Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Efficient and Rigorous Model-Agnostic Explanations

Joao Marques-Silva' , Jairo A. Lefebre-Lobaina?, Maria Vanina Martinez”

'ICREA & Univ. Lleida, Spain
2 Artificial Intelligence Research Institute (IITA), CSIC, Spain

jpms@icrea.cat, {jairo.lefebre, vmartinez} @iiia.csic.es

Abstract

Explainable artificial intelligence (XAI) is at the
core of trustworthy Al The best-known methods of
XAI are sub-symbolic. Unfortunately, these meth-
ods do not give guarantees of rigor. Logic-based
XAI addresses the lack of rigor of sub-symbolic
methods, but in turn it exhibits some drawbacks.
These include scalability, explanation size, but also
the need to access the details of the machine learn-
ing model. Furthermore, access to the details of an
ML model may reveal sensitive information. This
paper builds on recent work on symbolic model-
agnostic XAI, which is based on explaining sam-
ples of behavior of a blackbox ML model, and pro-
poses efficient algorithms for the computation of
explanations. The experiments confirm the scala-
bility of the novel algorithms.

1 Introduction

Explainable artificial intelligence (XAI) seeks to provide hu-
man decision-makers with justifications for the predictions
made by machine learning (ML) models. As underscored
by recent efforts to regulate the deployment of AI models,
XAI represents a cornerstone of trustworthy AI. Most ef-
forts on XAI can be characterized as non-symbolic [Bach
et al., 2015; Ribeiro et al., 2016; Ribeiro et al., 2018;
Lundberg and Lee, 2017]. However, several key limitations
of most non-symbolic methods of XAl has been identified in
recent years [Ignatiev et al., 2019b; Izza er al., 2020; Kumar
et al., 2020; Ignatiev, 2020; Izza et al., 2022; Marques-Silva
and Huang, 2024; Zhang et al., 2024]. To address such lim-
itations, logic-based XAI [Shih ef al., 2018; Ignatiev ef al.,
2019a; Izza and Marques-Silva, 2021; Wildchen et al., 2021;
Malfa et al., 2021; Marques-Silva and Ignatiev, 2022; Au-
demard et al., 2022; Gorji and Rubin, 2022; Marques-Silva,
2022; Cooper and Marques-Silva, 2023; Darwiche, 2023;
Bassan and Katz, 2023] represents a rigorous, model-based,
approach to XAl Although logic-based XAI overcomes the
limitations of non-symbolic XAl, it also exhibits some draw-
backs. Of these, the most significant are scalability and ex-
planation size. In addition, logic-based XAI is based on the
availability of logic encodings of the ML model to explain. In
some cases this can be challenging, e.g. in the case of support

kernel-based support vector machines. Furthermore, logic en-
codings require access to the full details of ML models. This
can represent a major hurdle for logic-based explainability,
namely when ML models encode sensitive data.

One key advantage of the best known non-symbolic XAI
methods [Ribeiro et al., 2016; Ribeiro et al., 2018; Lund-
berg and Lee, 2017] is that they are model-agnostic, i.e. these
models query the ML model, but the internal details of the
model need not be known. Recent work studied logic-based
explanations in a model-agnostic setting [Cooper and Am-
goud, 2023]. Concretely, the ML model is sampled with the
purpose of creating a dataset (i.e. a sample). Alternatively, a
dataset could be obtained from training data, or from mixing
training data with some sampling of the ML model. In this
setting, one important result [Cooper and Amgoud, 2023] is
that explanations for why questions (i.e. abductive explana-
tions) can be computed in polynomial time on the size of the
dataset. Interest in rigorous sample-based explanations is fur-
ther illustrated by more recent works [Amgoud e al., 2024;
Koriche et al., 2024].

This paper extends the results from [Cooper and Am-
goud, 2023] in several ways. First, the paper defines con-
trastive explanations (i.e. answers to a why not? question)
and proves that computing the set of all contrastive explana-
tions is in polynomial time. Second, the paper proposes a
novel polynomial-time algorithm for computing one abduc-
tive explanation, that improves asymptotically the algorithm
outlined in earlier work [Cooper and Amgoud, 2023]. Fur-
thermore, this paper proves several additional results, includ-
ing the complexity of computing a smallest (i.e. cardinality-
minimal) abductive explanation and the complexity of enu-
merating abductive explanations. In addition, the paper out-
lines practically efficient algorithms for the enumeration of
abductive explanations, and for deciding feature relevancy
and necessity. The experimental results confirm the efficiency
of the algorithms proposed in the paper, enabling the compu-
tation of explanations for fairly large datasets.

The paper is organized as follows. Section 2 introduces
the notation and definitions used throughout the paper. Sec-
tion 3 formalizes sample-based explanations, that represents
the model-agnostic approach studied in this paper. Section 4
details novel algorithms for computing sample-based expla-
nations, but also proves complexity results about some of the
computational problems related with sample-based explain-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

ability. Section 5 analyzes preliminary experimental results,
that validate the paper’s main claims. Section 6 briefly com-
ments on related work. Finally, Section 7 concludes the paper.

2 Preliminaries

Classification problems. A classification problem is de-
fined on a set of features 7 = {1,...,m}. Each feature
i € F takes values from a domain ID;. Features can be cate-
gorical or ordinal, and ordinal features can be discrete or real-
valued.! Feature space T is defined as the cartesian product
of the domains of the features, F = Dy x --- x D,,. In ad-
dition, a classification problem maps feature space into a set
of classes L = {c1,...,cx}. As aresult, a classifier imple-
ments a (non-constant) classification function x : F — IC. A
classifier is described by the tuple M = (F,F,k,K). We
can refer to the elements of each tuple. For example, the set
of features will be denoted by M.F for some M. (When
clear from context, then we will just use F). In logic-based
XAl the goal is to explain an instance, given by a point in
feature space, v € T and its prediction given s, ¢ = k(Vv).
Finally, the simple model proposed in this section captures
some of the best-known and most widely used ML models.
Concrete examples, include decision trees, lists and sets, tree
ensembles, and (deep) neural networks, among many others.

Logic-based explanations. We adopt the definitions of
logic-based explanations used in recent work [Marques-Silva,
2022]. A set of features X C F is a weak abductive explana-
tion (WAXDp) if,

V(x €TF). (Nex(z; =v;)) = (k(x) = k(v)) (1)

We associate a predicate WAXp with (1), that maps subsets
of F to {0,1}. An abductive explanation (AXp) is a subset-
minimal WAXp. Thus, an AXp X is a subset-minimal set
of features which suffice to keep the prediction unchanged if
their value is unchanged. Similarly, a set of features) C F
is a weak contrastive explanation (WCXp) if,

3(x € F). (Aiema(a: = v)) A (r(x) # (V))

We associate a predicate WCXp with (2), that maps subsets
of F to {0,1}. A contrastive explanation (CXp) is a subset-
minimal WCXp. Thus, a CXp Y is a subset-minimal set of
features that suffice to change the prediction if their value is
changed. Hence, a CXp corresponds to an adversarial exam-
ple [Serban ez al., 2021]. The set of all AXps is denoted by A,
and the set of all CXps is denoted by C. (The definitions of
AXps and CXps are parameterized on the given ML model,
and target instance. Since we consider a single ML model
and instance, we leave this additional information implicit.)

A feature ¢ € F is relevant if it is included in at least one
AXp. A feature is AXp-necessary if it is included in the in-
tersection of all AXps. A feature is CXp-necessary if it is
included in the intersection of all CXps.

!Throughout the paper, and for simplicity, we will assume that
features are categorical. However, the extension to non-categorical
features is simple, e.g. by using discretization.

Dec x1 z2 x3 x4 k()
Dec 1 xo =3 x4 ,L@() 01 0O 0 O 1 0
0 0 0 0 0 o0 04 0 1 0 O O
05 0 1 0 1 1
02 0 0 1 0 O
07 0 1 1 1 1
03 0 0 1 1 O
9 1 0 0 1 O
o6 0 1 1 O O
10 1. 0 1 0 O
08 1 0 0 0 1
11 1 0 1 1 O
12 1 1 0 0 1
5 1 1 1 1 1 13 1 1 0 1 1
4 1 1 1 0 1
(a) Dataset D, = Dy, (c) Dataset Dy,
0 0 0 O
e/ \e 0 010
0 0 1 1
o] 0110
2 3
(b) Decision tree for D, (d) Reduced matrix T,

Figure 1: Running examples, (a) one example consisting of dataset
D, and (b) the other consisting of aggregating Dy, and Dy,. The
target instance is: ((1,1,1,1),1). (c) The DT induced for Dg. (d)
the reduced matrix 7, containing the rows of sample S (correspond-
ing to D,) with predictions other than the prediction of the target
instance.

Running example(s). Throughout the paper, we will con-
sider the datasets shown in Fig. 1. From the datasets, we
have F = {1,2,3,4}, D, = {0,1}, with ¢ = 1,2,3,4,
K = {0,1}. Thus, F = {0,1}*. Regarding the datasets
shown in Fig. 1, the first dataset is D,, as shown. However,
the second dataset is composed of Dj, (which matches D,)
and Dy, being denoted by D;. Moreover, the instance con-
sidered is: (v,c¢) = ((1,1,1,1),1). A decision tree induced
from D, is shown in Fig. 1b.

Example 1. Given the DT induced from the dataset D, and
the target instance, it is plain that we get A = C = {{1}},
i.e. feature 1 suffices for fixing and changing the prediction.

Samples. Given a classifier defined on some feature space
F, a sample S is a subset of F. It is assumed that for each
x € S, the prediction can either be computed using the classi-
fier, k(x), or can be ascribed to x. Throughout, it is assumed
that S is finite, with n = |S| the number of points in S. The
term dataset denotes a sample such that a prediction is associ-
ated with each point in the sample. We will manipulate each
sample as a matrix, consisting of m columns, i.e. the features,
and n rows, each representing one of the points of the sam-
ple. For computing explanations, we will consider the given
instance, and the points of the sample with predictions other
than the one of the instance. This will be referred to as the
reduced matrix. For dataset D, and instance ((1,1,1,1),1),
the resulting reduced matrix is shown in Fig. 1d.

Given an ML model M = (F,F, &, K), an instance (v, ¢),
and a sample S C F, an sample-based explanation problem
is described by the tuple £ = (M, (v, ¢),S). As before, to
refer to the classifier associated with explanation problem &,

2Obtained with Orange 3.38.0, https://orangedatamining.com/.

https://orangedatamining.com/

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

we will use the notation £.M.k. (Moreover, and when clear
from context, we will just use x.)

3 Sample-Based Explanations

In this section, we start by revisiting the definition of
sample-based (abductive) explanation proposed in recent
work [Cooper and Amgoud, 2023; Amgoud et al., 2024]. Af-
terwards, we introduce additional definitions, and prove some
properties of sample-based explanations.

Definitions. Given a sample (or a dataset) S C [, a sample-
based weak abductive explanation (sbWAXp) is a subset of
the features X C F such that,

V(x €8). (Niex (i = vi)) = (k(x) = K(v)) (3)

The predicate sbWAXp : 27 — {0, 1} holds true for the sub-
sets of F for which (3) is true. A subset-minimal sbWAXp is
a sample-based AXp (sbAXp). Finally, it is plain that, when
S = F, then sbAXps match AXps.

Although not investigated in [Cooper and Amgoud, 2023;
Amgoud et al., 2023; Amgoud et al., 2024], sample-based
contrastive explanations can also be defined. As a result,
given a sample S C [F, a sample-based weak contrastive ex-
planation (sbWCXp) is a subset of features X C F such that,

3(x €8). (Niera (@i =v:)) A (K(x) # K(V) (4)

The predicate sbWCXp : 2° — {0, 1} holds true for the sub-
sets of F for which (4) is true. A subset-minimal sbWCXp
is a sample-based CXp (sbCXp). Clearly, when S = F, then
sbCXps match CXps. Moreover, as can be readily concluded,
the change in definitions consists of restricting feature space
F to the given sample S. Throughout the remainder of the pa-
per, we will use the acronym sbXps to refer to either sbAXps,
sbCXps or both.

Regarding the computation of one sbAXp, [Cooper and
Amgoud, 2023] outlines a O(m?n) algorithm, where m is
the number of features and n is the number of points in S.

Duality of explanations. Several duality results have been
proved in logic-based explainability [Marques-Silva, 2022].
In general, each abductive explanation is a minimal hitting set
of the set of contrastive explanations, and vice-versa. Simi-
larly, in the case of sbXps, we can prove the following:3

Proposition 1. (Minimal hitting set duality) Each sbAXp is
a minimal hitting set (MHS) of the set of sbCXps, and each
sbCXp is a minimal hitting set of the set of sbAXps.

Proof. Each claim is proved separately.

Let X be an sbAXp. Thus, by definition of sbAXp, if the
features in X are fixed, then the prediction must be c. Sup-
pose there exists an sbCXp) such that) is not hit by X, i.e.
X NY = . Then, by definition of sbCXp, by changing the
values of the features in)/, the prediction changes to a value

3Observe that, by claiming that an sbAXp X’ hits some sbCXp),
it signifies that some feature ¢ €) is fixed because of X, thereby not
allowing) to be responsible for a change in prediction. Similarly,
by claiming that an sbCXp) hits some sbAXp X, it signifies that
some feature ¢ € X" is made free due to), thereby not allowing X
to be responsible for fixing the prediction.

other than ¢; a contradiction. Thus, each sbAXp X € A must
hit each of the sbCXps in C.

Let Y be an sbCXp. Thus, by definition of sbCXp, if the fea-
tures in) are allowed to change their value to some other
suitable value, then the prediction changes to a value other
than c¢. Suppose there exists an sbAXp A that is not hit by
Y, ie. Y N X = (). Then, by definition of sbAXp, by fixing
the values of the features in X', the prediction will remain un-
changed; a contradiction. Thus, each sbCXp)Y € C must hit
each of the sbAXps in A. O

An immediate corollary is that each sbAXp must hit each
of the sbWCXps, and each sbCXp must hit each of the sb-
WAXps. Moreover, several of the algorithms described in
this paper exploit Proposition 1. These algorithms include
the computation of one sbAXp, one smallest sbAXp, the enu-
meration of sbAXps, but also deciding feature necessity and
relevancy [Marques-Silva, 2022].

Sample-based vs. model-based explanations. Let us illus-
trate the definitions of sample-based explanations.

Example 2. For the dataset D, (see Fig. la), it is plain that
one sbAXp is {1}. However, given the definition Eq. (3),
{2,4} is also an sbAXp. Thus A = {{1},{2,4}}. As a result,
by duality, the sbCXps become C = {{1,2},{1,4}}.

Example 3. For the dataset Dy, (see Figs. la and Ic), it is
plain that the sbAXps are A = {{1,2},{2,4}}. As a result,
by duality, the sbCXps become C = {{2},{1,4}}.

As illustrated by Example 1 and Examples 2 and 3, there
can exist important differences between model-based expla-
nations and sample-based explanations. A standard algorithm
for inducing a decision tree (e.g. CART) must necessarily
make assumptions about the points of F not included in S.
As can be observed from the induced DT in Fig. 1b, the pre-
diction will be 1 if z; = 1, and it will be 0 if z; = 0. How-
ever, this may or may not be the case, depending on F \ S.
If we consider the complete dataset D, (obtained from join-
ing Dy, = D, and Dy,), the model-based CXps may be in-
valid when checked against the complete dataset, since the
ML model makes assumptions that may also be invalid, e.g.
for the full dataset Dy, 1 = 1 does not imply prediction 1.

In contrast, sample-based explanations can offer a more
fine-grained characterization. First, sample-based CXps
should be viewed as pessimistic, in that no assumptions are
made about F\S. Thus, for a sample S, that includes the start-
ing sample S, S C S, additional features cannot be added to
an existing sbCXp. In contrast, features can be removed from
an sbCXp. As a result, an sbCXp for S may become a sb-
WCXp for S,, when S C S,. Second, and in contrast with
sbCXps, sbAXps should be viewed as optimistic. Thus, for
a sample S, that includes the starting sample S, S C S,, ad-
ditional features cannot be removed from an existing sbAXp.
In contrast, features can be added to an sbAXp. As a result,
an sbAXp for S may not be an sboWAXp for S,,, whenS C S,,.

Computing sbWCXps. Given a dataset D, and a target
instance (v,c¢,), each pair point-prediction (u,c,) in the
dataset, with ¢, # ¢,, encodes an sbWCXp. Clearly, starting
from v, and changing the features according to the values of
the features in u that differ from those in v, the prediction

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

—
O =
[NNl
— O

(a) sbWCXps We,q for D, (b) sbCXps C, for D,
Figure 2: (a) Sample-based weak CXps, where 1 means a
value that must be changed; (b) Sample-based CXps, i.e. C =

{{1,2},{1,4}}.

110 0 0 0 0 0 0O
001 1000O0TO00O0
0 00O011O0UO0O0O0
00 0O0O0OO0OT1T1TO0OF®O
00 0 0O0OO0OO0OTO0T1T1

Figure 3: Example sbCXp matrix yielding exponentially many
sbAXps

changes from c, to c,. Thus, the set of sbWCXps, denoted
by matrix W¢, can be computed as follows. Let u corre-
spond to row j in the reduced matrix. Each such row ¢ is
compared with the instance to create row j of matrix We.
For a given feature ¢, if T'[4, 7] (representing u;) differs from
v;, then W[4, i] = 1; otherwise W[4, 7] = 0.* Thus, the set
of sbWCXps is computed in O(mn) time. Furthermore, the
features in each sbWCXp j correspond to the entries in row j
of W that take a true value.

Example 4. Fig. 2a illustrates the computation of the set
of sbWCXps for dataset D, and the target instance. Thus,
WC = {{1,2,3,4},{1,2,4},{1,2},{1,4}}.

Number of sbh(W)CXps. Given the proposed construction
of sbWCXps, it is plain that their number is polynomial on
the size of the sample. Furthermore, given that each sbCXp
is a subset-minimal sbWCXp, then it is also the case that the
number of sbCXps is polynomial on the size of the sample.
(We will briefly discuss a dedicated algorithm for computing
the sbCXps in Section 4.) Thus, the following results hold:

Proposition 2. Both the number of sboWCXps and sbCXps are
O(n), where n = |S|, i.e. the size of the sample.

Number of sbh(W)AXps. Since each sbAXp is also an sb-
WAXDp, then the number of sbWAXps is no smaller than the
number of sbAXps; hence, we only study the number of
sbAXps.

Proposition 3. For a sample-based explanation problem £ =
(M, (v,¢),S), the number of sbAXps is worst-case exponen-
tial on the size of S.

Example 5. Before proving Proposition 3, we consider the
sbCXp matrix shown in Fig. 3, and prove that the number of
sbAXps is exponential on the number of sbCXps. For each
sbCXp, there are two features to pick from, and we must pick
exactly one to hit that sbCXp and to get an subset-minimal

4Given the definition of WAXps/WCXps, in (1), (2) and [Cooper
and Amgoud, 2023], two values differ if they are not equal. How-
ever, other definitions of value difference could be considered.

set. The number of sbCXps is set to 5. Thus, the number of
sbAXps will be 2% .

Proof. We consider a dataset where each sbWCXp ¢ contains
exactly two features 2¢ — 1 and 2:. Clearly, each sbWCXp
is not covered by any other sbWCXp, and so it is an sbCXp.
Each sbWAXp is a minimal hitting set of the set of sbCXps.
For each i, there are exactly two possible ways to hit the
sbCXp 4. For the total n = 5 sbCXps, there are 2% pos-
sible ways; hence, the number of sbAXps is O(2™). O

4 Algorithms & Complexity Results

This section describes algorithms for computing: (i) all
sbCXps; (ii) one smallest sbCXp; (iii) one sbAXp; (iv) all
sbAXps; and (v) deciding feature necessity and relevancy.
This section also proves that the problem of computing one
smallest sbAXp is NP-hard, and that the worst-case number
of sbAXps is exponential on the size of the sample.

4.1 Algorithms

Enumeration of all sbhCXps. From the set of sbWCXps,
we can compute the sbCXps as follows. We compare each
sbWCXp against all others (in terms of the matrix entries that
take value true), and keep the ones having no subsets. This
algorithm runs in O(mn?). Several low level optimizations
can be devised, but these do not change the asymptotic com-
plexity. The rest of the paper assumes that the algorithm will
also associate the number of features with each sbCXp; this
adds a constant to the run time of computing sbCXps.

Example 6. For the set of sbWCXps in Fig. 2a, we compare
each sbWCXp with every other sboWCXp, with the purpose of
finding the subset-minimal. These are shown in Fig. 2b. Thus,
C = {{1,2},{1,4}}.

Finding one (smallest) sbCXp. After computing the set of
sbCXps, finding a smallest sbCXp just requires traversing the
set of sbCXps, and picking one of smallest size. We asso-
ciate the number of true entries with each sbCXp row, i.e. the
sbCXp size, and so the running time is O(n). If the sbCXps
have not been computed, then the aggregated run time be-
comes O(mn? + n) = O(mn?). If the goal is to compute
one sbCXp, and the matrix of sbCXps has already been com-
puted, then we simply return any sbCXp. If the matrix of
sbCXps has not been computed, then we pick the first sb-
WCXp, say Y, as the candidate sbCXp, and then iteratively
compare with all the other sboWCXps. Each time a sbWCXp
N is a proper subset of), we replace) with this new candi-
date \V. Clearly, the run time is O(mn).

Finding one sbAXp. For computing one sbAXp, earlier
work [Cooper and Amgoud, 2023] proposed a O(m?n) al-
gorithm. Algorithm 1 proposes an asymptotically more effi-
cient solution, that runs in O(mn) time. Since the sbWCXp
matrix takes time O(mn) time to build, then we claim that
the proposed algorithm is optimal. Although the algorithm
assumes an sbWCXp matrix, it will also produce correct re-
sults if the matrix of sbCXps is used. The algorithm works
as follows. For an sb(W)CXp in row j, the number of true
entries is saved in variable TCs[j]. Each counter denotes the

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 1 Finding one sbAXp

Input: £: Xp problem; WXp: sbWCXps; TCs: Counts
Output: AXp X C F

1: function oneAXp(E, WXp, TCs)

2 LTCs <~ TCs > Local copy of row counters
3 X~ EMF > X initialized with all features
4 fori ¢ EM.F do > Invariant: WAXp(X') holds
5: drop < true
6

7

8

for j € {1,...,WXp.nrows} do
if WXp[3,] then
: LTCs[j] «+ LTCs[j] — 1
9: if LTCs[j] == 0 then

> Cannot hit row
10: drop < false
11: break
12: if drop then
13: X+ X\ {i} > AXp will not include i
14: else > Invariant: =WAXp(X \ {¢}) holds
15: for k € {1,...,5}do > Recover counters
16: if WXplk, i] then
17: LTCs[k] « LTCs[k] + 1

18: return X > AXp(X) holds

number of features hitting that row. The algorithm iteratively
drops features from a reference set X, and decrements the
row counters. When the counter for row j reaches 0, then no
features hit row j, and so X"\ {¢} would no longer represent
an sbWAXp. In that case, the feature cannot be removed from
set X', and the decremented counters need to be recovered. If
no decremented counter reaches 0, then feature 7 is removed
from X, since X' \ {i} still represents an sbWAXp. Thus,
the algorithm’s complexity is O(mn). A simple optimization
that does not reduce the worst-case run time is to replace the
matrix of sbWCXps with the matrix of sbCXps. However,
this requires pre-computing the matrix of sbCXps.

Example 7. Table I summarizes the computation of one
sbAXp for the running example, taking into account the ma-
trix of sbCXps shown in Fig. 2b. Given the picked order of the
features, i.e. (1,2,3,4), the computed sbAXp is {2,4}. Using
a different order, a different sbAXp might be obtained. For ex-
ample, given the order (2,3,4,1), then the computed sbCXp
would be {1}. From Proposition 1, we know that each sbAXp
is a MHS of the set of sbCXps, and vice-versa.

Finding one smallest sbAXp. As proved in Section 4.2,
finding one smallest sbAXp is computationally hard, and
unlikely to be solved in polynomial time. Nevertheless, it
is simple to devise a logic encoding for computing small-
est sbAXps. We encode the problem to propositional max-
imum satisfiability (MaxSAT). The proposed encoding can
start from the matrix of sboWCXps or the matrix of sbCXps;
we will refer to the corresponding matrix as M. We asso-
ciate a boolean variable p; with each each feature ¢ € F,
P = {pi|i € F}. Furthermore, for a (W)CXp represented
by row j, let F'(j) denote the set of features i such that
M¢c[j,1] is true. Then, for each j, we create the constraint,

\/ieF(j) Pi

i.e., we must pick one of the features so as to hit the
sb(W)CXp. The constraints above represent the background
knowledge, i.e. the hard constraints that must be consistent.
In addition, we encode a preference for not assigning the p;
variables to true. Thus, the soft constraints are of the form
(—p;). Clearly, the encoding is polynomial on the size of the
sbWCXps/sbCXps matrices.

Example 8. For the set of sbCXps in Fig. 2b, the hard (H)
and the soft (S) constraints become,

H={(p1Vp2),(P1Vps)}
S = {(=p1), (=p2), (=p3), (=ps)}

Letv : P — {0, 1} denote a valuation of the p; variables.
Clearly, the minimum number of falsified soft constraints is
1, by setting v(p1) = 1, that satisfies all the hard constraints,
and allows setting the value of the other variables to 0, i.e.
v(p2) = v(ps) = v(ps) = 0.

Enumeration of shbAXps. Given that the set of all sbCXps
can be computed in polynomial-time, there is no need for the
concurrent enumeration of sbAXps and sbCXps, e.g. using
a MARCO-like algorithm [Liffiton and Malik, 2013; Bendik
and Cernd, 2020]. As a result, we can either exploit theoret-
ically efficient algorithms [Fredman and Khachiyan, 1996],
which provide quasi-polynomial time guarantees on the size
of the input and output, use existing algorithms for comput-
ing minimal hitting sets [Kavvadias and Stavropoulos, 2005;
Liffiton and Sakallah, 2008; Gainer-Dewar and Vera-Licona,
20171, or consider a logic encoding. Given the algorithms
described above, a simple solution is to enumerate smallest
sbAXps, by increasing size.

Feature necessity & relevancy. Due to minimal hitting set
duality, feature relevancy can be decided using the set of
sbCXps. Thus, the overall running time will be O(mn?).
If the set of spCXps is known, then deciding feature rele-
vancy requires traversing one column of the sbCXp matrix,
in O(n) time. For finding all the sbCXp-necessary features,
it suffices to compute the intersection of all sbhCXps. Given
that there can exist O(n) and each sbCXp has O(m) fea-
tures, then sbCXp-necessity can be computed with O(n) in-
tersections, each involving O(m) elements. Hence, the run-
ning time is in O(mn), but with time O(mn?) for computing
the sbCXps. For finding all the sbAXp-necessary features, it
would be infeasible to intersect all the sbAXps, since their
number is worst-case exponential. However, it is simple to
conclude that any feature that occurs in all sbAXps represents
an sbCXp of size 1. Hence, spAXp-necessity is decided by
computing the sbCXps of size 1. For this, we need to com-
pute all the sbCXps in O(mn?) time, and then traverse the
sbCXps in O(n) time. Observe that there will be no need to
traverse the rows if the number of true entries is associated
with each row; hence the run time complexity follows.

Example 9. For the set of sbCXps of Fig. 2b, it is clear that
features 1,2.4 are relevant, feature 1 is sbCXp-necessary,
and that there are no sbAXp-necessary features.

A complete example. Given D; from Figs. 1a and 1c, we
compute the reduced matrix, then the sbWCXp matrix We p,
and finally the sbCXp matrix C}, that is shown in Fig. 4a. The

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Starting X Start. [LTCs[1],LTCs[2]] Feature Temp. [LTCs[1],LTCs[2]] Decision Updated X
(1,2,3.1} 2,2 ! [1,1] Drop 1 {2,3.4}
(2.3.4) 1,1] 2 0,1] Keep2 {2.3,4}
{2.3.4) 1,1] 3 1,1] Drop3 (2,4}
(2,4} 1] 4 1,0] Keepd (2,4}

Table 1: Execution of Algorithm 1 on sbCXp matrix of running example (see Fig. 2b)

Cl {23 {1,4}}
A {{1,2},{2,4}}

(b) Sets C and A

(a) sbCXp matrix Cp

Figure 4: sbCXp-matrix for dataset Dy, from Figs. 1a and 1c

Problem Complfaxity
Total Given sbCXps
All sbCXps O(mn?) —
One sbCXp O(mn) o)
One (smallest) sbCXp ~ O(mn?) O(n)
One sbAXp O(mn) O(mn)
Feature relevancy O(mn?) O(n)
sbAXp-necessity O(mn?) O(mn)
sbCXp-necessity O(mn?) O(n)

Table 2: Complexity of tractable sbXp problems

algorithms described earlier in this section can then be used
for computing the sbCXp matrix shown in Fig. 4a, and also
one sbAXp, and enumeration of sbAXps. These are shown
in Fig. 4b. Finally, we can conclude the following: (i) features
1, 2 and 4 are relevant, because these features occur in some
sbCXp; (ii) feature 3 is irrelevant, because it does not occur
in any sbCXp; (iii) there are no sbCXp-necessary features,
since the intersection of sbCXps is empty; and (iv) there is
one sbAXp-necessary feature, namely 2, because there exists
a sbCXp of size 1 composed of feature 2.

Summary. Table 2 summarizes the complexity results dis-
cussed in this section for tractable problems related with
sample-based explanations. The following section discusses
intractability results.

4.2 Complexity Results

Complexity-wise, we consider two problems: (i) enumeration
of sbAXps; and (ii) finding one smallest sbAXp.

Enumeration of sbAXps. The problem of enumerat-
ing sbAXps maps to several other well-known computa-
tional problems, namely monotone dualization [Fredman and
Khachiyan, 1996; Eiter et al., 2008] and computing the
transversal of an hypergraph [Eiter and Gottlob, 1995; Kav-
vadias and Stavropoulos, 2005; Liffiton and Sakallah, 2008].
Moreover, the connections between these two problems are
well-known [Eiter et al., 2003]. A seminal result is the quasi-

polynomial algorithm of Fredman and Khachiyan [Fredman
and Khachiyan, 1996] on the size of input and output. The
following result equates sbAXp enumeration with monotone
dualization and computing hypergraph transversals.

Proposition 4. The problem of computing the transversal on
an hypergraph reduces to sbAXp enumeration.

Proof. (Sketch) Each hyperedge maps to an sbCXp. The
minimal hitting sets of the sbCXps represent the hyperedges
of the hypergraph transversal.

Finding one smallest sbAXp. We prove that deciding the
existence of a sbAXp with size no larger than £ is NP-
complete.

Proposition 5. The problem of deciding the existence of an
sbAXp of size no larger than k is NP-complete.

Proof. The decision problem is in NP. By guessing a possible
sbAXp with size no larger than k, one can check in polyno-
mial time whether all rows of the sbCXp matrix are hit.

To prove NP-hardness, we reduce a well-known NP-complete
decision problem to our target problem. For that, we choose
the decision version of the set covering problem, which is
well-known to be NP-complete [Karp, 1972]. Given a set U,
andasetV = {V4,..., Vk} of subsets of U, the set-covering
decision problem is to decide the existence of at most k sets
in V such that their union is U, in which case we say that U
has a k-cover given V.

We reduce the set-covering to finding an sbAXp of at most
size k as follows, by creating a suitable matrix M. Each row
represents one element of U. For element j of U, M[j,1] = 1
if element j is included in V;. Clearly, the construction of
M 1is in polynomial time. Moreover, it is simple to prove
that there exists a k-cover of U if and only if there exists an
sbAXp of size no greater than k. O

5 Experiments

This section presents results on the algorithms proposed in the
paper. We opt to explain existing large-size datasets. How-
ever, as argued in Section 1, we could have sampled ML mod-
els, or could even mix the two.

Experimental setup. The experiments consider 30 real-
world datasets. The number of samples range from 1000 to
over one million, whereas the number of features range from
10 to 250. All datasets are concerned with solving supervised
classification problems, that include different types of fea-
tures (boolean, categorical, integer and real values). Also, for
each dataset, 10 different instances were randomly selected;
in the experiments, the mean values are reported.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

250 ‘
NR-F

2004{{ —— One CXp
. —— Min AXp
% 150144 —— One AXp
£ 10K AXps
E 100 All CXps
O

50
[e — SRS = = I S,
0 5 10 15 20

Dataset

Figure 5: Cactus plot of running times for the selected experiments

In the experiments, we measured the time required to com-
pute: (i) one sbCXp; (ii) all sbCXps; (iii) one sbAXp; (iv)
one smallest sbAXp; (v) several sbAXps; and (vi) feature rel-
evancy & necessity (for sbAXps/sbCXps). All experiments
were conducted on a computer with an AMD Ryzen™ 7
4800HS and 16 GB of RAM.

Computing sbhCXps. As detailed in Section 3, the compu-
tation of the set of sbWCXps is a crucial step for identify-
ing sbCXps. As also noted in Section 3, one must define
when values should be deemed equal or not. In this paper,
we opted for the equality operator, given the proposed defi-
nition of (sb)AXps/(sb)CXps. Once the set of sbBWCXps is
computed, finding one or all sbCXps can be attained by us-
ing the algorithms detailed in Section 4.1. The time required
to find one sbCXp was measured starting from the set of sb-
WCXps and not from the set of sbCXps. Fig. 5 shows the dis-
tribution of running times for computing both a single sbCXp
(red) and for computing all sbCXps (pink). Motivated by the
sizes of the datasets considered, the time taken for computing
all sbCXps can be significant, but it exceeds 250s only for
seven datasets. The maximum time for finding one sbCXp
and all sbCXps was 16.3s and 31176s, respectively. Figure 6
shows in more detail the behavior for the case of computing
one sbCXP in Figure 6a and all sbCXps in Figure 6b, respec-
tively. In each plot, each dot represents the result for a single
dataset, and the color intensity (shading towards yellow) in-
dicates the number of rows in the tested dataset. This allows
us to highlight the impact of the number of rows and columns
on the evaluated algorithms. We can notice here, that the al-
gorithm for finding a single sbCXp is more sensitive to the
number of rows in the dataset. A similar pattern occurs for
the algorithm for finding all sbCXps, but with a more pro-
nounced impact. This is to be expected, as both algorithms
require identifying the set of all sSbWCXps.

Computing sbAXps. As noted in Section 4.1, we can ex-
ploit minimal hitting set duality for computing one sbAXp
using the set of sb(W)CXps. In the experiments, a single
sbAXp and a smallest sbAXp were computed starting from
set of sbCXps. Fig. 5 shows the the time required to find a
single sbAXp (brown), a smallest sbAXp (violet), and also
ten thousand (10k) sbAXps (yellow).As was mentioned be-
fore, the time required to get all sbCXps in order to run the

Search One CXp

o
144
8005
124 5
Z
a o
2 104 e =
E 600 £
g 8 © 2
& [}
° x
£ 67 © 400y
NP BT 3
o g
[200 =
24 e Z
® o
04 _‘__.‘_ ° A |
0 50 100 150 200
Number of Features
(a) Find one sbCXp
Search All CXps
30000 | o
25000 4 8003
g
]
% 20000 2
g 6005
8 %)
2 15000 2
~ [=]
@ 24
£ 10000 4005
=) z
=}
g
5000 200 E
® °®
0| comido® © o)
0 50 100 150 200

Number of Features

(b) Find all sbCXps

Figure 6: Finding sbCXps

algorithms is measured separately. Section 4.2 proves that
finding one smallest sbAXp is computationally hard, and so
it is expected to require more time in practice. The smallest
sbAXp trivial cases (columns with only value 1 in the sbCXp
set) were removed from the sbCXp set beforehand, as an ad-
ditional optimization. In the experimentation, the computa-
tion of a single sbAXp and a smallest sbAXp have a similar
running time. For the selected datasets, the maximum time
for computing one (resp. smallest) sbAXp was 71.3s (resp.
66.8s). As noted also in Section 4.2, we adapt the finding of
smallest sbAXps in order to enumerate the selected number of
sbAXps (this also means that sbAXps are enumerated by in-
creasing size). The maximum enumeration time was 139.2s.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Search One AXp

70 1 o
60 ® 8003
[=]
3
Rl 2
2 1ol o 6005
o [%]
& 2
© 301 x
E 400 o
= =
201 o _gé
200 £

101 e
® Z
0| cemidee o o8 L
0 50 100 150 200

Number of Features

(a) Find one sbAXp

Search Min AXp

801
o
70 _
60 800§
% 50 5
g 6005
8 40 ° 2
2]
. 2
[}
g 30 400 %
=) =
20 el .‘é’
ol e 2002
®le
0 cumstidee o (08 e
0 50 100 150 200

Number of Features

(b) Find a smallest sbAXp

Figure 7: Finding sbAXps

The choice of 10K sbAXps aims solely at illustrating the scal-
ability of the proposed algorithm. Despite the fairly small
limit on the number of sbAXps to be enumerated, as proved
in Section 3 the worst-case is exponential on the number of
features. Figure 7 shows the relationship between running
time, number of features and number of rows. Here, we have
in Figure 7a for finding one sbAXp and, in Figure 7a, for
finding a smallest sbAXp.

Feature relevance, sbAXp and sbCXp necessity. As ar-
gued in Section 4.1, deciding feature relevancy and necessity
only requires analysis of the set of sbCXps. For simplicity, we
opted to aggregate the running times for deciding relevancy
and necessity, not including the time for search all sbCXps.
As shown in Fig. 5, the running times for finding relevant
and necessary features (green) is in general negligible, even
for fairly large datasets. The maximum time reported for the
tested datasets was 1.12s.

6 Related Work

In logic-based XAI, sample-based explanations were intro-
duced in recent work [Cooper and Amgoud, 2023]. Addi-
tional recent efforts include [Amgoud et al., 2024; Koriche
et al., 2024]. A related line of work focused on smallest
explanations [Rudin and Shaposhnik, 2019; Rudin and Sha-
poshnik, 2023]. Nevertheless, the analysis of tabular data
has been studied in different domains, including rough sets
(RS) [Pawlak, 1982], logic analysis of data (LAD) [Crama et
al., 1988], and testor theory (TT) [Lazo-Cortés et al., 20011,
among others. The connections between these approaches to
data analysis have been the subject of past research [Chikalov
et al., 2013; Lazo-Cortés et al., 2015]. Some of the concepts
used in RS, LAD and TT mimic those proposed in sample-
based in XAI [Cooper and Amgoud, 2023]. For example,
the algorithms for computing one or all sbCXps proposed in
this paper find equivalent in earlier work on RS, LAD or TT.
To the best of our knowledge, the algorithms for finding ei-
ther one subset-minimal sbAXp or one cardinality-minimal

sbAXp are novel, and improve on earlier proposals. The same
holds true for the complexity results developed in this paper.
As noted above, the work of [Rudin and Shaposhnik, 2019;
Rudin and Shaposhnik, 2023] focused on smallest explana-
tions for the given sample. This approach exploits a set-
covering formulation, but does not analyze the complexity of
the problem; it also overlooks the polynomial-time cases.

7 Conclusions & Research Directions

Logic-based XAI addresses important limitations of sub-
symbolic XAl providing explanations that are model-based
and so model-accurate. However, logic-based XAl requires
logic encodings of ML models, and this raises a few chal-
lenges, including scalability, but also the need to access the
ML model being explained. In some situations, such ML
models are not readily available for analysis. One alterna-
tive is sample-based XAI [Cooper and Amgoud, 2023], which
builds on the sampled behavior of the ML model for comput-
ing rigorous logic-based explanations.

This paper proposes novel algorithms for computing
sample-based abductive and contrastive explanations, for the
enumeration of explanations, but also for deciding feature
necessity and relevancy. The paper also proves complexity
results regarding the computation of sample-based explana-
tions. The experimental results confirm the scalability of the
algorithms proposed in the paper. A number of research di-
rections can be envisioned. For example, future work will
extend the algorithms proposed in this paper to the cases of
non-categorical and non-tabular data.

Acknowledgments

This work was supported in part by the Spanish Govern-
ment under grants PID 2023-1528140B-100, PCI 2022-
135010-2, PID 2022-139835NB-C21, PIE 2023-5AT010,
HE-101070930, and by ICREA starting funds. The first au-
thor (JMS) also acknowledges the extra incentive provided by
the ERC in not funding this research.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

References

[Amgoud et al., 2023] Leila Amgoud, Philippe Muller, and
Henri Trenquier. Leveraging argumentation for generating
robust sample-based explanations. In IJCAI, pages 3104—
3111, 2023.

[Amgoud er al., 2024] Leila Amgoud, Martin C. Cooper,
and Salim Debbaoui. Axiomatic characterisations of
sample-based explainers. In ECAI, pages 770-777, 2024.

[Audemard et al., 2022] Gilles Audemard, Steve Bellart,
Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez,
and Pierre Marquis. On the explanatory power of boolean
decision trees. Data Knowl. Eng., 142:102088, 2022.

[Bach et al., 2015] Sebastian Bach, Alexander Binder,
Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Miiller, and Wojciech Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[Bassan and Katz, 2023] Shahaf Bassan and Guy Katz. To-
wards formal XAI: formally approximate minimal expla-
nations of neural networks. In TACAS, pages 187-207,
2023.

[Bendik and Cern4, 2020] Jaroslav Bendik and Ivana Cerna.
MUST: minimal unsatisfiable subsets enumeration tool. In
TACAS, pages 135-152, 2020.

[Chikalov et al., 2013] Igor Chikalov, Vadim V. Lozin, Irina
Lozina, Mikhail Moshkov, Hung Son Nguyen, Andrzej
Skowron, and Beata Zielosko. Three Approaches to Data
Analysis - Test Theory, Rough Sets and Logical Analysis of
Data, volume 41 of Intelligent Systems Reference Library.
Springer, 2013.

[Cooper and Amgoud, 2023] Martin C. Cooper and Leila
Amgoud. Abductive explanations of classifiers under con-
straints: Complexity and properties. In ECAI, pages 469—
476, 2023.

[Cooper and Marques-Silva, 2023] Martin C. Cooper and
Joao Marques-Silva. Tractability of explaining classifier
decisions. Artif. Intell., 316:103841, 2023.

[Crama et al., 1988] Yves Crama, Peter L Hammer, and
Toshihide Ibaraki. Cause-effect relationships and partially
defined boolean functions. Annals of Operations Research,
16:299-325, 1988.

[Darwiche, 2023] Adnan Darwiche. Logic for explainable
Al In LICS, pages 1-11, 2023.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput., 24(6):1278-1304,
1995.

[Eiter et al., 2003] Thomas Eiter, Georg Gottlob, and
Kazuhisa Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM J. Comput.,
32(2):514-537, 2003.

[Eiter et al., 2008] Thomas Eiter, Kazuhisa Makino, and
Georg Gottlob. Computational aspects of monotone

dualization: A brief survey. Discret. Appl. Math.,
156(11):2035-2049, 2008.

[Fredman and Khachiyan, 1996] Michael L. Fredman and
Leonid Khachiyan. On the complexity of dualization
of monotone disjunctive normal forms. J. Algorithms,
21(3):618-628, 1996.

[Gainer-Dewar and Vera-Licona, 2017] Andrew Gainer-
Dewar and Paola Vera-Licona. The minimal hitting set
generation problem: Algorithms and computation. SIAM
J. Discret. Math., 31(1):63-100, 2017.

[Gorji and Rubin, 2022] Niku Gorji and Sasha Rubin. Suf-
ficient reasons for classifier decisions in the presence of
domain constraints. In AAAI, pages 5660-5667, 2022.

[Ignatiev et al., 2019a] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. Abduction-based explanations
for machine learning models. In AAAI, pages 1511-1519,
2019.

[Tgnatiev et al., 2019b] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. On validating, repairing and re-
fining heuristic ML explanations. CoRR, abs/1907.025009,
2019.

[Ignatiev, 2020] Alexey Ignatiev. Towards trustable explain-
able Al In IJCAI, pages 5154-5158, 2020.

[Tzza and Marques-Silva, 2021] Yacine 1Izza and Jodo
Marques-Silva. On explaining random forests with SAT.
In Zhi-Hua Zhou, editor, IJCAI, pages 2584-2591, 2021.

[Tzza er al., 2020] Yacine Izza, Alexey Ignatiev, and Joao
Marques-Silva. On explaining decision trees. CoRR,
abs/2010.11034, 2020.

[Tzza er al., 2022] Yacine Izza, Alexey Ignatiev, and Jodo
Marques-Silva. On tackling explanation redundancy in de-
cision trees. J. Artif. Intell. Res., 75:261-321, 2022.

[Karp, 1972] Richard M. Karp. Reducibility among com-
binatorial problems. In Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger, editors, Complexity of
Computer Computations, pages 85—103. Springer, 1972.

[Kavvadias and Stavropoulos, 2005] Dimitris J. Kavvadias
and Elias C. Stavropoulos. An efficient algorithm for the
transversal hypergraph generation. J. Graph Algorithms
Appl., 9(2):239-264, 2005.

[Koriche et al., 2024] Frédéric Koriche, Jean-Marie
Lagniez, Stefan Mengel, and Chi Tran. Learning
model agnostic explanations via constraint programming.
In ECML, pages 437453, 2024.

[Kumar et al., 2020] 1. Elizabeth Kumar, Suresh Venkata-
subramanian, Carlos Scheidegger, and Sorelle A. Friedler.
Problems with Shapley-value-based explanations as fea-
ture importance measures. In ICML, pages 5491-5500,
2020.

[Lazo-Cortés et al., 2001] Manuel Lazo-Cortés, José Ruiz-
Shulcloper, and Eduardo Alba-Cabrera. An overview of
the evolution of the concept of testor. Pattern Recognit.,
34(4):753-762, 2001.

[Lazo-Cortés et al., 2015] Manuel Sabino Lazo-Cortés, José
Francisco Martinez Trinidad, Jesds Ariel Carrasco-Ochoa,
and Guillermo Sanchez-Diaz. On the relation between

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

rough set reducts and typical testors. Inf. Sci., 294:152—
163, 2015.

[Liffiton and Malik, 2013] Mark H. Liffiton and Ammar Ma-
lik. Enumerating infeasibility: Finding multiple MUSes
quickly. In CPAIOR, pages 160-175, 2013.

[Liffiton and Sakallah, 2008] Mark H. Liffiton and Karem A.
Sakallah. Algorithms for computing minimal unsatisfi-
able subsets of constraints. J. Autom. Reason., 40(1):1-33,
2008.

[Lundberg and Lee, 2017] Scott M. Lundberg and Su-In
Lee. A unified approach to interpreting model predictions.
In NeurlPS, pages 47654774, 2017.

[Malfa et al., 2021] Emanuele La Malfa, Rhiannon Michel-
more, Agnieszka M. Zbrzezny, Nicola Paoletti, and Marta
Kwiatkowska. On guaranteed optimal robust explanations
for NLP models. In IJCAI, pages 2658-2665, 2021.

[Marques-Silva and Huang, 2024] Joao Marques-Silva and
Xuanxiang Huang. Explainability is Not a game. Com-
mun. ACM, 67(7):66-75, 2024.

[Marques-Silva and Ignatiev, 2022] Joao Marques-Silva and
Alexey Ignatiev. Delivering trustworthy Al through formal
XAI In AAAI pages 12342-12350, 2022.

[Marques-Silva, 2022] Joao Marques-Silva. Logic-based ex-
plainability in machine learning. In Reasoning Web, pages
24-104, 2022.

[Pawlak, 1982] Zdzislaw Pawlak. Rough sets. Int. J. Parallel
Program., 11(5):341-356, 1982.

[Ribeiro et al., 2016] Marco Tilio Ribeiro, Sameer Singh,
and Carlos Guestrin. “why should I trust you?”: Explain-
ing the predictions of any classifier. In KDD, pages 1135-
1144, 2016.

[Ribeiro et al., 2018] Marco Tilio Ribeiro, Sameer Singh,
and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In AAAI pages 1527-1535, 2018.

[Rudin and Shaposhnik, 2019] Cynthia Rudin and Yaron
Shaposhnik. Globally-consistent rule-based summary-
explanations for machine learning models: Application to
credit-risk evaluation. SSRN, (3395422), 2019.

[Rudin and Shaposhnik, 2023] Cynthia Rudin and Yaron
Shaposhnik. Globally-consistent rule-based summary-
explanations for machine learning models: Application
to credit-risk evaluation. J. Mach. Learn. Res., 24:16:1—
16:44, 2023.

[Serban et al., 2021] Alexandru Constantin Serban, FErik
Poll, and Joost Visser. Adversarial examples on object

recognition: A comprehensive survey. ACM Comput.
Surv., 53(3):66:1-66:38, 2021.
[Shih et al., 2018] Andy Shih, Arthur Choi, and Adnan Dar-

wiche. A symbolic approach to explaining bayesian net-
work classifiers. In IJCAI, pages 5103-5111, 2018.

[Wildchen et al., 2021] Stephan Wildchen, Jan MacDonald,
Sascha Hauch, and Gitta Kutyniok. The computational
complexity of understanding binary classifier decisions. J.
Artif. Intell. Res., 70:351-387, 2021.

[Zhang et al., 2024] Hanwei Zhang, Felipe Torres Figueroa,
and Holger Hermanns. Saliency maps give a false sense of
explanability to image classifiers: An empirical evaluation
across methods and metrics. In ACML, 2024.

