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Abstract

Multimodal emotion recognition in conversations
(MERC) aims to infer the speaker’s emotional state
by analyzing utterance information from multiple
sources (i.e., video, audio, and text). Compared
with unimodality, a more robust utterance repre-
sentation can be obtained by fusing complemen-
tary semantic information from different modal-
ities. However, the modality missing problem
severely limits the performance of MERC in prac-
tical scenarios. Recent work has achieved impres-
sive performance on modality completion using
graph neural networks and diffusion models, re-
spectively. This inspires us to combine these two
dimensions through the graph diffusion model to
obtain more powerful modal recovery capabilities.
Unfortunately, existing graph diffusion models may
destroy the connectivity and local structure of the
graph by directly adding Gaussian noise to the adja-
cency matrix, resulting in the generated graph data
being unable to retain the semantic and topologi-
cal information of the original graph. To this end,
we propose a novel Graph Spectral Diffusion Net-
work (GSDNet), which maps Gaussian noise to the
graph spectral space of missing modalities and re-
covers the missing data according to its original
distribution. Compared with previous graph diffu-
sion methods, GSDNet only affects the eigenvalues
of the adjacency matrix instead of destroying the
adjacency matrix directly, which can maintain the
global topological information and important spec-
tral features during the diffusion process. Exten-
sive experiments have demonstrated that GSDNet
achieves state-of-the-art emotion recognition per-
formance in various modality loss scenarios.

1 Introduction

Multimodal emotion recognition in conversations (MERC)
aims to build an emotion recognition model with cross-

*Corresponding author

Forward: dX, = f(X,, t)dt + 0,dB;

®< ”

Reversed: dX, = [f(X,,t) — 6?Vxlogp,(X,)]dE + o,dB,
(a) Diffusion process on the image

Forward: dA, = f(A,, t)dt + ¢,dB,
(G)== (&) (@)

@ ®)
Reversed: dA; = [f(A,, t) — 0?V,logp,(A,)]dE + 0,dB;
(b) Diffusion process on the graph

(@<

Figure 1: Illustration of the difference between images and graphs
in the diffusion processes.

domain understanding, reasoning, and learning capabilities
by integrating video, audio, and text data [Li et al., 2023],
[Tsai er al., 2019]. MERC research mainly focuses on how to
effectively encode discriminative representations from differ-
ent modalities and achieve more accurate information fusion
and analysis [Ramesh er al., 20211, [Ding et al., 2023].

However, the modality missing problem is unavoidable in
the real world, and it may severely degrade the performance
of multimodal understanding models [Wang et al., 2023a].
For example, the text modality may fail due to environmen-
tal noise interference, resulting in the inability to obtain valid
text information. The acoustic modality may lose part of the
sound information due to sensor failure. The visual modality
may be affected by factors such as poor lighting conditions,
object occlusion, or privacy protection requirements, result-
ing in the inability to obtain image or video data. Therefore,
how to design and optimize a multimodal emotion recogni-
tion model for conversation that can cope with modality loss
has become an important direction of current research [Wang
et al., 2024], [Zhang et al., 2024].
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Recently, graph neural networks (GCNs) and diffusion
generative models (DGMs) have shown outstanding perfor-
mance in multiple tasks such as vision, and language [Hu et
al., 20211, [Jo et al., 2022]. The core of GCNs is message
passing based on graph structure to establish complex depen-
dencies. The core of DGMs is forward denoising and back-
ward denoising to learn the original distribution of data. Con-
sidering the potential of GCNs and DGMs, some researchers
have tried to apply GCNs and SGMs to modality comple-
tion. They alleviate the impact of modality loss on multi-
modal emotion recognition performance from different per-
spectives. For GCNs, [Lian er al., 2023] applied graph com-
pletion networks to model semantic dependencies between
different modal data to achieve modal recovery. For DGMs,
[Wang er al., 2024] proposed modal diffusion to learn the
original distribution of data to achieve modal recovery. All
of the above methods have shown significant results because
they have strong modeling capabilities in their respective di-
mensions. Specifically, GCNs and DGMs respectively model
the dependence and distribution between multi-modal data to
achieve modal recovery. Generally, fusing complex seman-
tic information between multi-modal features and capturing
the original distribution of multi-modal data are crucial for
emotion recognition performance in missing modalities. This
inspires us to combine these two dimensions to obtain more
powerful modal recovery capabilities.

However, unlike visual data, which has dense structural
information, the structure of graph data is generally sparse,
causing the data generated by the graph diffusion model to
be unable to retain the topological information of the original
graph. As shown in Fig. 1, the image perturbed by Gaussian
noise still retains recognizable numerical patterns and local
structural information in the early and middle stages of for-
ward diffusion. For example, even if the details of the image
are gradually covered by noise, its global contour and edge
information can still be captured by the model to a certain
extent. This enables the model to effectively restore the con-
tent of the image using this residual information during the
reverse diffusion process. However, during the forward dif-
fusion of graph data, the topological structure of the graph
adjacency matrix is rapidly lost and a dense noise matrix is
formed. Intuitively, the diffusion method of inserting Gaus-
sian noise into the graph adjacency matrix seriously under-
mines the ability to learn the graph topology and feature rep-
resentation. From a theoretical perspective, running diffu-
sion over the entire space of the adjacency matrix will cause
the signal-to-noise ratio (SNR) to drop rapidly and approach
zero. Since the SNR is basically zero, the scoring network
will not be able to effectively capture the gradient informa-
tion of the original distribution during training.

To overcome these problems, we propose a novel Graph
Spectral Diffusion Network (GSDNet) to strictly restrict the
diffusion of Gaussian noise to the spectral space of the ad-
jacency matrix. Specifically, we perform eigendecomposi-
tion on the adjacency matrix, decomposing it into eigenvalue
matrix and eigenvector matrix and adding Gaussian noise to
the eigenvalues without interfering with the eigenvectors. On
the one hand, by operating the eigenvalues in the spectral
space, the direct destruction of the local structure of the ad-

jacency matrix can be effectively avoided, ensuring the gen-
erated graph still conforms to the global semantics. On the
other hand, this constrained diffusion process can more natu-
rally capture and preserve the topological information of the
graph, ensuring that the generated graph has consistent spec-
tral features. Overall, our contributions are as:

* We design a novel modality completion model, the
Graph Spectral Diffusion Network (GSDNet), which
can simultaneously model the dependencies between
multimodal features and the distribution of original data
to obtain powerful modality recovery capabilities.

We strictly limit the diffusion of Gaussian noise in the
spectral space of the adjacency matrix to avoid the de-
struction of the graph structure and ensure that the graph
data generated by GSDNet still conforms to the global
semantics.

We conduct extensive experiments on multiple real-
world datasets to demonstrate that our GSDNet outper-
forms state-of-the-art methods for conversational emo-
tion recognition in incomplete multimodal scenarios.

2 Related Work

2.1 Incomplete Multimodal Learning

In practical applications, missing modalities are an inevitable
problem. To address this challenge, an effective approach is
to find a low-dimensional subspace that can be shared by all
modalities, in which the correlation between different modal-
ities is maximized. However, strategies based on shared low-
dimensional subspaces often ignore the complementarity be-
tween heterogeneous modalities. To overcome this shortcom-
ing, another more effective approach is to restore the miss-
ing modality through the existing modality. This process not
only requires inferring the content of the missing modality
based on the features of the known modality but also en-
sures that the restored modality can work together with other
modalities. Existing modality restoration methods can be
divided into several types, including zero-based restoration
[Parthasarathy and Sundaram, 2020], average-based restora-
tion [Zhang et al., 2020], and deep learning-based restora-
tion [Pham et al., 2019]. Since zero-filling and average-based
restoration methods do not use any supervised information,
the data they restore often have a significant gap with the
original data. In contrast, deep learning-based methods, with
their powerful feature learning capabilities, can more accu-
rately estimate the missing modality. For example, Tran et al.
[Tran et al., 2017] used a cascaded residual autoencoder to re-
store the missing modality, and the network’s residual learn-
ing mechanism made the restoration effect more accurate.
In addition, some researchers have proposed deep learning
methods based on cross-modal restoration strategies, using
cycle consistency loss to ensure the matching degree between
the restored modality and the original modality [Zhao et al.,
2021]. Other studies use graph neural networks (GNNs) to
solve the modality restoration problem. For example, Lian
et al. [Lian er al., 2023] introduced a graph neural network
framework and combined the relationship between nodes and
edges to enhance the correlation between modalities.
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2.2 Score-based Generative Models

Score-based generative models (SGMs) estimate the proba-
bility distribution of data by parameterizing the score function
[Song and Ermon, 2019], [Song and Ermon, 20201, [Song et
al., 1. Specifically, SGMs model the scoring network s(z; 6)
through learnable parameters 6, thereby training the model
to estimate V,logp(z). Unlike likelihood-based genera-
tive models (e.g., regularized flows [Kingma and Dhariwal,
2018]), score-based generative models do not require regular-
ization of the generation process. Specifically, in likelihood-
based methods, model training usually relies on maximiz-
ing the likelihood function, which means that regularization
terms need to be introduced to prevent overfitting and ensure
model stability. In contrast, SGMs estimate the gradient of
the data distribution by optimizing the score function. This
approach usually does not require explicit regularization and
reduces the complexity of model training. In addition, SGMs
only need to focus on estimating the gradient of the data dis-
tribution by learning the score function, avoiding the com-
plexity of accurately modeling the entire distribution process.

3 Preliminary Information

3.1 Score-based Generative Models

SGMs are efficient generative models that can generate high-
quality data and model complex data distribution. Given an
input X € R? and a complicated data distribution D, a for-
ward noising process can be obtained through a stochastic
differential equation (SDE) as follows:

X() ~ D,dXt == f()(t7 t)dt -+ O'tde, te [0, 1] (1)

where o, the diffusion coefficient, B represents the Brownian
motion.

Assuming that p; is a probability density function, the re-
verse denoising process can be established through the re-
versed time SDE as follows:

de, = (f(Xt7 t) N J?V logpf(xt))df—o— UtdBt

_ )
X ~ Xy, t€[0,1]

where df = —dt is the negative infinitesimal time step, B is
the reversed time Brownian motion.

In the reverse denoising process, the scoring network
s(X(t),t; 0) provides gradient information for the current
noise sample X, indicating how to adjust the value of the
sample so as to gradually restore the original data distribu-
tion. During the training process, the scoring network is to
minimize the gap between the model estimated score func-
tion and the true score function through the score matching
loss function as follows:

Ls = Einuo,r)[Ex, %, [s(X (1), £;0) — Vx, logpt(Xt\Xo)H(%])
where U (0,T') is a uniform distribution over [0,T]. Given
a well-trained scoring network sg-, we can generate realistic

data by solving the learned reverse-time SDE as follows:
dX; = (f(X¢,t) — 07 se= (X;))dE + o:dB; @
Xl ~T, te [0,1]

where 7 is the prior information of the data.

3.2 Score-based Graph Generative Models

In the graph generation model, given a graph G(X,A) €
R7*d % R™*™ with n nodes, where X € R™*4 is the feature
vectors of each node with dimension d , and A € R™*"™ is
the connection relationship between nodes. The goal of the
graph generation model is to learn the underlying data distri-
bution of the graph, A standard Graph Diffusion Score-based
Model [Jo et al., 2022], [Luo et al., 2023] gradually gen-
erates a perturbation graph through a diffusion process and
learns the generation process of the graph through a scoring
network. Specifically, given each graph sample (X, A), a for-
ward noising process is obtained through an SDE as follows:

dX; = £% (X4, t)dt 4+ ox +dBY s

dA; = f4 (A, t)dt + o4 dB; ®

where ox 4, and o 4 ; the diffusion coefficient, B!, and Bi¥
represent the Brownian motion.

Assuming that p; is a probability density function, the re-
verse denoising process can be established through the re-
versed time SDE as follows:

dXt = (fX (Xt, t) — O'ggytVX lngt(Xt, At)) dt_-f— O'X,tdBi(
dAt = (fA(At, t) — O",qutVA lngt(Xt, Af)) dlt-‘r (J'A,jgd.:Bz4
(6)
where B}, and B¥ represent the reversed time Brownian
motion.

Given Gy, the joint probability distribution of X; and A,
can be simplified to the product of two simpler distributions
o er al., 2022], so that the objective function of denoising
score matching can be simplified in form as follows:

L =Eeuo,mEc,cllse — Vlogpyo(Xe|Xo)|?

@)
L2 =EivomEc,icllse — Viogpio(AdlAo)|?

4 Problem Definition

Assume that the set {X;,Xas,..., X/} represents the M
modalities, where X, represents the input of the k-th modal-
ity. We introduce a binary indicator o € {0, 1} to identify the
availability status of each modality. If the k-th modality is
missing, let o, = 0; conversely, if the k-th modality is avail-
able, let o, = 1. We can define a set of missing modalities
T, = {klag, = 0}. In this incomplete modality scenario,
the goal is to recover these unobserved modalities to make up
for the missing information. The process of modal recovery
usually needs to rely on the existing observed modal infor-
mation Z, = {k|ay = 1}, and complete it by modeling the
correlation between modalities.

Our main idea is to recover the missing emotion modal-
ity Z,, from its latent distribution space conditioned on the
observed modality Z,. We use the observed modality Z, as
a semantic condition to guide the generation of the missing
modality, ensuring that the recovered modality data is con-
sistent and relevant to the real data. Formally, we denote the
data distribution of the missing modality as p(X,,) and the
data distribution of the available modality as p(Xz,_ ). Our ul-
timate goal is to sample the missing modality data from the
conditional distribution p(X,,,|Xz, ). Inspired by graph com-
pletion networks [Lian et al., 2023] and diffusion modality
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Figure 2: The framework of GSDNet. Given incomplete input data, GSDNet encodes shallow features through 1D-Conv and combines
position embedding information. In the missing modal graph diffusion network, we sample from the prior noise distribution and add it to the
node features and diagonal eigenvalues, and then solve the inverse time diffusion through the score model to denoise the features to generate
new samples. Finally, the reconstructed features are used as complete data to predict the emotion label.

generation [Wang et al., 2024], we combine the advantages
of GNNs and diffusion models to simultaneously model the
complementary semantic information between modalities and
reconstruct high-quality missing modality features.

However, directly adding Gaussian noise to the adjacency
matrix may seriously destroy the local structure of the graph,
resulting in an unreasonable generated adjacency matrix. To
overcome these problems, we propose to strictly restrict the
diffusion of Gaussian noise to the spectral space of the ad-
jacency matrix. On the one hand, by operating the eigenval-
ues in the spectral space, the direct destruction of the local
structure of the adjacency matrix can be effectively avoided,
ensuring that the generated graph still conforms to the global
semantics. On the other hand, this constrained diffusion pro-
cess can more naturally capture and preserve the topological
information of the graph, ensuring that the generated graph
has good connectivity and consistent spectral features.

Specifically, we consider a multi-step diffusion model to
gradually construct the conditional distribution by perturbing
X,, and A,,, where A,, = U,,A,,U,,, U are the eigenvec-
tors and A is the diagonal eigenvalues. In the ¢-th step, the
conditional transfer distribution of the modal features and the
adjacency matrix can be expressed as p; (X, (t)| Xz, (0)) and
pt(Apm (t)|Az, (0)) and can be approximated as follows:

Pe(Xn ()| Xz, (0))
= /pt(Xm(t)IXIo(t)aXIO(O))Pt(Xzo(t)IXIO (0))dXz, (¢)

~ / P (X () Xz, () pe(Xz, () [ Xz, (0))dX 1, (¢)
Pe(Am(t)[Az,(0))
= /pt(Am(t)lAzo(t)yAIO(0))pt(AIo(t)IAIo(O))dAIo(t)
~ /pt(Am(t)\AIO(t))pt(Azo(t)lAIo(O))dAIo(t)

®

According to the score-based diffusion model [Jo et al.,
2022], we calculated the conditional transition probability

score py(Xom (1)[Xz,(0)) and p; (A

Vx,, 1og pe (X (8)| Xz, (0))

R Vo logEp, (x7, (6)1%z, (0)) [Pe(
~ Vx,, log pe (X (1) Xz, (1))

= Vx,, log pe([Xum (t); Xz, (1)])
VA 10g pe(Am ()| Az, (0))

~ Vam logEp, (a7, ()1Az, 0)) [Pr(Am ()| Az, (1))]
~ Va, logpe(Am(t)|Az, (t))

=V logpe([Am(t); Az, (1)])

where Xz (t) and Az (t) is a random sample from

p+(Xz, (t))|Xz,(0)) and p:(Az, (t))|Az,(0)), respectively.
Eq. 9 is held because:

Vx,, log pt([Xm(t); Xz, (t)])

m(t)| Az, (0)) as follows:

Xon (1) Xz, (1))]

(C)]

= Vx,, g pt(Xm (8)[Xz, (1)) + Vx,, log pe(Xz, (1))

= V3, 0g pe(Xon (8) Xz, (1) w0
V., log pe([Am(t); Az, (1)])

= Va,, logpi(Am(t)[Az,(t) + Va,, logpi(Az, (1))

= Va,, logpi(Am(t)|Az, (1))

Finally, we derive the score-matching objective as follows:
£2=Ex, 1o m B lI50 — V10g pro(Xom ()] Xz, (0))]*
‘C¢ EAI Aoy t~U(0, T)EGt\GHstb - VIngtlo( m(t)| Az, (0 )H2

an

S The Proposed Method

5.1 Modality Encoder

Since the original features of text, audio, and video modali-
ties usually have significant dimensional differences, directly
using the original features of the modalities to recover miss-
ing modalities may lead to difficulties in semantic alignment
or even introduce noise.To ensure that the unimodal sequence
representations of the three modalities can be mapped to in
the same feature space, we input these modalities into a one-
dimensional convolutional layer to achieve feature alignment:

X!, = ConvlD (Xp,lm) € RV m e {t,a,v} 12)



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

where [,,, represents the size of the one-dimensional convolu-
tion kernel corresponding to the m-th modality. IV represents
the number of utterances in the conversation. d represents the
dimension of the common feature space.

To make full use of the position and order information in
the sequence, we introduced position embedding when pro-
cessing the sequence after convolution:

PE(pos,Zi) = sin ( pos )

100002/

o (13)
PE(pos,2i+1) = COS (W)

where pos represents the index of the sequence, and dimen-
sion ¢ represents the index of the feature dimension.

Overall, we feed position embeddings into a convolutional
sequence as follows:

X, =X, +PE (14)

5.2 Missing Modality Graph Spectral Diffusion
Network

We train two scoring networks sy and s4 to model the distri-
bution of missing modalities m € Z,,, respectively. Similar
to score-based diffusion [Jo et al., 2022], the corresponding
inverse-time SDE can be derived as follows:

dX, = (£(X},, 1) — 0x.080(Xim, X7, £ 0))dE + 0 x 1 dB

A7, = (E(A% ) = 0R 56 (Afn, Al 1:00))dE + 0 B
15)
The core of Eq. 15 is to guide the inverse diffusion process
through the trained score network, gradually transforming
random noise into missing modal data consistent with the true
distribution. We assume that the language modality X;, the
visual modality X,,, and the corresponding diagonal eigen-
values A; and A, are observed, while the acoustic modality
X, and the corresponding diagonal eigenvalues A, are miss-
ing. Our goal is to model the missing acoustic modality X,
and A, and recover their data through the score network sg
and s, conditioned on X, X,,, A; and A, as follows:

X5 (t— At) = X5 (t) — (X5, t)
+ ox150(X (1), [X1; X0 ] (t), t; 0a) At
+ox,t mex,t

ALt — At) = AL (t) — £(AL,, 1)

+ 0,80 (AL (1), [AL; AL)(), 1 0) AL + oa oV Atey

(16)

where At is a discrete time step size and ¢; ~ N(0, ). Af-
ter enough iterations, we can gradually guide the noise data
to approach the target distribution and finally obtain the re-
stored acoustic modal data X/ and the corresponding di-
agonal eigenvalues A/,. To generate more refined acoustic
modalities, we input the restored acoustic data za into a spe-
cially designed acoustic modal reconstruction module Dx
and diagonal eigenvalues reconstruction module Dy to ob-

tain the final reconstructed acoustic modal X, = Dx (X/,)

and diagonal eigenvalues A, = Dj(A’). We define a re-
construction loss function £,.. to measure the difference be-

tween the reconstructed data and the original target modal

data under any missing patterns as follows:

Lrec = Z HXL - Xz
Ty

S

2 A A 2
A=Al an

Therefore, the loss of the missing modality graph diffusion
network is as follows:

Lumiss = Lrec + LS + L2 (18)

5.3 Multimodal Fusion and Prediction

The recovered data and the observed available data are com-
bined to obtain the complete multimodal data H and the ad-
jacency matrix A. To achieve the fusion of multimodal data,
we use GCN to capture the complementary semantic infor-
mation between the modalities as follows:

HTY = ReLUAHOWO) (19)

where W) is the learnable weight matrix of the I-th layer.

To train the entire model, we combine the losses of the
above reconstruction and prediction tasks into a joint opti-
mization objective function as follows:

£total - ﬂﬁmiss = »Cprcd (20)

where £ is a hyperparameter.

6 Experimental Database and Setup

6.1 Datasets

We conduct extensive experiments on two MERC datasets to
conduct experiments, including CMU-MOSI [Zadeh et al.,
2016], and CMU-MOSEI [Zadeh et al., 2018]. On the two
datasets, we extract the lexical modality features via pre-
trained RoBERTa-Large model [Liu et al., 2019] and obtain
a 1024-dimensional word embedding. For visual modality,
each video frame was encoded via DenseNet model [Huang
et al., 2017] and obtain a 1024-dimensional visual feature.
The acoustic modality was processed by wav2vec [Schneider
et al., 2019] to obtain the 512-dimensional acoustic features.

6.2 Baselines

We compare our proposed method GSDNet to the state-
of-the-art incomplete learning methods, including MCTN,
MMIN [Zhao et al., 20211, GCNet [Lian et al., 2023], DiC-
MoR [Wang er al., 2023a], IMDer [Wang et al., 2023b].

7 Results and Discussion

7.1 Comparison with the state-of-the-arts

Tables 1 and 2 lists the quantitative results of the different
missing modalities and the random missing ratio on CMU-
MOSI and CMU-CMSEI datasets, showing the performance
of different methods under the missing modal. Specifically,
GSDNet achieved the best results on the two datasets, ver-
ifying its superiority in dealing with modal missing. The
performance improvement of GSDNet may be attributed to
its ability to explicitly restore the missing modality, which
not only helps to restore the lost information but also pro-
vides additional complementary information for MERC. In
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Datasets \ Available \ MCTN MMIN GCNet DiCMoR IMDer GSDNet (Ours)
{1} 79.1/79.2/41.0 83.8/83.8/41.6  83.7/83.6/42.3 84.5/84.4/44.3 84.8/84.7/44.8  86.4/86.6/45.7

{v} 55.0/54.4/16.3 57.0/54.0/15.5 56.1/55.7/16.9  62.2/60.2/20.9 61.3/60.8/22.2  64.1/63.7/25.3

{a} 56.1/54.5/16.5 55.3/51.5/15.5 56.1/54.5/16.6  62.2/60.2/20.9 62.0/62.2/22.0  64.4/64.1/24.6

CMU-MOSI {l,v} 81.1/81.2/42.1 83.8/83.9/42.0 84.3/84.2/43.4 85.5/85.4/45.2 85.5/85.4/45.3  86.5/86.4/46.7
{l,a} 81.0/81.0/43.2 84.0/84.0/42.3 84.5/84.4/43.4 85.5/85.5/44.6 85.4/85.3/45.0  86.7/86.6/46.8

{v,a} 57.5/57.4/16.8 60.4/58.5/19.5 62.0/61.9/17.2 64.0/63.5/21.9 63.6/63.4/23.8  65.2/64.8/24.9

{l,v,a} | 81.4/81.5/43.4 84.6/84.4/44.8 85.2/85.1/44.9 85.7/85.6/45.3 85.7/85.6/45.3  87.7/87.3/46.8

Average | 70.2/69.9/31.3 72.7/71.4/31.6 73.1/72.8/32.1 75.4/75.1/34.7 75.5/75.3/35.5  77.3/77.1/37.3

{l} 82.6/82.8/50.2  82.3/82.4/51.4 83.0/83.2/51.2 84.2/84.3/52.4 84.5/84.5/52.5 86.6/86.1/55.3

{v} 62.6/57.1/41.6  59.3/60.0/40.7 61.9/61.6/41.7 63.6/63.6/42.0 63.9/63.6/42.6  65.1/65.7/44.9

{a} 62.7/54.5/41.4  58.9/59.5/40.4 60.2/60.3/41.1 62.9/60.4/41.4 63.8/60.6/41.7  64.6/64.2/43.1

CMU-MOSEI {l,v} 83.2/83.2/50.4  83.8/83.4/51.2 84.3/84.4/51.1 84.9/84.9/53.0 85.0/85.0/53.1  87.3/87.0/56.2
{l,a} 83.5/83.3/50.7 83.7/83.3/52.0 84.3/84.4/51.3 85.0/84.9/52.7 85.1/85.1/53.1  86.2/86.4/55.5

{v,a} 63.7/62.7/42.1 63.5/61.9/41.8 64.1/57.2/42.0 65.2/64.4/42.4 64.9/63.5/42.8  66.7/66.3/45.2

{l,v,a} | 84.2/84.2/51.2 84.3/84.2/52.4 85.2/85.1/51.5 85.1/85.1/53.4 85.1/85.1/53.4  87.3/87.2/54.9

Average | 74.6/72.5/46.8 73.7/73.5/47.1 74.7/73.7/47.1 75.8/75.4/48.2 76.0/75.3/48.5  77.7/77.6/50.7

Table 1: The performance of different methods is shown under different missing modalities on the CMU-MOSI and CMU-MOSEI datasets.
The values reported in each cell represent the ACC2/F1/ACCy. Bold indicates the best performance.

Datasets \ Missing Rate \ MCTN MMIN GCNet DiCMoR IMDer GSDNet (Ours)
0.0 81.4/81.5/43.4 84.6/84.4/44.8 85.2/85.1/44.9 85.7/85.6/45.3 85.7/85.6/45.3  87.7/87.3/46.8

0.1 78.4/78.5/39.8  81.8/81.8/41.2 82.3/82.3/42.1 83.9/83.9/43.6 84.9/84.8/44.8  87.1/86.5/46.2

0.2 75.6/75.7/38.5 79.0/79.1/38.9  79.4/79.5/40.0 83.9/83.9/43.6  83.5/83.4/44.3  86.4/86.1/45.2

0.3 71.3/71.2/35.5 76.1/76.2/36.9 77.2/77.2/38.2 80.4/80.2/40.6 81.2/81.0/42.5  85.2/85.0/44.3

CMU-MOSI 0.4 68.0/67.6/32.9 71.7/71.6/34.9 74.3/74.4/36.6 77.9/77.7/37.6 78.6/78.5/39.7  83.3/82.9/42.1
0.5 65.4/64.8/31.2  67.2/66.5/32.2 70.0/69.8/33.9 76.7/76.4/36.4 76.2/75.9/37.9  81.2/81.1/40.6

0.6 63.8/62.5/29.7 64.9/64.0/29.1 67.7/66.7/29.8 73.3/73.0/32.7 74.7/74.0/35.8  80.1/79.7/38.7

0.7 61.2/59.0/27.5 62.8/61.0/28.4 65.7/65.4/28.1 71.1/70.8/30.0 71.9/71.2/33.4  77.6/77.3/35.6

Average 70.6/70.1/34.8  73.5/73.1/35.8  75.2/75.1/36.7 78.9/78.7/38.5 79.6/79.3/40.5  83.6/83.2/42.3

0.0 84.2/84.2/51.2 84.3/84.2/52.4 85.2/85.1/51.5 78.9/78.7/38.5 85.1/85.1/53.4  87.3/87.2/54.9

0.1 81.8/81.6/49.8 81.9/81.3/50.6 82.3/82.1/51.2 78.9/78.7/38.5 84.8/84.6/53.1 86.7/86.5/54.2

0.2 79.0/78.7/48.6  79.8/78.8/49.6  80.3/79.9/50.2 81.8/81.5/51.4 82.7/82.4/52.0  85.3/85.1/53.5

0.3 76.9/76.2/47.4 77.2/75.5/48.1 77.5/76.8/49.2 79.8/79.3/50.3 81.3/80.7/51.3  83.3/83.0/52.2

CMU-MOSEI 0.4 74.3/74.1/45.6  75.2/72.6/47.5 76.0/74.9/48.0 78.7/77.4/48.8 79.3/78.1/50.0  81.4/81.2/51.4
0.5 73.6/72.6/45.1 73.9/70.7/46.7 74.9/73.2/46.7 77.7/75.8/47.7 79.0/77.4/49.2  80.5/80.1/50.7

0.6 73.2/71.1/43.8  73.2/70.3/45.6  74.1/72.1/45.1  77.7/75.8/47.7 78.0/75.5/48.5 79.4/79.1/49.4

0.7 72.7/70.5/43.6  73.1/69.5/44.8 73.2/70.4/44.5 75.4/72.2/46.2 77.3/74.6/47.6  78.2/78.1/48.6

Average 77.0/76.1/46.9  77.3/75.4/48.2 77.9/76.8/48.3 79.9/78.6/49.6 80.9/79.8/50.6  82.8/82.5/51.9

Table 2: The performance of different methods is shown at different missing ratios on the CMU-MOSI and CMU-MOSEI datasets. The
values reported in each cell represent the ACC,/F1/ACCy. Bold indicates the best performance.

addition, GSDNet has a significant advantage in maintaining
consistency between the restored modality and the original
modality. This distribution consistency ensures that the infor-
mation fusion between different modalities is smoother and
more accurate, further improving the overall performance of
the model. Compared with other MERC methods, the perfor-
mance degradation of GSDNet decreases as the modal miss-
ing rate increases. In practical applications, when the modal
missing rate is high, most recovery-based models will expe-
rience significant performance degradation.

7.2 Ablation study

We conduct ablation experiments on the CMU-MOSI and
CMU-MOSEI datasets. The results in Table 3 show that GS-
DNet consistently outperforms all variants. Removing the
frequency diffusion degrades the performance, which high-
lights the role of frequency diffusion in capturing the distri-

bution of multimodal data.

Methods CMU-MOSI | CMU-MOSEI
ACCy F1 ACC;|ACCy; Fl1 ACCy

GSDNet 757 70.6 353 | 78.1 774 474

GSDNet w/spectral 83.6 83.2 42.3 | 82.8 82.5 51.9

Table 3: Ablation study of graph spectral diffusion on GSDNet un-
der average random missing ratios.

7.3 Visualization of Embedding Space

Fig. 3 shows the distribution of the restored data and the orig-
inal data in the feature space obtained by different restora-
tion methods under the condition of fixed missing modalities.
In order to compare these distributions more intuitively, we
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Figure 3: Visualization of restored modalities. Avail. indicates available.

use t-SNE dimensionality reduction technology on the CMU-
MOSEI dataset to project the high-dimensional features into
two-dimensional space for visualization. As can be seen from
Fig. 3, the modal data restored by GSDNet is closest to the
distribution of the original data, which shows that GSDNet
can better maintain the original feature distribution of the data
when restoring the missing modalities. In contrast, there is a
clear difference between the distribution of the restored data
of other methods and the original data, especially in some lo-
cal areas, the degree of overlap of the distribution is low.

GSDNet (Ours)
m MDer
EEE DiCMoR 025

030 GSDNet (Ours)
B [MDer
BN DiCMoR

01 02 03 04 05 06 07 : 01 02 03 04 05 06 07
Missing Rate Missing Rate

(2) CMU-MOSI (b) CMU-MOSEI

Figure 4: The comparison of interpolation performance under differ-
ent missing rates shows the interpolation effects of various methods
when dealing with different missing rates.

7.4 Imputation Performance

Fig. 4 shows the interpolation results of different methods un-
der different missing rates. By comparing the performance of

baseline models under different missing rates, our proposed
GSDNet always outperforms other baseline methods in the
CMU-MOSI and CMU-MOSEI datasets and all missing rate
conditions. Specifically, GSDNet not only shows strong in-
terpolation performance under low missing rates but also has
more outstanding performance advantages under high miss-
ing rates. The experimental results show that speaker depen-
dency and data distribution consistency play a vital role in
data interpolation tasks. Most baseline methods often ignore
the synergy of these dependencies, which limits their interpo-
lation performance when dealing with missing data. In con-
trast, GSDNet can use the speakers relationship to perform
more accurate interpolation while maintaining data distribu-
tion consistency through the graph diffusion model, so that
GSDNet can always maintain relatively good performance
under various missing rates.

8 Conclusions

In this paper, we introduce a novel GSDNet, which maps
Gaussian noise to the graph spectral space of missing modal-
ities and recover the missing data according to original dis-
tribution. GSDNet only affects the eigenvalues of the adja-
cency matrix instead of destroying the adjacency matrix di-
rectly, which can maintain the global topological informa-
tion and important spectral features during the diffusion pro-
cess. Extensive experiments have demonstrated that GSDNet
achieves state-of-the-art emotion recognition performance in
various modality loss scenarios.
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