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Abstract

Randomized search heuristics (RSHs) are known
to have a certain robustness to noise. Mathemati-
cal analyses trying to quantify rigorously how ro-
bust RSHs are to a noisy access to the objec-
tive function typically assume that each solution
is re-evaluated whenever it is compared to others.
This aims at preventing that a single noisy evalu-
ation has a lasting negative effect, but is compu-
tationally expensive and requires the user to fore-
see that noise is present (as in a noise-free set-
ting, one would never re-evaluate solutions). In
this work, we conduct the first mathematical run-
time analysis of an evolutionary algorithm solv-
ing a single-objective noisy problem without re-
evaluations. We prove that the (1 + 1) evolution-
ary algorithm without re-evaluations can optimize
the classic LeadingOnes benchmark with up to con-
stant noise rates, in sharp contrast to the version
with re-evaluations, where only noise with rates
O(n−2 log n) can be tolerated. This result suggests
that re-evaluations are much less needed than what
was previously thought, and that they actually can
be highly detrimental. The insights from our math-
ematical proofs indicate that this similar results are
plausible for other classic benchmarks.

1 Introduction
In many real-world optimization problems, one does not have
a perfect access to the problem instance, but, e.g., the objec-
tive function is mildly disturbed by noise. Such noise can
impose considerable difficulties to classic problem-specific
algorithms. Randomized search heuristics, in contrast, are
known to be able to cope with certain amounts of stochastic
disturbances [Bianchi et al., 2009; Jin and Branke, 2005].

The ability to cope with noise has rigorously been stud-
ied and quantified via mathematical runtime analyses [Neu-
mann and Witt, 2010; Auger and Doerr, 2011; Jansen, 2013;
Zhou et al., 2019; Doerr and Neumann, 2020], that is, proven
performance guarantees for certain algorithms in specific sit-
uations. For example, these results have shown that the (1+1)
evolutionary algorithm (EA) can solve the classic ONEMAX

benchmark defined on bit-strings of length n in polyno-
mial time when noise appears with a rate O(n−1 log n),
but the runtime becomes super-polynomial for larger noise
rates [Droste, 2004; Gießen and Kötzing, 2016; Dang-Nhu
et al., 2018]. For the equally popular benchmark LEADING-
ONES, only noise rate of order O(n−2 log n) admits a poly-
nomial runtime [Qian et al., 2021; Sudholt, 2021]. Evolution-
ary algorithms working with larger population sizes tend to
be more robust to noise than the (1 + 1) EA, which is essen-
tially a randomized hill-climber [Gießen and Kötzing, 2016;
Sudholt, 2021; Antipov et al., 2024].

These and almost all other mathematical runtime analy-
ses of randomized search heuristics in the presence of noise
assume that an already constructed solution is re-evaluated
whenever it is compared to another solution. This seems to
be justified by the fear that a noisy objective value, when not
corrected via a renewed evaluation, could harm the optimiza-
tion process for a long time. Interestingly, the only rigor-
ous support for this fear are two analyses of an ant-colony
optimizer in the presence of noise that were provided by
Doerr et al. [2012] and by Sudholt and Thyssen [2012], one
showing that this algorithm essentially cannot solve stochas-
tic shortest paths problems (without re-evaluations) and the
other proving a strong robustness to such disturbances when
using re-evaluations. The only other runtime analysis not us-
ing re-evaluations is the recent work by Dinot et al. [2023].
Since this work regards a multi-objective optimization prob-
lem and attributed the robustness to noise to the implicit di-
versity mechanisms of the multi-objective evolutionary algo-
rithm regarded, it is hard to predict to what extent the find-
ings generalize to the more classic case of single-objective
optimization.

Re-evaluating each solution whenever its objective value is
used by the RSH has two disadvantages. The obvious one is
the increased computational cost. We note here that usually in
black-box optimization, the function evaluations are the com-
putationally most expensive part of the optimization process,
up to the point that often the number of function evaluations
is used as performance measure. A second problem with as-
suming re-evaluations in noisy optimization is that this re-
quires the algorithm users to decide beforehand whether they
expect to be prone to noise or not – clearly, in a noise-free
setting, one would not evaluate a solution more than once.

Our contribution: Given the apparent disadvantages of
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re-evaluations and the low theoretical support for these, in
this work we study how a simple randomized search heuris-
tic optimizes a classic benchmark problem when not assum-
ing that solutions are re-evaluated. We analyze the setting
best-understood in the case of re-evaluations, namely how
the (1 + 1) EA optimizes the LEADINGONES benchmark,
for which Sudholt [2021] conducted a very precise runtime
analysis, showing among others that a polynomial runtime
can only be obtained for noise rates of at most O(n−2 log n).
To our surprise, we obtain a much higher robustness to noise
when not re-evaluating solutions. We prove that with noise
rates up to a constant (which depends on the precise noise
model, see Theorems 7 and 9 for the details), the (1 + 1) EA
without re-evaluations optimizes the LEADINGONES bench-
mark in time quadratic in the problem size n, which is the
same asymptotic runtime as in the noise-free setting. This
result suggests that the previous strong preference for re-
evaluations is not as justified as the literature suggests.

A closer inspection of our proofs also gives some insights
in why working with possibly noisy objective values is less
detrimental than previously thought, and sometimes even
preferable. Very roughly speaking, we observe that noisy
function values can also be overcome by generating a solu-
tion with true objective value at least as good as the previous
noisy function value. Under reasonable assumptions (stan-
dard operators and standard noise models with not excessive
noise rates), the mutation operator of the evolutionary algo-
rithm has a higher variance than the noise, and consequently,
it is easier to correct a noisy objective value by generating a
sufficiently good solution than obtaining more noisy objec-
tive values due to new noise. From these insights, we are
generally optimistic that our findings are not specific to the
particular algorithm and benchmark studied in this work.

2 Preliminaries
In this section we define the setting we consider, the notation
and also mathematical tools we use in our analysis. In this
paper for any pair of integer numbers a, b (b ≥ a) by [a..b] we
denote an integer interval, that is, a set of all integer numbers
which are at least a and at most b. If b < a, then this denotes
an empty set. By N we denote the set of all strictly positive
integer numbers.

2.1 LEADINGONES and Prior Noise
LEADINGONES (LO for brevity) is a benchmark function
first proposed by Rudolph [1997], which is defined on bit
strings of length n (we call n the problem size) and which
returns the size of the largest prefix of its argument consisting
only of one-bits. More formally, for any bit string x we have

LEADINGONES(x) = LO(x) =
n∑

i=1

i∏
j=1

xj .

In this paper we consider optimization of LEADINGONES
under prior noise. This means that each time we evaluate
the LO value of some bit string x, this bit string is first af-
fected by some stochastic operator N . We call this operator
noise. Hence, instead of receiving the true value LO(x) we
get LO(N(x)). We consider the following two noise models.

Algorithm 1: The (1 + 1) EA maximizing a function
f : {0, 1}n → R under noise defined by operator N .
// Initialization

1 Sample x ∈ {0, 1}n uniformly at random;
2 fx ← f(N(x));
// Optimization

3 while not stopped do
4 y ← mutate(x);
5 fy ← f(N(y));
6 if fy ≥ fx then
7 x← y;
8 fx ← fy;
9 end

10 end

One-bit noise. In this noise model with probability q
(which is called the noise rate) operator N(x) returns a bit
string which is different from x in exactly one bit, which is
chosen uniformly at random. With probability 1− q operator
N(x) returns an exact copy of x.

Bitwise noise. In this noise model with noise rate q
n , oper-

ator N(x) flips each bit in x with probability q
n independently

from other bits, and returns the resulting bit string. We note
that the definition of noise rate is different from the one-bit
noise, however in both models the expected number of bits
flipped by the noise is equal to q. Also, bitwise noise occurs
with probability 1 − (1 − q

n )
n = Θ(min(1, q)), see, e.g.,

eq. (1) in [Sudholt, 2021].

2.2 The (1 + 1) EA
We consider a simple elitist evolutionary algorithm called the
(1 + 1) EA. This algorithm stores one individual x (we call it
the parent individual), which is initialized with a random bit
string. Then until some stopping criterion is met1 it performs
iterations, and in each iteration it creates offspring y by ap-
plying a mutation operator to x. If the value of the optimized
function on y is not worse than its value on x, then y replaces
x as the parent for the next iteration. Otherwise x stays as
the parent individual. The optimized function is called the fit-
ness function and its value on any individual x is called the
fitness of x. In the rest of the paper we assume that function
f optimized by the (1 + 1) EA is LEADINGONES.

We consider two mutation operators, which in some sense
similar to the two noise models. One-bit mutation flips ex-
actly one bit chosen uniformly at random. Standard bit mu-
tation flips each bit independently from other bits with prob-
ability χ

n , where χ is a parameter of the mutation. We call χ
n

the mutation rate.
Previous theoretical analyses of the (1 + 1) EA in noisy

environments assumed that the fitness of the parent is
re-evaluated in each iteration when it is compared with
its offspring. In particular, Sudholt [2021] showed that
the (1 + 1) EA optimizes LEADINGONES in expected time

1Similar to many other theoretical studies, we do not define the
stopping criterion, but we assume that it does not stop before it finds
an optimal solution.
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Θ(n2) · eΘ(min(n,pn2)), where p < 1
2 is the probability that

prior noise occurs. Since for one-bit noise we have p = q and
for bitwise noise we have p = Θ(min(1, q)), this implies that
for both noise models with q = ω( log(n)n2 ), the runtime of the
(1 + 1) EA is super-polynomial.

Since that result by Sudholt [2021] indicated that the
(1 + 1) EA with re-evaluations is not robust to even very
small noise rates, we are interested in the behavior of the al-
gorithm when it always uses the first evaluated value for the
parent x until this parent is not replaced with a new individ-
ual. This approach, in some sense, is similar to using the
(1 + 1) EA on a noisy function without being aware that it
is noisy (or just ignoring this fact). The pseudocode of the
(1 + 1) EA using this approach is shown in Algorithm 1.

We enumerate iterations of the (1 + 1) EA starting from
zero, and for all t ∈ N∪{0} we use the following notation to
describe iteration t. By xt we denote the parent x at the be-
ginning of iteration t. Slightly abusing the notation, we write
f̃(xt) to denote the fitness value fx stored in the algorithm
at the beginning of iteration t. By yt and f̃(yt) we denote
the offspring y created in iteration t and its noisy fitness fy
correspondingly.

2.3 Auxiliary Tools
In this section we collect mathematical tools which help us in
our analysis. We start with the following drift theorem, which
is often used in runtime analysis of RSH to estimate the first
hitting time of stochastic processes.
Theorem 1 (Additive Drift Theorem by He and Yao [2004],
upper bound). Let (Xt)t≥0 be a sequence of non-negative
random variables with a finite state space S ⊆ R+

0 such that
0 ∈ S. Let T := inf{t ≥ 0 | Xt = 0}. If there exists
δ > 0 such that for all s ∈ S \ {0} and for all t ≥ 0 we have
E[Xt −Xt+1 | Xt = s] ≥ δ, then E[T ] ≤ E[X0]

δ .
We also use the following inequality, which is a simplified

version of Wald’s equation shown in [Doerr and Künnemann,
2015].
Lemma 2 (Doerr and Künnemann [2015], Lemma 7). Let
T be a random variable with bounded expectation and let
X1, X2, . . . be non-negative random variables with E[Xi |
T ≥ i] ≤ C for some C and for all i ∈ N. Then

E

[
T∑

i=1

Xi

]
≤ E[T ] · C.

For any individual x evaluated by the (1 + 1) EA we call
the active prefix of x the set of its first f̃(x) bits, that is, the
bits which “pretended” to be ones when we evaluate the fit-
ness of x. The following lemma is an important ingredient of
all our proofs.

Lemma 3. For any individual x and any i ∈ [1..f̃(x)] the
probability that there are exactly i zero-bits in the active pre-
fix of x is at most the probability that the noise flipped i par-
ticular bits when the fitness of x was evaluated. In particular,
(1) for the one-bit noise with rate q this probability is at

most q
n for i = 1 and zero for all other i,

(2) for the bitwise noise with rate q
n this probability is at

most ( qn )
i.

Proof. By the definition of the active prefix, when we eval-
uated the fitness of x, the noise affected it in such way that
all its bits in the active prefix became one-bits. Hence if
there are i zero-bits in the active prefix of x, all of them have
been flipped by the noise before the evaluation. Thus, flip-
ping those i bits is a super-event of the event when we have
exactly i zero-bits in the active prefix of x.

For the one-bit noise the probability to flip a particular bit
is q

n , and it cannot flip more than one bit. For the bitwise
noise the probability that it flips i particular bits is ( qn )

i.

The next two results are just short mathematical tools,
which we formulate as separate lemmas to simplify the ar-
guments in our main proofs. We omit their proofs for reasons
of space.2

Lemma 4. For any real values a and b such that a > b > 0
and for any positive integer i we have

ai+1 − bi+1

ai − bi
≤ a+ b.

Lemma 5. For all a > 1 and all integer n ≥ 2 we have
n∑

j=2

1

aj − 1
≤

ln
(
1− 1

a

)
ln(a)

.

We also use the following inequality which follows from
Inequality 3.6.2 by Vasić et al. [2012].
Lemma 6. For any n > 0 and any x ∈ [0, n] we have

ex − x2

2n
≤
(
1− x

n

)n
≤ ex.

3 Runtime Analysis
Before starting our theoretical analysis we give an example
which provides some intuition behind the effectiveness of the
approach with no re-evaluations. Imagine a situation when
the current individual x has n

2 leading bits, and the algorithm
stores its true fitness (that is, fx = f(x)). Assume also that
we flip one bit in position n

4 , and noise flips it back. Then we
replace the parent with this offspring, since its noisy fitness
is not worse, but we remember this noisy fitness and never
re-evaluate it later. It means that all future accepted offspring
must have their noisy fitness at least as good. This implies
that any individual with a bit (or bits) flipped in positions
(n/4..n/2) is not accepted, since its fitness is smaller than
n/2 (unless noise flips the flipped bits and the bit in posi-
tion n

4 back, probability of which is small). This allows us
to preserve the accumulated one-bits in those positions until
mutation flips the bit in position n/4 again and we restore
a good individual. On the contrary, the approach with re-
evaluation updates the fitness of the parent in one of the next
iterations and after that accepts individuals with bits in posi-
tions (n/4..n/2) flipped, hence the algorithm loses the accu-
mulated one-bits long before it finds the first improvement by
flipping the bit in position n

4 .

2All omitted or sketched proofs can be found in full version of
this paper available at arXiv [Antipov and Doerr, 2024].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3.1 One-bit Noise and One-bit Mutation
We start our analysis with the most simple case that we have
one-bit noise with rate q ∈ (0, 1) and the (1 + 1) EA uses
one-bit mutation. We aim to estimate the expected number
of iterations it takes the algorithm to find the optimum of
LEADINGONES when it does not re-evaluate the fitness of
the parent solution. The proof idea of this situation will later
be used for all other combinations of mutation and noise. The
main result of this section is the following theorem.

Theorem 7. Consider a run of the (1 + 1) EA with one-
bit mutation optimizing LEADINGONES under one-bit noise
which occurs with probability q < 1. Then the EA finds the
optimum (the all-ones bit string) and evaluates it properly in
expected number of at most (1+q)n2

(1−q)2 + 3q
2(1−q) iterations.

Before we prove Theorem 7, we need some preparation
steps. At the start of any iteration t ∈ N the algorithm can be
in one of three states: with f(xt) = f̃(xt) (we call this state
S=), with f(xt) > f̃(xt) (state S>), or with f(xt) < f̃(xt)
(state S<). We divide a run of the (1 + 1) EA into phases,
and each phase (except, probably, the first one) starts in state
S= and ends in the next iteration after which the (1 + 1) EA
starts also in S=.

More formally, phases are defined as follows. Let st be the
state of the algorithm in iteration t for all t = 0, 1, . . . , and
let Q be the set of all iterations, in which the algorithm is in
state S=, that is, Q = {t | st = S=}. For all i ∈ N let τi be
the i-th element of Q enumerating them in ascending order.
Then for all i ∈ N phase i is defined as the integer interval
[τi..τi+1−1]. Phase 0 is defined as [0..τ1−1]. For all i by the
length of phase i we denote its cardinality, which is τi+1− τi
for phases i > 1 and which is τ1 for i = 0.

An important property of the phases is the monotonicity
of the true fitness in the beginning of each phase: for each
i ≥ 1 we have f(xτi+1) ≥ f(xτi). This follows from that the
noisy fitness fx stored by the algorithm is never decreased (by
condition in line 6 in Algorithm 1 it can be only replaced by
a similar or larger value) and from the equality of the noisy
and true fitness in the beginning of each phase, that is,

f(xτi+1
) = f̃(xτi+1

) ≥ f̃(xτi) = f(xτi).

We note that the crucial difference with the approach without
re-evaluations is that there this property does not hold, and
the example in the beginning of Section 3 demonstrates it.

The following lemma estimates the expected length of one
phase.

Lemma 8. Consider a run of the (1 + 1) EA with one-bit
mutation on LEADINGONES under one-bit noise with rate
q < 1. For all i ≥ 1 the expected length of phase i is E[τi+1−
τi] ≤ 1+q

1−q . The expected length of phase 0 is E[τ1] ≤ 3q
2(1−q) .

We only sketch the proof for reasons of space. We first
show that the transition probability from state S= to any other
state is at most q

n , while the probability to go from states S>

and S< to state S= is at least 1−q
n . Then after the first iteration

of the phase it is not finished with probability at most 2q
n , and

it takes at most n
1−q iterations to finish the phase. Hence, the

expected phase length is at most 1 + 2q
1−q = 1+q

1−q . To obtain
the estimate of the expected length of phase 0, we use the
law of total expectation over all possible initial states of the
algorithm.

With the estimate of the expected time of one phase, we
can prove Theorem 7.

Proof of Theorem 7. We define a super-phase of the algo-
rithm as follows. Let R = {τi+1 | f(xτi+1

) > f(xτi), i ∈
N} that is, R is a set of iterations which start a new phase such
that the new phase starts with a strictly higher fitness than the
previous phase (in terms of both true and noisy fitness, since
they are equal in the beginning of any phase, except phase 0).
Note that R has at most n elements, since there are n differ-
ent fitness values. Let t0 = τ1 and for all i ∈ [1..|R|] let ti
be the i-th element of R, if we sort them in ascending order.
Then we define the i-th super-phase as interval [ti..ti+1] for
all i ∈ [0..|R| − 1].

Consider some particular, but arbitrary super-phase i. It
consists of one or more phases, and we denote the length of
j-th phase in this super-phase by Tj . We call a phase suc-
cessful, if the next phase starts with a strictly better fitness
than this phase. This implies that a super-phase ends after
a successful phase occurs. A phase is successful, if it con-
sists of one iteration in which mutation flips the first zero-bit
of x and noise does not occur. The probability of this event
is 1−q

n . Therefore, the number of phases N in each super-
phase is dominated by a geometric distribution Geom( 1−q

n ).
By Lemma 2 and by the estimate of the expected length of
a phase from Lemma 8, we have that the expected length of
any super-phase is

E[ti+1 − ti] =
N∑
j=1

E[Tj ] ≤ E[N ] · 1 + q

1− q
≤ (1 + q)n

(1− q)2
.

The total runtime consists of the length of phase 0 and the
sum of length of all super-phases. Recalling that the number
of super-phases |R| is at most n, by Lemma 2 we obtain that
the total runtime is

E[T ] = E[τ1] +

|R|−1∑
k=1

E[ti+1 − ti]

≤ 3q

2(1− q)
+ n · (1 + q)n

(1− q)2
=

(1 + q)n2

(1− q)2
+

3q

2(1− q)
.

3.2 Bitwise Noise and Bitwise Mutation
In this section we study the case when the (1 + 1) EA uses
standard mutation and noise is bitwise. This implies that
noise has a non-zero probability to flip any number of bits,
and thus there might be more than one zero-bit in the active
prefix of the current individual x. However, as we show in
this section, if noise is not too strong, then the (1 + 1) EA
can handle situations with k ≥ 1 zero-bits in the active prefix
in time of order O( 1p ), where p is the probability that such sit-
uation occurs. This implies that the unfortunate events when
the parent has too many zero-bits in its active prefix only add
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at most a constant factor to the runtime compared to the noise-
less setting. The main result of this section is the following
theorem.
Theorem 9. Consider a run of the (1 + 1) EA with standard
bit mutation with rate χ

n optimizing LEADINGONES under
bitwise noise with rate q

n . Let r := χ + q − 2χq
n and assume

that (i) χ = Θ(1) and q = O(1) and (ii) there exists a con-
stant c ∈ (0, 1) such that − ln(1− q

r )

ln r
q
≤ (1− c)e−(χ+q). Then

the expected number of iterations until the (1 + 1) EA finds
the optimum (the all-ones bit string) and evaluates it prop-
erly is at most

n2

c

(
eχ+q

χ
+ q

(
eχ+q

χ

)2
)

+O(n).

Before we start the proof, we discuss condition (ii) on χ
and q (and r, which is a function of χ and q). If χ = Θ(1)

and q = o(1), then the left part − ln(1− q
r )

ln r
q

is o(1), while

e−(χ+q) = Ω(1). Hence, in this case we can choose c close to
one, namely c = 1−o(1). The upper bound on the runtime is
then eχχ−1n2(1 + o(1)). For larger q = Θ(1) this condition
can be satisfied only for some range of χ. If we express q as a
fraction of χ, that is, q = αχ for some α > 0, then condition
(ii) can be rewritten as

ln(1 + α)e(α+1)χ

ln(1 + α)− lnα
≤ 1− c− o(1).

From this inequality it trivially follows that to have the left
part less than one, we need lnα to be negative, that is, we
need the noise rate to be smaller than the mutation rate. This
relation between those two rates ensures that if we get a par-
ent x with wrongly evaluated fitness, then variation of the
mutation operator must be stronger than variation of noise, so
that fixing this faulty situation was more likely than making it
worse. More precise computation3 allows to see that χ ≈ 1.4
allows the left part to be less than one for the maximum possi-
ble q ≈ 0.39. We note, however, that this is likely not a tight
bound on the maximum noise rate which can be tolerated by
the (1 + 1) EA.

To prove Theorem 9, we first need several auxiliary re-
sults. The next lemma will help to estimate the probability
of a “good event”, when the algorithm reduces the number of
zero-bits in the active prefix of x.
Lemma 10. Assume that both q and χ are O(1) and let r =
χ + q − 2qχ

n (as in Theorem 9). Let x be some arbitrary
bit string. Let ỹ be an offspring of x that was obtained by
standard bit mutation with rate χ

n to x and then bitwise noise
with rate q

n . Let also S be an arbitrary non-empty subset of
[1..n] and let i be its size |S|. Consider the event that these
three conditions are satisfied:
(1) each bit with position in S was flipped by exactly one of

mutation or noise;
(2) at least one bit with position in S was flipped by muta-

tion; and
3The code used to perform these computations can be found in

the supplementary material, the file name is “calculate alpha.py”.

(3) all bits with positions not in S have not been flipped.

The probability of this event is at least(
ri − qi

ni

)(
e−(χ+q) −O

(
1

n

))
.

We omit its proof for reasons of space.
Similar to the previous section, we distinguish different

states in which the algorithm can occur. However, since bit-
wise noise can lead to any number of zero-bits in the active
prefix, we need a more detailed description of state S< (when
the true fitness f(xt) of the parent is smaller than the stored
noisy fitness f̃(xt)). We define states S= and S> similar to
the case of one-bit mutation and one-bit noise. Namely, the
algorithm is in state S= in iteration t, if f(xt) = f̃(xt) and it
is in state S>, if f(xt) > f̃(xt). For all j ∈ [1..n] we also say
that the algorithm is in state Sj in iteration t, if f(xt) < f̃(xt)
and there are exactly j zero-bits in the active prefix of xt. We
divide the run of the algorithm into phases in the similar way
as we did in the previous section. Namely, for all i ∈ N we
define τi as the i-th iteration in which the algorithm is in state
S= and we define phase i as an integer interval [τi..τi+1− 1].
Phase 0 is defined as [0..τ1 − 1]. The length of a phase is
its cardinality. Note that the property of the monotonicity of
the noisy fitness also holds in this case. The following lemma
estimates an expected length of a phase, similar to Lemma 8.
Lemma 11. Consider a run of the (1 + 1) EA with standard
bit mutation with rate χ

n on LEADINGONES under bitwise
noise with rate q

n . Let χ = Θ(1) and q = O(1). Let
r = χ + q − 2qχ

n (that is, r
n is the probability that a partic-

ular bit flipped by either mutation or noise, but not by both)
and assume that there exists constant c ∈ (0, 1) such that
− ln(1− q

r )

ln r
q
≤ (1− c)e−(χ+q). Then for all i ∈ N we have

E[τi+1 − τi] ≤
1

c

(
1 +

qeχ+q

χ

)
+O

(
1

n

)
.

The expected length of phase 0 is

E[τ1] ≤
1

c

(
(1− c) +

eχ+q

2
+

qe2(χ+q)

χ

)
+O

(
1

n

)
.

Proof. Since we are aiming at an asymptotic statement, we
may assume that n is sufficiently large. To prove this lemma,
we use the additive drift theorem. For this reason we assign
the following potential Φ to states S=, S> and all Sj .

Φ(s) =


nj

rj−qj , if s = Sj for all j ∈ [1..n],

1 + qeχ+q

r−q , if s = S>,

0, if s = S=,

Consider the process Xt = Φ(st), where st is the state of
the algorithm in iteration t, and an arbitrary phase i with i > 0
which starts at iteration τi. Then τi+1 is the first iteration after
τi where Xτi+1

= 0. Note that Xτi = 0, but in iteration τi+1
we can have larger potentials Xτi+1. If we find some δ > 0
such that for all t > τi and for all possible values ϕ of the
potential we have E[Xt+1 −Xt | Xt = ϕ] ≥ δ, then by the
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additive drift theorem (Theorem 1) we obtain E[τi+1− (τi +

1)] ≤ E[Xτi+1]

δ . Hence, the expected length of the phase is at

most E[τi+1 − τi] ≤ 1 +
E[Xτi+1]

δ .
To estimate E[Xt+1−Xt | Xt = ϕ], we compute the tran-

sition probabilities between different states. By Lemma 3, for
all j ∈ [1..f̃(x)] the probability to go from any state to state
Sj is at most ( qn )

j , and for j > f̃(x) this probability is zero.
When the algorithm is in state Sj for some j ∈ [1..n],

then to go to a state with a smaller potential (that is, to either
S=, S> or Sk with k < j) in one iteration it is sufficient
that in yt the mutation flips at least one zero-bit in the active
prefix of xt (and does not flip any other bit in the active prefix
except for other zero-bits) and then, when we evaluate f̃(yt),
the noise flips all remaining zero-bits in the active prefix (but
does not flip any other bit). The probability of this event can
be estimated by applying Lemma 10 with S being the set of
zero-bits in the active prefix of xt, that is, this probability is
at least (

rj − qj

nj

)(
e−(χ+q) −O

(
1

n

))
.

If we go to a state with a smaller potential, then we reduce the
potential by at least nj

rj−qj −
nj−1

rj−1−qj−1 , when j > 1, and by
n

r−q −1− qeχ+q

r−q , when j = 1. Therefore, when the algorithm
is in state Sj with j ≥ 2, then the drift of the potential is at
least

E[Xt −Xt+1 | st = Sj , j ≥ 2]

≥
(
rj − qj

nj

)(
e−(χ+q) −O

(
1

n

))
·
(

nj

rj − qj
− nj−1

rj−1 − qj−1

)
−

n∑
k=j+1

( q
n

)k nk

rk − qk
.

(1)

For reasons of space, we only sketch the estimate of this
expression. Using Lemma 4 we can show that the first (pos-
itive) term is at least e−(χ+q) − O( 1n ), and using Lemma 5
we can show that the absolute value of the second (negative)
term is at most (1− c)e−(χ+q). Hence, we have

E [Xt −Xt+1 | st = Sj , j ≥ 2]

≥ e−(χ+q) −O

(
1

n

)
− (1− c)e−(χ+q)

= ce−(χ+q) −O

(
1

n

)
.

For S1 we can write a similar expression as (1) with a
slightly different first positive term, but the same bound will
hold. We omit the details for reasons of space. Consequently,
the bound

E [Xt −Xt+1 | st = Sj ] ≥ ce−(χ+q) −O

(
1

n

)
holds for all j.

When the algorithm is in state S>, then to get to state S=

it is enough to flip no bits by mutation or noise. The resulting
offspring then is a copy of its parent and its fitness is equal to
its noisy fitness, which in S> is larger than the fitness stored
by the algorithm (thus, the new individual replaces the par-
ent). The probability of this event is(

1− χ

n

)n (
1− q

n

)n
= e−(χ+q) −O

(
1

n

)
.

The transition probabilities from S> to the states Si can be
computed as before. Hence, the drift in state S> satisfies

E[Xt −Xt+1 | st = S>]

≥
(
1 +

qeχ+q

r − q

)(
e−(χ+q) −O

(
1

n

))
−

n∑
i=1

( q
n

)i ni

ri − qi

≥ e−(χ+q) +
q

r − q
−O

(
1

n

)
− q

r − q
−

n∑
i=2

qi

ri − qi

≥ e−(χ+q) − (1− c)e−(χ+q) −O

(
1

n

)
= ce−(χ+q) −O

(
1

n

)
,

where we used Lemma 5 and lemma conditions to obtain the
last line.

We have now shown that for every state s ̸= S= the ex-
pected progress of Xt is at least δ = ce−(χ+q) − O( 1n ). To
apply the additive drift theorem, we now estimate E[Xτi+1].
For this we note that the probability to go from S= to any of
Sj in one iteration is at most ( qn )

j by Lemma 3. To go to
state S> from S=, the algorithm has to create an offspring
with true fitness better than the fitness of the current parent.
Hence, the probability of this event is at most χ

n (that is, the
probability of flipping the first zero-bit of the parent with mu-
tation). With these estimates of transition probabilities, we
obtain

E[Xτi+1] ≤
(
1 +

qeχ+q

r − q

)
χ

n
+

n∑
j=1

( q
n

)j nj

rj − qj

≤ O

(
1

n

)
+

q

r − q
+ (1− c)e−(χ+q) = O(1).

By the additive drift theorem (Theorem 1), we have

E[τi+1 − τi] ≤ 1 +
E[Xτi+1]

δ

≤ 1 +

q
r−q + (1− c)e−(χ+q) +O

(
1
n

)
ce−(χ+q) −O

(
1
n

)
=

q
r−q + e−(χ+q) +O

(
1
n

)
ce−(χ+q) −O

(
1
n

)
=

qeχ+q

c(r − q)
+

1

c
+O

(
1

n

)
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=
1

c

(
1 +

qeχ+q

χ

)
+O

(
1

n

)
= O(1).

For phase 0 we can use the additive drift theorem with the
same potential. We omit this part of the proof for reasons of
space.

We are now in position to prove the main result of this sec-
tion, Theorem 9.

Sketch of the proof of Theorem 9. For reasons of space and
since this proof repeats the proof of Theorem 7, we omit most
of the details, except the insignificant differences4. We de-
fine super-phases and successful phases in the same way as
in the proof of Theorem 7. The probability that a phase is
successful is at least the probability that in the first iteration
of this phase mutation flips the first zero-bit of an individual
and does not flip any other bit, and noise does not flip any bit,
which by Lemma 6 is at least χe−(χ+q)

n − O( 1
n2 ). Therefore,

the number of phases N in one super-phase is dominated by
geometric distribution Geom(χe

−(χ+q)

n − O( 1
n2 )). Hence, if

we denote by Tj the length of j-th phase in a super-phase,
then by Lemmas 2 and 11 the expected length of one super-
phase is at most

E[ti+1 − ti] =
n

c

(
eχ+q

χ
+ q

(
eχ+q

χ

)2
)

+O(1).

The optimum is reached after at most n super-phases. If we
also take into account phase 0, then the total runtime is then
at most

E[T ] =
n2

c

(
eχ+q

χ
+ q

(
eχ+q

χ

)2
)

+O(n).

3.3 Discussion of the Theoretical Results
When the noise rate is zero, Theorem 7 states that the ex-
pected runtime of the algorithm is at most n2 iterations, and
Theorem 9 gives a bound of eχn2

χ + O(n) iterations (in this
case we can chose c = 1 to satisfy the assumptions of the the-
orem). These are larger than the bounds for the (1 + 1) EA
with one-bit mutation and with standard bit mutation shown
by Rudolph [1997] and Böttcher et al. [2010], which indicates
that our bounds are not tight by at least a constant factor of 1

2 .
The main argument in those previous studies which is missing
in our analysis is that all bits to the right of the left-most zero-
bit in the current parent x are distributed uniformly at random
at any time. Therefore, each time the algorithm improves the
fitness, the improvement is greater than 1 in expectation (and
most of the time it is close to 2). It is not trivial to extend this
argument to the noisy case, since situations when the true and
noisy fitness of the current individual are not the same might
lead to a non-uniform distributions of the bits in the suffix.
Nevertheless, we are optimistic that modifying this argument
will allow to improve our bounds in future research, and it
will also help to prove lower bounds.

It is also interesting to note that when q = o(1), the bounds
from Theorems 7 and 9 stay the same as with q = 0, apart

4The detailed proof of this theorem can also be found in the

from a factor of (1+o(1)). This suggests that the performance
of the (1 + 1) EA without re-evaluations is not affected by
even quite strong noise rates, as long as noise occurs only
once in a super-constant number of evaluations on average.
However, without a matching lower bound on the noisy run-
time we cannot formally state that this suggestion is true.

Finally, we note that the proofs of Theorems 7 and 9 are
mostly different in how they treat the noise model, but the
choice of the mutation operator is not so important. In all
estimates of probabilities of progress (reducing the number of
zero-bits in the active prefix of x or having a successful phase)
we only want the mutation to flip one particular bit and not to
flip any other bits. This implies that the same arguments can
be repeated for different combinations of mutation and noise,
e.g., for one-bit noise and standard bit mutation or for bitwise
noise and one-bit mutation.

4 Conclusion
In this paper we have shown that simple random search
heuristics can be very robust to noise, even if a constant frac-
tion of all fitness evaluations are faulty due to the noise. For
this, however, it is necessary that the algorithm does not re-
evaluate solutions, as if it was unaware of optimizing a noisy
function. We showed that this approach leads to a much bet-
ter performance than the approach dominant in theoretical
works, where parent individuals are re-evaluated in each it-
eration.

Naturally, our mathematical proofs are valid only for the
considered settings, namely, for the (1 + 1) EA with the two
mutation operators, the LEADINGONES problem, and the two
noise models. For the following reasons we believe that our
suggestion to avoid re-evaluations generalizes to broader set-
tings. First, wrongfully accepting a bad offspring due to
noise is more critical with re-evaluations. When the algo-
rithm re-evaluates such an individual, it starts to re-optimize
from this worse point and completely forgets the history of
reaching this solution. Second, this type of mistake is more
likely to happen when we re-evaluate the parent as now a
mistake can also be triggered by a noisy evaluation letting
the parent appear bad. Without re-evaluations, the only way
to accept the wrong solution is that noise lets the offspring
appear better than it is. Third, when we do not re-evaluate
solutions, we keep this bad solution until we fix the mistake
with a good mutation. Naturally, if the mutation parameters
are chosen well and if the noise is not too strong, undoing
a noise-induced error via mutation should be easier that run-
ning into such an error. In contrast, with re-evaluations the
wrongfully accepted individual can be further mutated to so-
lutions having equal fitness, but being further apart from the
original parent. These general working principles are distilled
from our analysis, but we believe that they are valid not only
in the setting mathematically analyzed in this work.
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