], these works typically assume full
knowledge of the model, rather than learning directly from in-
teraction with the environment. More recently, RL algorithms
targeting specific objectives in continuous-time domains have
emerged. For example, RL for omega-regular objectives in
unknown CTMDPs was studied in [Falah et al., 2023], while
similar objectives were explored in semi-MDPs in [Oura and
Ushio, 2022]. To the best of our knowledge, no prior work
has adapted reward machines specifically for continuous-time
settings. Our work addresses this gap by extending the reward
machine framework to continuous-time domains, providing
a structured mechanism for specifying learning objectives in
environments with continuous dynamics.

7 Conclusion
This paper introduces continuous-time reward machines
(CTRMs) as a novel framework for modeling rich temporal
and reward dynamics in continuous-time systems. We pro-
pose a Q-learning algorithm for scenarios where both the
CTRM structure and rates are unknown, providing a robust
baseline for black-box reinforcement learning. By leverag-
ing CTRM structure, we accelerate policy learning through
counterfactual experiences, introducing methods for both full
and partial information settings, including a sampling-based
approach for approximating unknown rates. We further ex-
tend reward shaping to continuous-time domains, offering
formal correctness guarantees and an implementation com-
patible with CTRMs. Empirical evaluations across diverse
benchmarks demonstrate the effectiveness and versatility of
our methods, highlighting their potential to advance the state
of the art in continuous-time reinforcement learning. These
contributions lay the groundwork for structured, modular, and
explainable RL in real-time and safety-critical systems.
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