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Abstract
We study the problem of fair online resource alloca-
tion via non-monetary mechanisms, where multiple
agents repeatedly share a resource without mone-
tary transfers. Previous work has shown that ev-
ery agent can guarantee 1/2 of their ideal utility
(the highest achievable utility given their fair share
of resources) robustly, i.e., under arbitrary behav-
ior by the other agents. While this 1/2-robustness
guarantee has now been established under very dif-
ferent mechanisms, including pseudo-markets and
dynamic max-min allocation, improving on it has
appeared difficult.
In this work, we obtain the first significant improve-
ment on the robustness of online resource sharing.
In more detail, we consider the widely-studied re-
peated first-price auction with artificial currencies.
Our main contribution is to show that a simple ran-
domized bidding strategy can guarantee each agent
a 2 - √2 ≈ 0.59 fraction of her ideal utility, irre-
spective of others’ bids. Specifically, our strategy
requires each agent with fair share α to use a uni-
formly distributed bid whenever her value is in the
top α-quantile of her value distribution. Our work
almost closes the gap to the known 1 - 1/e ≈ 0.63
hardness for robust resource sharing; we also show
that any static (i.e., budget independent) bidding
policy cannot guarantee more than a 0.6-fraction of
the ideal utility, showing our technique is almost
tight.

1 Introduction
There are many settings where multiple self-interested agents
share a resource controlled by a principal. Specifically, we
consider the problem where the resource is repeatedly allo-
cated to one of the agents over a long time horizon. For ex-
ample, consider multiple scientific labs at a university sharing
a computer cluster. Each lab wants to run experiments in ev-
ery time slot, but only one lab can use the cluster at a time.
The system administrator must decide who uses the cluster in
each time slot. This has to be done in a “fair” way so that
each lab is satisfied with the resulting allocation. In addition,

the allocation has to happen without requiring monetary pay-
ments from the labs.

The allocation model and mechanism that we study were
first introduced by [Gorokh et al., 2021] and subsequently
also studied in [Fikioris et al., 2023; Banerjee et al., 2023].
Every agent is endowed with a fair share of the resource.
Roughly speaking, an agent’s fair share is their intrinsic right
to enjoy a fraction of the resource. Letting different agents
have different fair shares encapsulates many realistic real-
world scenarios. For example, it may be natural for a larger
research group within a university to get access to a computer
cluster more often than a smaller group. As a benchmark, this
line of work defines and uses ideal utility. Roughly speaking,
an agent’s ideal utility is the maximum per-round utility that
she can obtain if she is restricted to obtaining only her fair
share of the resource.

[Gorokh et al., 2021] introduce a simple non-monetary
mechanism in which each agent is endowed with an amount
of artificial currency proportional to their fair share, and at
each time, the item is allocated according to a first-price auc-
tion using the artificial currency. Assuming that each agent’s
value for the item is drawn independently from a fixed dis-
tribution each round, they show that in this mechanism, each
agent can guarantee a 1

2 − o(1) fraction of her ideal utility ro-
bustly, which means that each agent can make this guarantee
regardless of the behavior of the other agents and their value
distribution. [Fikioris et al., 2023] study the same problem
under a different mechanism and get the same result.

Our results We use the model and mechanism of [Gorokh
et al., 2021] and offer a much more detailed analysis of the
achievable robust guarantees. Our main result is an improved
bidding strategy that any agent can follow to guarantee a
2 −

√
2 − o(1) ≈ 0.59 fraction of her ideal utility robustly

(Theorem 1). We emphasize that since this result holds under
arbitrary behavior by other agents, the same utility guaran-
tee can be made under any equilibrium. This lower bound is
close to the upper bound of 1 − 1

e ≈ 0.63 that [Fikioris et
al., 2023] give. Our proposed strategy, Randomized Robust
Bidding, is very simple. While budget suffices, an agent’s bid
is sampled from a certain uniform distribution if her value is
in the top α-quantile of her value distribution, where α is her
fair share.

This randomization in bidding is essential for improving
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the 1
2 ideal utility guarantee. For such a guarantee [Banerjee

et al., 2023; Gorokh et al., 2021] suggest that an agent should
bid a fixed constant whenever her value is sufficiently high.
Under such simplistic bidding, the other agents know exactly
how much they need to bid to beat agent i. It is not hard
to show that no fixed bidding can robustly guarantee a better
than 1

2 of the ideal utility. The same holds for the 1
2 guarantee

of [Fikioris et al., 2023]: their much simpler mechanism only
allows requesting the resource or not, equating to a fixed bid
for pseudo-markets.

Given the above observations about fixed bidding, a more
involved strategy is essential for stronger results. While a uni-
form distribution is arguably the simplest continuous distribu-
tion, it enjoys the following property. It is the distribution that
minimizes spending, subject to achieving the same fraction of
ideal utility when the other agents are bidding b, for a range
of values b ≥ 1. Carefully optimizing this uniform distribu-
tion, we get the (2 −

√
2) guarantee of Theorem 1 when its

support is [0, 1 +
√
2].

A main component of our utility lower bound (and subse-
quent results) is Lemma 1, which greatly simplifies the prob-
lem of getting robust guarantees. Specifically, we show that
for any β ≤ 1, if an agent can guarantee a β fraction of
her ideal utility when her value distribution is Bernoulli with
mean equal to her fair share, then she can guarantee the same
for any value distribution. In addition, our reduction works
for any mechanism, showing that this Bernoulli value distri-
bution is the worst-case for this problem.

We show that our robust utility guarantee is almost tight in
the following sense. Suppose the agent does have the worst-
case Bernoulli distribution. If the agent uses any strategy that
involves bidding from the same fixed distribution every round
in which she has value 1, she cannot robustly guarantee more
than a 0.6 fraction of their ideal utility (Theorem 2). This
result also showcases the strength of the uniform distribution
we used before. If the probability that the agent bids more
than b when she has value 1 is not at least (1 − β)b at every
point b ≥ 1 (i.e., above a certain uniform distribution), then
the other agents can bid b to make the agent get less than β
fraction of her ideal utility. In other words, we prove that
if the agent’s bidding is not aggressive enough, she cannot
guarantee a β fraction of her ideal utility. On the other hand,
by bidding too much, the agent will run out of budget. We
combine these bounds to show that an agent cannot obtain
a guarantee of more than a 0.6 fraction of their ideal utility
regardless of the choice of bidding distribution.

Our final theoretical result is a bidding strategy the agents
other than i can follow that ensures agent i receives at most a
(1− 1

e ) fraction of her ideal utility under the previous worst-
case Bernoulli value distribution (Theorem 3). Unlike the
previous result, this is under arbitrary strategies that agent i
can follow, such as time-varying strategies. Due to [Fikioris
et al., 2023], it is already known that there is no mechanism
can guarantee every agent a (1− 1

e ) fraction of her ideal utility
but this is the first explicit strategy that does this. We believe
that the bidding distribution we provide for the other agents
might be of interest to close the gap between the upper and
lower bounds.

Finally, in Section 5, we provide empirical evidence of
how our Randomized Robust Bidding strategy is superior to
the fixed bidding of previous work. In particular, we show
that when each of n agents with equal fair shares follows
the Randomized Robust Bidding strategy, then every agent
ends up with a 1 − (1 − 1/n)n fraction of their ideal util-
ity (note that 1 − (1 − 1/n)n → 1 − 1/e as n → ∞).
This fraction is the theoretical maximum any allocation can
guarantee when there are n agents, even if it has knowl-
edge of the agents’ realized values. This is much higher
than the 1/2 fraction of ideal utility that agents get when
following the fixed bidding strategy of [Gorokh et al., 2017;
Banerjee et al., 2023].

Related Work Our work follows in a long line of works
that consider the problem of repeated allocation of resources
without money. The interest in studying such mechanisms
stems from its application in many real-world settings, and
indeed, the theory has benefited from and influenced success-
ful deployments for course allocation [Budish et al., 2017],
food banks [Walsh, 2014; Prendergast, 2022] and cloud com-
puting [Dawson et al., 2013; Vasudevan et al., 2016].

The particular model we consider, with a single indivisi-
ble item per round, and agents with random valuations across
rounds, was first considered in the work of [Guo and Conitzer,
2010]; however the core idea of ‘linking’ multiple alloca-
tions to incentivize truthful reporting without money goes
back to the seminal work of [Jackson and Sonnenschein,
2007]. These mechanisms, and a long line of follow-up
work [Cavallo, 2014; Gorokh et al., 2017; Balseiro et al.,
2019; Blanchard and Jaillet, 2024], provide only Bayes-Nash
equilibrium guarantees, and moreover, the mechanisms need
to know the value distributions beforehand. None of these
mechanisms, however, can provide any guarantee under non-
equilibrium actions by other agents.

A more recent line of work, starting from [Gorokh et
al., 2021], considers the same setting, but focuses on robust
individual-level guarantees: the aim now is to guarantee each
agent some minimum utility irrespective of how other agents
behave. [Gorokh et al., 2021] propose the repeated first-price
pseudo-market that we also use in our work, and show that
every agent can guarantee a 1/2 fraction of her ideal util-
ity robustly. Since then, this 1/2-robustness guarantee has
been re-obtained using very different mechanisms: [Baner-
jee et al., 2023] give a simple argument to get this guaran-
tee using a repeated first-price auction with a reserve (their
main focus is to extend the robustness guarantees to reusable
resources, i.e., resources that an agent might want for multi-
ple consecutive rounds), and [Fikioris et al., 2023] show how
to get it using a very different non-market based mechanism
called Dynamic Max-Min Fairness (while also showing how
to get robust guarantees that are distribution-specific and ex-
tend to values that are correlated across time). Both these
latter works also suggest that the 1/2-robustness guarantee is
essentially tight under their respective approaches, which is
far below the best upper-bound of 1− 1/e we discuss above.
The question of whether one can obtain stronger robustness
guarantees for the basic single-item setting has, however, re-
mained open until this work.
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Further afield, there are problems where agents’ values are
known in advance. [Babaioff et al., 2021; Babaioff et al.,
2022] study fair resource allocation when the agents’ values
are adversarially picked have to be allocated simultaneously.
Due to this information structure, their utility benchmarks are
much weaker than ours. For example, for an agent who has
positive value 1 for only T/n out of T items, they guaran-
tee Θ(T/n2) utility as an adversary can “block” the agent
for only items of positive value. In contrast, for an agent
with Bernoulli(1/n) values, we guarantee ≈ 0.59T/n util-
ity. [Avni et al., 2018; Lazarus et al., 1999] study ‘Poor-
man games’, which are games involving bidding with arti-
ficial currencies. However, unlike our setting, players have
full-information, making them fundamentally different, simi-
lar to [Babaioff et al., 2021; Babaioff et al., 2022].

2 Preliminaries
2.1 Model and Ideal Utility
We consider repeated online allocation of a single, indivisible
resource via repeated first-price auctions using artificial cur-
rencies as introduced in [Gorokh et al., 2021]. There are n
agents, 1, 2, . . . , n. At each time t = 1, 2, . . . , T , a princi-
pal decides which agent, if any, to receive the resource. Each
agent i has a nonnegative value Vi[t] for the item at time t
and aims to maximize her total utility, which is the sum of the
values of the items she got allocated. We assume the values
Vi[t] are drawn independently across both agents i and times
t. Specifically, each agent has a time-invariant value distribu-
tion Fi, and the values Vi[t] are drawn from Fi each round
t. We make no assumptions about Fi beyond non-negativity.
The values Vi[t] are private and are not known to the other
agents or the principal.

Each agent i has some exogenously defined fair share αi,
where each αi ≥ 0 and

∑n
i=1 αi = 1. An agent’s fair share

measures the exogenously defined fraction of allocated items
they should receive in a fair world. A fair principal should
consider mechanisms that favor agents with higher fair shares
in some way.

As in [Gorokh et al., 2021; Banerjee et al., 2023; Fikioris
et al., 2023], to evaluate an agent’s resulting utility, we use
the benchmark of ideal utility. Intuitively, the ideal utility
v⋆i of agent i is the maximum long-term time-average utility
the agent can get if allocated an αi fraction of the rounds.
Formally, v⋆i is defined as the maximum expected utility they
could achieve from a single round if they can only obtain the
item with probability at most αi:

v⋆i = max
ρ:[0,∞)→[0,1]

E
Vi∼Fi

[Viρ(Vi)]

s.t. E
Vi∼Fi

[ρ(Vi)] ≤ αi

(1)

where ρ(Vi) denotes the probability of obtaining the item
conditioned on the value Vi.

We will be interested in robust strategies used by the
agents. These strategies approximate an agent’s ideal utility
regardless of the other agents’ behavior, even if they behave
adversarially. We give a formal definition below.
Definition 1. A policy used by an agent i is βi-robust if when
using the policy, regardless of the behavior of the other agents

Mechanism 1 Repeated first-price auction with artificial cur-
rency
Input: Number of rounds T , number of agents n, and fair
shares α1, . . . , αn

1: Endow each agent i with Bi[1] = αiT tokens of artificial
currency.

2: for t = 1, 2, . . . , T do
3: Agents submit bids bi[t] where each bi[t] ≤ Bi[t].
4: Select the winner i⋆ = argmaxi bi[t] (ties broken ar-

bitrarily).
5: Set the payments as Pi[t] = bi[t]111{i = i⋆}.
6: Update budgets Bi[t+ 1] = Bi[t]− Pi[t].
7: Agents get utility Ui[t] = Vi[t]111{i = i⋆}.
8: end for

j ̸= i, the agent’s per-round expected utility is at least βi

fraction of her ideal utility, i.e.,

1

T

T∑
t=1

E[Ui[t]] ≥ βiv
⋆
i .

Robust Strategies, Equilibria and Price of Anarchy As
also mentioned in previous work, we point out an additional
benefit of Definition 1. If every agent has a β-robust policy,
then under any equilibrium, every agent achieves a β fraction
of her ideal utility. In addition, this implies Price of Anarchy
guarantees when the agents’ fair shares are equal, αi = 1/n.
In this case, the social welfare is upper-bounded by the sum
of the agents’ ideal utilities, implying that, if every agent gets
an β fraction of her ideal utility, the resulting social welfare
is a β fraction of the optimal one. This means that the Price
of Anarchy is at most 1/β.

2.2 Pseudo-Market Mechanism
In this section, we introduce the mechanism we use to allo-
cate the resource, a repeated first-price auction with artificial
currency. We note again that this is the same mechanism as
proposed in [Gorokh et al., 2021].

At the beginning of time, each agent is endowed with a
budget of Bi[1] = αiT credits of artificial currency. At each
time t, each agent submits a bid bi[t] no more than their cur-
rent budget Bi[t]. The principal selects the agent i⋆ with
the highest bid (ties broken arbitrarily) to allocate the item
to. The winning agent i⋆ pays her bid in artificial currency,
and no other agent pays. We denote the payment by agent
i as Pi[t] = bi[t]111{i = i⋆}. The budgets get updated as
Bi[t + 1] = Bi[t] − Pi[t]. The mechanism is summarized in
Mechanism 1.

Agents have no intrinsic value for the artificial currency
and simply aim to maximize their total received value. Let-
ting Wi[t] be the indicator for whether agent i won the item at
time t, we denote an agent’s utility gained at time t by Ui[t],
defined as Ui[t] = Vi[t]Wi[t]. Each agent seeks to maximize
their total utility,

∑T
t=1 Ui[t].

2.3 Formulation as a Two-Player Zero-Sum Game
When analyzing the robustness of a strategy for a particular
agent i, we can think of the other n − 1 agents as one com-
bined adversary. Specifically, we can think of a single player
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with budget the sum of the other agents’ budget and her bids
are the maximum of their bids. Formally, at each time t, we
let B′[t] =

∑
j ̸=i Bj [t] and b′[t] = maxj ̸=i bj [t]. From the

perspective of agent i, participating in the mechanism is the
same as playing against a single adversary whose budget and
bids at round t are B′[t] and b′[t]. This gives a reduction from
the problem of competing against multiple other players to
the problem of only competing against a single adversary, i.e.,
the one adversary can always simulate the behavior of n − 1
other players. Since we are studying bounds on the achiev-
able robustness of agent i’s strategies, we can think of this
as a zero-sum game: agent i is trying to maximize her total
utility

∑T
t=1 Ui[t] and the other agents, thought of as a single

combined adversary, is trying to minimize this.
This two-player zero-sum game is the perspective we will

take in what follows. We will fix an agent i with fair share α
and refer to her simply as “the agent” or “the player,” and drop
the i subscript from our notation. We will refer to the other
players, playing as a single adversary, as just the “adversary”
with a fair share 1−α. In notation, we will use ′s to denote the
adversary’s quantities, e.g., B′[t] is the adversary’s budget,
P ′[t] is the adversary’s payment, etc.

We will note that while we have a two-person zero-sum
game formulation, this game is extremely complicated. The
strategy space for each player is extremely large, including all
possible history-dependent bidding policies over time. There-
fore, it is difficult to analyze the equilibrium behavior of this
two-person zero-sum game.

3 Robust Strategy Lower Bound of 2−
√
2

In this section, we give an
(
2 −

√
2 − O(

√
log T/T)

)
-robust

strategy for the agent. This means an agent can guarantee
approximately a 0.59 fraction of their ideal utility under ar-
bitrary behavior by the other agents. This is the first robust
bound that breaks the 1/2 barrier and shows any agent can
guarantee more than half her ideal utility regardless of the
behavior of the other agents.

Before presenting our lower bound, we simplify the prob-
lem by a reduction. Specifically, we reduce the problem of
finding robust strategies for any value distribution F to find-
ing robust strategies for the Bernoulli(α) values. We prove
that any β-robust strategy for the Bernoulli case can be con-
verted to a β-robust strategy for arbitrary value distributions.

3.1 Reduction to Bernoulli(α) Value Distributions
In this section, we reduce the problem of arbitrary value dis-
tributions to Bernoulli value distributions. This reduction also
implies that having a Bernoulli(α) value distribution is the
worst case for the agent trying to achieve a high robustness
factor. Our reduction is for an arbitrary mechanism, not just
the pseudo-market we consider in the rest of the paper.

Lemma 1. Fix an arbitrary mechanism and an agent with
fair share α. Assume there is a β-robust policy π̂ for that
agent when she has a F̂ = Bernoulli(α) value distribu-
tion. Then for any value distribution F , we can construct
a β-robust policy π for an agent with value distribution F .

The lemma’s proof is based on the following observation.
Using the definition of ideal utility, Eq. (1), we can map the
values V [t] of any distribution F to Bernoulli values V̂ [t]

where V̂ [t] = 1 corresponds to the agent getting the resource
when realizing her ideal utility. The β-robust policy π̂ can
guarantee the item a β fraction of the rounds when V̂ [t] = 1.
In other words, π̂ can guarantee a β fraction of the rounds that
achieve v⋆T utility in expectation.

Proof of Lemma 1. Let ρ⋆ be the maximizer of (1) with value
distribution F . We construct the policy π to “simulate” π̂. Let
π be the policy that, at each time t, defines V̂ [t] to be 1 with
probability ρ⋆(V [t]) and 0 otherwise, and behaves the same
as π̂ in the mechanism when using the values V̂ [t]. It samples
the probabilities independently so that V̂ [t] is independent of
V̂ [t′] conditioned on V [t] and V [t′] for t ̸= t′.

By the feasibility and optimality of ρ⋆ in (1), the values
V̂ [t] are indeed i.i.d. Bernoulli(α). Recall that W [t] denotes
the indicator that the agent wins the item in round t. Then,

T∑
t=1

E[V̂ [t]W [t]] ≥ βαT (2)

by the β-robustness of π̂. When the agent uses the strategy
π, everything in the game is independent of the actual values
V [t] conditioned on the Bernoulli values V̂ [t]. Therefore,

T∑
t=1

E[V [t]W [t]] =
T∑

t=1

E[E[V [t]W [t] | V̂ [t]]]

=

T∑
t=1

E[E[V [t] | V̂ [t]]E[W [t] | V̂ [t]]]

=
T∑

t=1

E[E[E[V [t] | V̂ [t] = 1]V̂ [t]W [t] | V̂ [t]]]

=

T∑
t=1

v⋆

Pr
(
V̂ [t] = 1

)E[V̂ [t]W [t]]

=
v⋆

α

T∑
t=1

E[V̂ [t]W [t]]

≥ v⋆

α
βαT = βv⋆T.

Above, the second line follows from the independence of V [t]

and W [t] conditioned on V̂ [t]. The third line follows from
the fact that E[V [t] | V̂ [t]] = E[V [t] | V̂ [t] = 1]V̂ [t] since
V̂ [t] is Bernoulli. The fourth line uses E[V [t] | V̂ [t] = 1] =

v⋆/Pr
(
V̂ [t] = 1

)
which follows from the definition of ideal

utility. The fifth line uses the fact that Pr
(
V̂ [t] = 1

)
= α.

The inequality comes from (2).

3.2 The Randomized Robust Bidding Strategy
Assuming a Bernoulli(α) value distribution, our proposed
strategy for the agent is as follows. In rounds where the agent
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has a value of 1, she bids using a sample from a specific uni-
form distribution (assuming she has enough budget).

We can see that using a proper distribution instead of a
fixed bid (as done in previous work) is necessary to develop-
ing better than 1/2-robust strategies as follows. Assume the
agent bids a fixed amount b every round she has value 1, while
budget lasts. If b ≥ 2, then with a budget of αT , she can only
win at most αT/b times, yielding at most a 1/b ≤ 1/2 frac-
tion of their ideal utility. If b ≤ 2, then the adversary can
bid b + ϵ to block the agent for approximately T/b rounds,
leaving only (1− 1/b)T ≤ T/2 rounds for the agent.

Contrarily, against a continuous bid distribution, the ad-
versary cannot predict the agent’s exact bid. When both the
agent and the adversary bid, the adversary has to either bid
too high to ensure the agent does not get the item or bid lower
but allow the agent to get the item with some probability.

We now describe our new Randomized Robust Bidding
strategy for an arbitrary value distribution: the basic idea is
that agent i bids whenever she has a high value (irrespective
of everything else), but in a way such that her total bidding
probability is exactly αi. We formalize this below for the
case where the value distribution of agent i has a unique αi-
quantile, as is the case for any absolutely continuous distribu-
tion; if the value distribution has atoms, then we can appro-
priately randomize at the cutoff to make sure the agent bids
with probability exactly αi.

Randomized Robust Bidding (RRB)
If V [t] is in the top α-quantile of the value distribu-
tion, bid b[t] ∼ Uniform([0, b̄]), subject to the re-
maining budget.

More formally, the Randomized Robust Bidding proceeds
as follows: Let τ be the the last round in which the agent has
at least b̄ budget left, τ = max{t ≥ 1 : B[t] ≥ b̄}. Let ρ⋆ be
the optimal solution that realized the ideal utility in (1). For
each time t, if t ≤ τ , sample V̂ [t] ∼ Bernoulli(ρ⋆(V [t])). If
V̂ [t] = 1, bid b[t] ∼ Uniform([0, b̄]).

Theorem 1. The RRB strategy with b̄ = 1 +
√
2 is β-robust

for

β =

(
2−

√
2−O

(√
log T

T

))
for any distribution F that the agent has.

The uniform bidding distribution used in the RRB strategy
stems from the following simplified analysis, which we also
use for an upper bound in Section 4.1 (see Lemma 2). Con-
sider the agent’s bids are sampled from a distribution with
CDF F (·). Also assume that her fair share α is small. Since
the agent’s behavior is the same round, consider the adver-
sary also acting the same every round. Specifically, consider
the adversary bidding b′, where b′ ≥ 1 (as otherwise she
would have leftover budget). While the adversary’s budget
lasts, they pay b′ each round in at least the 1 − α fraction
of the rounds that the agent bids 0. If α is small, the ad-
versary’s spending on the α fraction of the rounds that the
agent has value is negligible. Hence, with a total budget of

(1−α)T ≈ T , the adversary runs out of budget at time about
T 1

b′ . For the first T 1
b′ rounds, the adversary still has budget

remaining, and when the agent bids, she wins with probability
1 − F (b′). For the remaining T (1 − 1

b′ ) rounds, the adver-
sary has no leftover budget, so the agent wins every time she
bids. Assuming the agent does not run out of budget (which
we ensure later), the resulting fraction of rounds she wins out
of the ones she bids in is

1

b′
(
1− F (b′)

)
+

(
1− 1

b′

)
= 1− F (b′)

b′
. (3)

Under the above calculation, the agent wants to maximize
the above quantity for any b′ by setting F (b′) = λb′, i.e.,
using a uniform distribution, and then optimizing over λ.
Specifically, λ is maximized while ensuring the assumption
we made above: the agent does not run out of budget for any
bid b′ by the adversary. This results in λ = 1

1+
√
2

, which is
the uniform distribution we used above.

In the full proof in the full version of this paper, we have
to account for the adversary using more complicated strate-
gies, e.g., bidding as a function of time, remaining budget,
etc. We show that there is little benefit to such strategies,
which is where the

√
log T/T term comes from. This is done

by a careful martingale analysis of three key quantities: the
agent’s total spending, the agent’s total utility, and the adver-
sary’s spending. We show that with high probability, these
three increase with the same rate under the adversary’s opti-
mal strategy. This essentially makes the simplified analysis
given above correct.

4 Robust Strategy Upper Bounds
In this section, we provide upper bounds for the pseudo-
market mechanism. First, we show that our RRB strategy
for the 2 −

√
2 lower bound in Section 3 is almost tight: for

every fixed bidding distribution the agent might use, the ad-
versary can bid to prevent the agent from achieving more than
a 3

5 fraction of her ideal utility. Second, we show that the ad-
versary can bid so that the agent cannot guarantee more than
a 1− 1

e fraction of her ideal utility under any strategy.

4.1 Fixed Bidding Distribution 3
5 Upper Bound

In this section, we upper bound the robustness factor of an
agent with Bernoulli(α) value distribution under the assump-
tion that the agent must pick a fixed distribution to bid each
round. Specifically, the agent chooses a distribution D and
bids b[t] = r[t]V [t] at each time t where the r[t] are i.i.d.
with distribution D. We allow any distribution D, even ones
that depend on T ; however, we assume the support of D is in
some range [0, b̄] not depending on T . Finally, as is standard
with these upper bounds, we assume that α is small. The final
result is the following, showing that an agent cannot hope for
better than 3

5 -robustness under such strategies.

Theorem 2. Assume that an agent with fair share α and
value distribution Bernoulli(α) bids according to distribu-
tion D whenever her value is 1. Then this strategy cannot be
β-robust for β > 3

5 as α → 0.
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The theorem’s main lemma is the formal statement of our
argument in Section 3.2. Specifically, we prove that if the
agent’s bidding strategy is β-robust, then its CDF must be
upper-bounded by the CDF of a certain uniform distribution.
This implies that the agent must make high bids with decent
probability. Next, we will leverage this to show that if the
agent bids too high, she will run out of budget.
Lemma 2. Let F (·) be the CDF of a bidding distribution that
is β-robust, as described in Theorem 2. Then for x ≥ 1− α,

F (x−) ≤ 1− β

1− α
x

where F (x−) = limy→x− F (y).
We prove the lemma by considering the adversary bidding

x every round, similar to our argument in (3). Specifically,
if x ≥ 1 (consider the case when α → 0), we know that the
adversary will run out of budget approximately on round T

x .
While the adversary is bidding x, the agent gets a 1−F (x−)
fraction of the rounds she requests. This means that, even
if she always wins the item after the adversary runs out of
budget, she wins at most

T

x

(
1− F (x−)

)
α+

(
T − T

x

)
α

rounds where she has a value of 1. By robustness, this has to
be at least βTα, yielding the lemma. The full proof, in which
we consider the interactions of the agent and the adversary
more carefully, is deferred to the full version of this paper.

The final step for proving Theorem 2 is to show that if β >
3
5 , then the agent’s bidding is too high. Specifically, if the
adversary uses a constant bid b′ every round then the agent
has to pay in expectation

E
b∼D

[b | b ≥ b′]

every time she wins the resource. Using Lemma 2, we can
show that if β > 3

5 , then under the right b′, the above pay-
ment is too high, and the agent will run out of money before
accumulating a β fraction of her ideal utility.

We defer the complete proof of Theorem 2 to the full ver-
sion of this paper.

4.2 Constructive Proof for an Upper Bound of
1− 1

e +
α
e + o(1)

[Fikioris et al., 2023] prove that no mechanism can guarantee
every agent a 1 − 1

e fraction of her ideal utility when agents
have Bernoulli valuations. While this bound remains the best-
known upper bound for robust guarantees, its proof is existen-
tial. In particular, this result does not provide insight into how
the adversary can prevent an agent from obtaining more than
such a fraction of her ideal utility. In this section, we provide
a simple bidding strategy that the adversary can follow to en-
sure that the agent does not get more than a 1− 1

e fraction of
her ideal utility. This result is stronger than the one in Theo-
rem 2 in two ways. First, the adversary’s strategy is indepen-
dent of the agent’s strategy. Second, the upper bound holds
for any strategy the agent might follow, even time-varying
ones. Specifically, we prove the following theorem.

Figure 1: CDF of the adversary’s bid distribution used in Theorem 3
when α → 0. The expected bid under this distribution is 1, so the
adversary will not run out of budget. The CDF is carefully chosen
such that the agent cannot win more than 1 − 1/e fraction of the
rounds regardless of strategy.

Theorem 3. There exists a stationary bidding policy by the
adversary such that an agent with fair share α and value dis-
tribution Bernoulli(α) cannot get expected utility more than
a 1− 1

e + α
e +O(

√
log T/T) fraction of her ideal utility, i.e.,

T∑
t=1

E[U [t]] ≤ αT

(
1− 1

e
+

α

e

)
+O(

√
T log T ).

The bidding policy we use for the theorem’s proof is
roughly (for simplicity we assume the adversary’s budget
constraint holds only in expectation) the following CDF (de-
picted also in Fig. 1)

F ′(b′) =


0 if b′ < 0

1−α
e−(e−2)b′ + α if 0 ≤ b′ ≤ e−1

e−2

1 if b′ > e−1
e−2

.

A first observation from the above distribution is that the
adversary’s expected bid is 1 − α. This implies that the ad-
versary will not run out of budget in expectation, even if the
agent never wins any rounds. The next key observation is that
the highest bid the agent can use to not run out of budget in
expectation is b

α→0
= e

e−1 . In particular, this bid wins with
probability F ′(b) = e−1+α

e , which is the claimed bound.
For the full proof that can be found in the full version of this

paper, we present a more careful analysis of what happens
when the agent follows any bidding strategy. In particular,
we show that with high probability, the adversary will not run
out of budget. Again with high probability, we show that any
sequence of bids by the agent, even if they change according
to the past, cannot guarantee more than the claimed fraction
of ideal utility.

5 Experimental Evaluation of RRB
In our theoretical results, we investigated the worst-case util-
ity guarantees that we could obtain under arbitrary behavior
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Figure 2: Fraction of ideal utility that an agent obtains under dif-
fering strategy profiles. We compare the agents’ utility when they
all use the previously best-known robust strategy from [Gorokh et
al., 2021], labeled Deterministic Robust Bidding, with the agents’
utility when they all use Randomized Robust Bidding. We also
plot an agent’s utility when they use Randomized Robust Bid-
ding but the other agents adversarially always bid 1 regardless of
their values, labeled Randomized Robust Bidding against Adver-
sary. When all agents use Randomized Robust Bidding, they achieve
≈ 1− (1− 1/n)n fraction of their ideal utility, the theoretical max-
imum for any allocation procedure. When one agent uses Random-
ized Robust Bidding but the other agents behave adversarially, the
agent using Randomized Robust Bidding achieves at least a 2−

√
2

fraction, the guarantee of Theorem 1.

by the other agents, which includes adversarial (and collu-
sive) behavior that may not be realistic. In this section, we
experimentally investigate the fraction of ideal utility an agent
gets when all agents use robust strategies and show that our
proposed strategy performs very well. Specifically, we com-
pare the agents’ utilities under the following two strategies.
First, all agents use the deterministic (1/2 − o(1))-robust
strategy given by [Gorokh et al., 2021], where each agent
bids 2 each time their value is in the top αi-quantile of their
value distribution. Second, all agents use our Randomized
Robust Bidding strategy, where each agent bids according to
a uniform distribution instead. To also illustrate our theoreti-
cal results where the other agents are behaving adversarially,
we also run an experiment where one agent is using Random-
ized Robust Bidding but the other agents adversarially always
bid 1 regardless of their values.

We consider the symmetric agent case, where each agent
has fair share αi = 1/n. We consider each agent’s value dis-
tribution to be Bernoulli(1/n). For each strategy, we com-
pare the agents’ resulting utility for each number of players

n ∈ {2, 3, . . . , 30}. We ran the mechanism for T = 100000
time periods 10 times and recorded the average fraction of
ideal utility that a particular agent obtained1. We plot our
results in Fig. 2.

We can see that when every agent uses the deterministic
strategy, each agent gets 1/2 of their ideal utility, similar to
the theoretical guarantee. When each player plays our ran-
domized strategy, they enjoy a higher utility. In particular,
they achieve close to a 1− (1− 1/n)n fraction of their ideal
utility. This is the best we can hope for: no allocation pro-
cedure can guarantee each agent a greater fraction of their
ideal utility when they have the aforementioned Bernoulli
values. This is superior to our theoretical lower bound of
2−

√
2 ≈ 0.59 in Theorem 1 and shows the empirical perfor-

mance of RRB can be even greater than the one under worst-
case competition.
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