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Abstract
Self-supervised monocular depth estimation that
does not require hard-to-source depth labels for
training has been widely studied in recent years.
Due to its significant and growing needs, many
lightweight but effective architectures have been
designed for edge devices. Convolutional Neu-
ral Networks (CNNs) have shown its extraordinary
ability in monocular depth estimation. However,
their limited receptive field stints existing methods
to reason only locally, inhibiting the effectiveness
of the self-supervised paradigm. Recently, Trans-
formers has achieved great success in estimating
depth maps from monocular images. Nevertheless,
massive parameters in the Transformers hinder the
deployment to edge devices. In this paper, we pro-
pose MonoMixer, a brand-new lightweight CNN-
Transformer architecture with three main contribu-
tions: 1) The details-augmented (DA) block em-
ploys graph reasoning unit to capture abundant lo-
cal details, resulting depth prediction at a higher
level of precision. 2) The self-modulate chan-
nel attention (SMCA) block adaptively adjust the
channel weights of feature maps, aiming to em-
phasize the crucial features and aggregate channel-
wise feature maps of different patterns. 3) The
global-guided Transformer (G2T) block integrates
global semantic token into multi-scale local fea-
tures and exploit cross-attention to encode long-
range dependencies. Furthermore, experimental
results demonstrate the superiority of our pro-
posed MonoMixer both at model size and inference
speed, and achieve state-of-the-art performance on
three datasets: KITTI, Make3D and Cityscapes.
Specifically, our proposed MonoMixer outperforms
MonoFormer by a large margin in accuracy, with
about 95 % fewer parameters.

1 Introduction
Depth estimation is a fundamental and crucial task in vari-
ous computer vision applications such as autonomous driv-
ing, augmented reality and robotics navigation. Recently, the

MonoViT

MonoFormer MonoMixer (Ours)

MonoViT

MonoFormer MonoMixer (Ours)

Figure 1: The proposed MonoMixer has fewer parameters than
MonoViT and MonoFormer, but obtain more accurate depth maps.

fully-supervised monocular depth estimation methods [Eigen
and Fergus, 2014; Fu et al., 2018; Guo et al., 2018], have
achieved remarkable results, while they require numerous an-
notated depth maps which could only be collected from ex-
pensive LiDAR sensors. In contrast, self-supervised methods
are more favorable, as they utilize synchronized stereo-pairs
of frames [Garg et al., 2016] or geometrical constraints on
monocular video [Godard et al., 2016] as the supervisory sig-
nals. Therefore, this paper use monocular videos for training
purposes.

In addition to improving the accuracy of self-supervised
monocular training by exploiting semantic information and
innovative loss functions to address the occlusion problems,
several works focus on developing more efficacious CNN
models [Yan et al., 2021; Zhou et al., 2024]. However, the
local nature of convolution operation can not capture long-
range global relationships. To attain better performance a
CNN-based architecture can adopt a more intricate backbone
[Godard et al., 2018; Wang and Cheng, 2023], which also re-
sults in more parameters. In addition, CNN is limited because
it does not consider the characteristics of the object geomet-
ric appearances, which leading to an inaccurate perception of
entire layout for the complex scenes. Recently, several stud-
ies introduce Vision Transformer (ViT) to monocular depth
estimation architectures, which enables the model to capture
the global dependencies. Nevertheless, the quadratic com-
plexity of the Multi-Head Self-Attention (MHSA) block in a
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Transformer impedes the design of lightweight and real-time
models, compared with CNN architectures.

In this paper, we propose MonoMixer, a lightweight and
efficient hybrid model for self-supervised monocular depth
estimation. To reduce the computational complexity, we pro-
pose a global-guided transformer (G2T) block, which inject-
ing the global information into the multi-scale local features
via the shared global semantic token. Furthermore, to gen-
erate sharper object boundaries, we introduce the details-
augmented (DA) block employing graph convolution network
(GCN) to enhance specific details, as shown in Figure 1. To
comprehensively understand the 3D structure of the com-
plex scene, we design the self-modulate channel attention
(SMCA) block to capture abundant contextual information of
scene geometry and emphasize the crucial feature representa-
tions. The main contributions of our work are summarized as
follows:

• We propose a novel CNN and Transformer hybrid ar-
chitecture (MonoMixer) for self-supervised monocular
depth estimation.

• We develop a simple but effective global-guided Trans-
former (G2T) block composed of a global semantic to-
ken and cross-attention, capturing global contextual in-
formation and reducing the computational complexity.

• we introduce the details-augmented (DA) block exploit-
ing graph reasoning unit to obtain rich local details and
more discriminative feature representation.

• we design the self-modulate channel attention (SMCA)
block to efficiently capture global context of scene struc-
ture and highlight salient channel-wise features.

• We conduct extensive experiments on KITTI, Make3D,
and Cityscapes datasets, demonstrating our model
achieves state-of-the-art performance with the least
trainable parameters.

2 Related Work
2.1 Self-supervised Depth Estimation
Considering that large numbers of accurate ground truth
depth maps are not always obtainable, self-supervised depth
estimation approaches that do not need ground truth for train-
ing have gained significant attention. [Garg et al., 2016]
trains the convolutional encoder for predicting the depth map
by minimizing the reconstruction loss between the source
image and target image. [Godard et al., 2016] extends
this work and attain better performance by using a left-
right disparity consistency loss. Furthermore, several works
[Casser et al., 2019; Godard et al., 2018; Jung et al., 2021;
Shyam et al., 2024; Bello et al., 2024] exploit multi-task
learning to perceive dynamic scenes. Monodepth2 [Godard
et al., 2018] utilizes a minimum reprojection loss to address
occlusion problems, an auto-masking loss to neglect invalid
pixels, and a full-resolution multi-scale sampling method to
reduce visual artifacts. [Jung et al., 2021] introduces a multi-
task neural network with cross-task attention and semantics-
guided triplet loss to successfully extract semantics-aware
feature representation. [Shyam et al., 2024] intertwines depth
estimation and panoptic segmentation networks to facilitating

depth estimation in dynamic scenes. [Bello et al., 2024] ex-
ploits pixel positional information and moving object mask to
learn single image depth estimation from monocular videos.

2.2 Network Architectures
The underlying neural network architecture plays a pivotal
role in determining the effectiveness of monocular depth pre-
diction. CADepth-Net [Yan et al., 2021] exploits channel-
wise attention modules to capture global dependencies and
boost local details information. DaCCN [Han et al., 2023]
designs a direction-aware module to learn to adjust the fea-
ture extraction in various directions, and a cumulative con-
volution to efficiently aggregate crucial environmental fea-
tures. With the emergence of Vision Transformer (ViT)
[Dosovitskiy et al., 2020], several efforts [Ranftl et al., 2021;
Yang et al., 2021; Zhao et al., 2022; Bae et al., 2023;
Xing et al., 2023; Zhang et al., 2023; Wang et al., 2024] apply
it to monocular depth estimation task, and achieve significant
advancement. MonoViT [Zhao et al., 2022] achieves higher
depth accuracy by combining plain convolutions with trans-
former blocks. MonoFormer [Bae et al., 2023] proposes a
CNN-Transformer hybrid architecture with multi-scale fea-
ture fusion block, which captures both local and global infor-
mation. SQLdepth [Wang et al., 2024] exploits a novel Self
Query Layer (SQL) to captures the intrinsic geometry of the
scene, which achieving state-of-the-art performance. How-
ever, due to the expensive computational cost of Multi-Head
Self-Attention (MHSA) in Transformer block, the aforemen-
tioned approaches have more trainable parameters and have
a significant latency gap compared with methods only using
CNNs [Wofk et al., 2019; Rudolph et al., 2022; Zhou et al.,
2024].

3 Proposed Framework
3.1 Motivation
Combining convolutions and Transformers leads to robust
and high-performing models compared to traditional ViTs.
However, a challenge remains: how can we effectively merge
the strengths of convolutions and transformers to create
lightweight networks suitable for self-supervised monocu-
lar depth estimation? Although several lightweight hybrid
architectures [Zhang et al., 2022; Bae et al., 2023] have
achieved promising results, their performance still lags be-
hind that of heavyweight networks. This paper aims to
develop lightweight CNN-Transformer models that surpass
state-of-the-art architectures with the least trainable param-
eters. To achieve this goal, we present MonoMixer, which
merges the advantages of CNNs and Transformers to create a
lightweight yet powerful network for self-supervised monoc-
ular depth estimation.

3.2 DepthNet Architecture
As illustrated in Figure 2, we design our DepthNet as an
encoder-decoder architecture.
Depth Encoder. The proposed MonoMixer extracts multi-
scale local features across five stages. Given the current in-
put image I ∈ R3×h×w, where 3, h, w denote the RGB
channels, height, width of I respectively, we adopt stacked
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Figure 2: Overview of our MonoMixer architecture. Our MonoMixer contains two parts, encoder-decoder DepthNet and PoseNet. The
encoder of DepthNet is composed of a CNN and global-guided Transformer (G2T) block. The details-augmented (DA) block dynamically
extract rich local details. The self-modulated channel attention (SMCA) block captures global context information and refine salient features.
For pose estimation between temporally adjacent frames, we adopt a lightweight PoseNet as in previous work [Godard et al., 2018].

MBConv blocks [Sandler et al., 2018] to generate a set of
local tokens F = {F1,F2, ...FN}, where N represents the
number of scales and Fn ∈ Rcn× h

2n × w
2n . It is worth not-

ing that our intention is not to acquire abundant semantics
and a large receptive field, but rather to use fewer blocks to
construct a feature pyramid. Afterwards, to further reduce
the computational cost, we exploit the average pooling oper-
ator to obtain a series of pooled tokens P = {P1,P2, ...PN},
where Pn ∈ Rcn× h

32×
w
32 . The pooled tokens from differ-

ent stages have the same size, and they are concatenated
along the channel dimension to obtain a global semantic to-
ken G ∈ RC× h

32×
w
32 , where C =

∑N
n=1 cn. The global

semantic token G and local tokens Fn will be together as the
inputs of global-guided Transformer.

Global-Guided Transformer. The global-guided Trans-
former (G2T) is composed of a few stacked Transformer
blocks. The number of Transformer blocks is L. Each Trans-
former block consists of the Multi-Head Attention (MHA)
block, the Feed-Forward Network (FFN) and residual con-
nections. In MHA, G2T computes the cross-attention be-
tween the global semantic token G and each local token Fn.
Specifically, we first use 1 × 1 convolution layers to lin-
early project G and Fn to obtain the same dimensional query
Qf = FnWq , key Kg = GWk, and value Vg = GWv ,

where Wq , Wk, and Wv are weight matrices. Next, the out-
put feature Qo is obtained by computing the cross-attention:

Qo = Attention(Qf ,Kg,Vg) (1)

= Softmax(
QfK

⊤
g√

d
)Vg, (2)

where d is the channel dimension of Kg. Then, we ex-
ploit FFN with two 1 × 1 convolution layers and a GELU
[Hendrycks and Gimpel, 2016] activation to refine the output
feature X:

X = FFN(BN(Qo)) +Qo, (3)
where BN denotes the batch normalization [Ioffe and
Szegedy, 2015]. Since the proposed model employs a
lightweight CNN to maintain low computational complexity,
the low-level and mid-level features lack sufficient global in-
formation. Nevertheless, the cross-attention mechanism in-
troduces global information into each local token, enabling
the G2T to learn multi-level features that incorporate global
information.
Details-Augmented Block. One of the main limitations
with CNN models is that they can yield a significant loss in
the details of the objects in the complex scene [Bronstein et
al., 2016]. Besides, due to the inherent locality of convo-
lution operation, which even break the topological structure
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Figure 3: The implementation details of the proposed details-augmented (DA) block.

of the scene [Masoumian et al., 2021]. In contrast, graph
convolutional networks (GCNs) can represent the topologi-
cal structure of the scene by modeling the relationships be-
tween nodes. This helps the model to capture global details of
the scene and boost the quality of predicted depth maps. To-
wards this end, we propose a lightweight details-augmented
(DA) block to capture finer details. Figure 3 illustrates the
implementation diagram of our proposed DA block. It com-
prises three branches. Besides the linear projection shown
in the middle, two other branches are responsible for mix-
ing features along horizontal and vertical directions, respec-
tively. Let X ∈ Rdt×ht×wt represents the output feature of
G2T block. In the horizontal mixing branch, we first employ
horizontal pool operation to obtain row tokens, and then use
global average pooling to generate global row token. Next,
we concatenate them along spatial dimension to obtain ag-
gregated horizontal features Xh ∈ R(wt+1)×dt . To be spe-
cific, our DAB is mainly composed of three phases. 1) pixel
cluster; 2) information propagation; 3) node projection.

Phase 1, Pixel Cluster. Pixel cluster seeks to map pixel
features from the geometric domain into the graph domain,
with each node serving as an implicit visual center for a clus-
ter of pixel features. To comply this goal, we initially exploit
the trainable transformation matrix, which can be formalized
as:

Vh = Wp1Xh, (4)

where Wp1 ∈ RM×(wt+1) is the learnable weight matrix, M
denotes the number of total nodes.

Phase 2, Information Propagation. After mapping the
pixel features from geometric domain into the graph domain,
we construct a graph where each node represents discrete re-
gion feature. Based on this graph, we exploit a single-layer
graph convolution network to perform information propaga-
tion, which can be described as:

Yh = σ(Ag1BhWg1), (5)

where Bh = σ(Vh) ∈ RM×dt , σ is the GELU activation
function. The adjacency matrix Ag1 ∈ RM×M is randomly
initialized and learned by gradient decent during training.
Wg1 ∈ Rdt×dt represents the learnable state update matrix.
In addition, we introduce an identity matrix E ∈ RM×M to

assuage the obstruction during the model optimization pro-
cess. The Eqn. 5 can be reformulated as:

Yh = σ(((E−Ag1)Bh)Wg1), (6)

where the first step (E − Ag1) in information propaga-
tion phase performs Laplacian smoothing [Zhu and Koniusz,
2021]. The evolved global representations Yh ∈ RM×dt can
further strength the capability of local feature representations.
This helps model to capture finer details.

Phase 3, Node Projection. After information propagation,
we project the output feature from the graph domain back
into the geometry domain. In light of the inverse relationship
between pixel cluster and node projection, and with the pur-
pose of reducing model parameters, we adopt the transpose
of Wp1 for node projection. Given the node representation
Yh ∈ RM×dt , the output feature can be formulated as:

Zh = W⊤
p1Yh. (7)

Given that the global row token primarily serves to facilitate
interactions during the model training stage, we remove it to
obtain the horizontal output feature Zh ∈ Rdt×1×wt . Similar
operation is applied in the vertical branch and obtain the verti-
cal output feature Zv ∈ Rdt×ht×1. Finally, the output feature
from the three branches are fused together to produce an out-
put tensor which has the same size as the input tensor X. We
implement this fusion block with element-wise addition and
a 1× 1 convolution layer:

Xo = Zh +Conv1×1(X) + Zv. (8)

Compared to the local interaction of convolution operation,
since each node of DA block is an enhanced semantic repre-
sentation for a cluster of image patches, DA block can aug-
ment feature representation and extract finer local details.
Self-Modulated Channel Attention Block. In depth esti-
mation, each channel map can be considered a region-specific
response, and different regional responses being interrelated.
If each feature map obtains more distinct regional responses
from all other feature maps, it will acquire more relative depth
cues from distant regions and greatly heighten the perception
of scene structure [Yan et al., 2021]. Therefore, we propose
a self-modulated channel attention (SMCA) block to cap-
ture cross-dependencies between channel-wise feature maps
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Figure 4: The implementation details of the proposed self-modulated channel attention (SMCA) block.

and accentuate important region responses. As illustrated in
Figure 4, given the global semantic token G ∈ RC×H×W ,
we firstly reshape G to RC×HW , then exploit the channel
pool operation to obtain global channel map Q ∈ R1×HW ,
and linearly project the G to generate K ∈ RC×HW and
V ∈ RC×HW . Next, we perform a matrix multiplication be-
tween global channel map Q and the transpose of K to com-
pute the global context score S to RC . The global context
score indicates the relationships between the global channel
map and local feature maps i.e. any channel has higher score
means that it has powerful responses to a specific region. To
update the channel maps, we group S into g groups and apply
MLPMixer [Tolstikhin et al., ] to propagate global informa-
tion among channels. Specifically, our MLPMixer consists of
two consecutive MLPs. We can updates S ∈ Rg×d with the
MLPMixer by computing:

S′ = S+MLP1(LayerNorm(S)⊤)⊤, (9)

S̄ = S′ +MLP2(LayerNorm(S′)), (10)
where the first MLP is responsible for exchanging informa-
tion between each group, and the second is used to mix
channel-wise feature. After updating the channel features,
we convert the S̄ to original dimension and apply a softmax
layer to obtain the channel attention map Ac ∈ RC :

Ac,i =
exp(S̄i)∑C
j=1 exp(S̄j)

. (11)

Finally we perform an element-wise multiplication operation
between channel attention map Ac and value V to obtain the
final output G′ ∈ RC×H×W as follows:

G′ = V ⊙Ac. (12)

Depth Decoder. MonoMixer departs from complex up-
sampling techniques and attention mechanisms by adopting
a simpler, more efficient depth decoder inspired by [Godard
et al., 2018]. As shown in Figure 2, this decoder progres-
sively enlarges spatial dimensions through bilinear interpola-
tion and merges features from different encoder stages using
convolutional layers.

3.3 PoseNet
In line with previous works [Godard et al., 2018; Zhao et
al., 2022], this paper employs the same PoseNet architec-
ture for pose estimation. Specifically, a pre-trained ResNet18

backbone processes a pair of color images to extract features,
which are subsequently fed into a pose decoder composed of
four convolutional layers to predict the relative 6-DoF pose
between the image pair.

3.4 Self-Supervised Learning
Different from the supervised learning that exploits ground
truth of depth this work casts depth estimation as the task of
image reconstruction. Specifically, given two images It and
Is from different viewpoints. A synthesized target image Ît
is obtained by translating the image Is according to the pre-
dicted depth Dt, the relative position Pt→s and the intrinsic
K :

Ît = Is⟨F (Dt, Pt→s,K)⟩, (13)

where Pt→s is the predicted position by the PoseNet. Then,
we use the disparity Ld between the synthesized image Ît
and the original target image It to measure the accuracy of
the depth Dt:

Ld =
λ

2
(1− SSIM(Ît, It)) + (1− λ)∥Ît − It∥, (14)

where λ is a hyperparameter that controls the weight of the
two similarity metrics and SSIM denotes the (Structural Sim-
ilarity Index. In addition, we exploit an edge-aware smooth-
ness loss to smooth the produced disparity:

Ls = |∂xd∗t |e−|∂xIt| + |∂xd∗t |e−|∂yIt|, (15)

where d∗t = dt

d̂t
represents the mean-normalized inverse

depth. The total loss can be defined as:

L = Ld + αLs, (16)

where α is the weight of edge-aware smoothness regulation.

4 Experiments
In this section, we evaluates the proposed framework h on
three public datasets including KITTI [Thinh et al., 2020],
Cityscapes [Cordts et al., 2016] and Make3D [Saxena et
al., 2009], significantly demonstrating the superiority of
MonoMixer at estimating depth.
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Method Year Data Depth Error (↓) Depth Accuracy (↑) Model Size (↓)
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Params.

Monodepth2 [Godard et al., 2018] ICCV2019 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M
HR-Depth [Lyu et al., 2021] AAAI2021 M 0.109 0.792 4.632 0.185 0.884 0.962 0.983 14.7M

Lite-HR-Depth [Lyu et al., 2021] AAAI2021 M 0.116 0.845 4.841 0.190 0.866 0.957 0.982 3.1M
MonoViT [Zhao et al., 2022] 3DV2022 M 0.099 0.708 4.372 0.175 0.900 0.967 0.984 10.3M

MonoFormer [Bae et al., 2023] AAAI2023 M 0.108 0.806 4.594 0.184 0.884 0.963 0.983 23.9M
ROIFormer [Xing et al., 2023] AAAI2023 M 0.103 0.695 4.438 0.178 0.889 0.964 0.984 -

Lite-Mono-8M [Zhang et al., 2022] CVPR2023 M 0.101 0.729 4.454 0.178 0.897 0.965 0.983 8.7M
DaCCN [Han et al., 2023] ICCV2023 M 0.099 0.661 4.316 0.173 0.897 0.967 0.985 13.0M

R-MSFMX3 [Zhou et al., 2024] TPAMI2024 M 0.111 0.775 4.666 0.900 0.879 0.960 0.981 5.0M
AQUANet [Bello et al., 2024] TIP2024 M 0.105 0.621 4.227 0.179 0.889 0.964 0.984 25.0M
SQLdepth [Wang et al., 2024] AAAI2024 M 0.094 0.697 4.320 0.172 0.904 0.967 0.984 34.0M

RPrDepth [Han and Shen, 2024] ECCV2024 M 0.097 0.658 4.279 0.169 0.900 0.967 0.985 -
MonoMixer Ours M 0.081 0.576 4.039 0.068 0.923 0.984 0.990 3.9M

Monodepth2 [Godard et al., 2018] ICCV2019 M* 0.115 0.882 4.701 0.190 0.879 0.961 0.982 14.3M
MonoViT [Zhao et al., 2022] 3DV2022 M* 0.096 0.714 4.292 0.172 0.908 0.968 0.984 10.3M

ROIFormer [Xing et al., 2023] AAAI2023 M* 0.100 0.674 4.335 0.175 0.896 0.966 0.983 -
Lite-Mono-8M [Zhang et al., 2022] CVPR2023 M* 0.097 0.710 4.309 0.174 0.905 0.967 0.984 8.7M

DaCCN [Han et al., 2023] ICCV2023 M* 0.094 0.624 4.145 0.169 0.909 0.970 0.985 13.0M
R-MSFMX3 [Zhou et al., 2024] TPAMI2024 M* 0.110 0.788 4.555 0.187 0.883 0.962 0.982 5.0M
SQLdepth [Wang et al., 2024] AAAI2024 M* 0.087 0.649 4.149 0.165 0.918 0.969 0.984 34.0M

RPrDepth [Han and Shen, 2024] ECCV2024 M* 0.091 0.612 4.098 0.162 0.910 0.971 0.986 -
MonoMixer Ours M* 0.076 0.563 4.018 0.065 0.929 0.988 0.991 3.9M

Table 1: Performance comparison on KITTI [Thinh et al., 2020] benchmark. In the Data column, M: trained with monocular videos,
M*: input resolution 1024 × 320. The best results are in bold, and second best are underlined. For the error-based metrics , the lower value
is better; and for the accuracy-based metrics , the higher value is better.

4.1 Implementation Details
For fair comparison, we follow the same training strategies
as previous works [Godard et al., 2018; Zhao et al., 2022].
Specifically, We implement our model in Pytorch framework
[Paszke et al., 2019]. The model is trained for 20 epochs
on a single NVIDIA RTX 3090 GPU, with a batch size of
12. We use the Adam optimizer with β1 = 0.9, β2 = 0.999
to jointly train both DepthNet and PoseNet. In addition, we
employ same data augmentation detailed in [Godard et al.,
2018; Zhao et al., 2022]. For evaluation, we adopt the seven
standard metrics (AbsRel, SqRel, RMSE, RMSElog, δ1 <
1.25, δ2 < 1.252, δ3 < 1.253) proposed in [Eigen et al.,
2014] as our evaluation criteria, which are commonly used in
the depth estimation field.

4.2 Comparison on KITTI
The KITTI dataset [Thinh et al., 2020] is renowned for
its comprehensive range of challenges, encompassing opti-
cal flow, visual odometry, and semantic segmentation tasks.
This has made it a cornerstone for computer vision re-
search. Furthermore, it is considered the defacto standard
for benchmarking self-supervised monocular depth estima-
tion methods. We conduct experiments under two differ-
ent training resolutions. As shown in Table 1, our pro-
posed MonoMixer clearly outperforms the existing SOTA
self-supervised methods in all metrics. Compared to base-
line model MonoFormer [Bae et al., 2023], our MonoMixer
achieves 0.026, 0.230 and 0.555 gains in terms of AbsRel,
SqRel and RMSE, respectively. Additionally, MonoMixer
achieves superior performance compared to the recently in-
troduced, carefully designed lightweight models Lite-Mono
[Zhang et al., 2022]and R-MSFMX [Zhou et al., 2024].
Compared with the new SQLdepth [Wang et al., 2024] the
proposed MonoMixer beats it in all metrics, but the model
size is only about one-tenth of this model. Figure 5 il-
lustrates that our model exhibits superior depth estimation

Input

ROIFormer

MonoFormer

SQLdepth

Ours

Figure 5: Qualitative results on the KITTI. Here are some depth
maps generated by ROIFormer [Xing et al., 2023], MonoFormer
[Bae et al., 2023], SQLdepth [Wang et al., 2024], and MonoMixer
(ours), respectively.

capabilities for slender structures, including road signs and
poles. Furthermore, our model is able to accurately esti-
mate depth on challenging images where moving objects are
close to the camera (column 3). These advancements can
be attributed to the enhanced scene and object perception
afforded by our self-modulated channel attention (SMCA)
block, and the enhanced detail information provided by the
details-augmented (DA) block. All the above results demon-
strate that MonoMixer outperforms its counterparts by evi-
dent margins.

4.3 Comparison on Make3D and Cityscapes

Make3D is a dataset containing monocular RGB images
and their corresponding depth maps, primarily used for eval-
uating the generalization capacity of self-supervised monoc-
ular depth estimation models. As shown in Table 2,
MonoMixer achieve superior performance compared with
other methods, which demonstrates the excellent zero-shot
generalization ability of our model. With monocular training
and 640 × 192 input, our model attains 0.282 and 6.589 in
terms of AbsRel and RMSE with considerable improvements
from other SOTA methods.
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ Params

Monodepth2 [Godard et al., 2018] 0.322 3.589 7.417 0.163 14.3M
MonoViT [Zhao et al., 2022] 0.286 2.758 6.623 0.147 10.3M
Lite-Mono [Zhang et al., 2022] 0.305 3.060 6.981 0.158 8.7M
DaCCN [Han et al., 2023] 0.290 2.873 6.656 0.149 13.0M
R-MSFM [Zhou et al., 2024] 0.334 3.285 7.212 0.169 5.0M
SQLdepth [Wang et al., 2024] 0.306 2.402 6.856 0.151 34.0M
MonoMixer (Ours) 0.282 2.388 6.589 0.146 3.9M

Table 2: Comparison of the proposed MonoMixer to some other
methods on the Make3D [Saxena et al., 2009] dataset. All models
are trained on KITTI [Thinh et al., 2020] with an image resolution
of 640× 192.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ ¡ 1.25 ↑ Params

Monodepth2 [Godard et al., 2018] 0.129 1.569 6.876 0.849 14.3M
Videos in the Wild [Gordon et al., 2019] 0.127 1.330 6.960 0.830 -
Li et al. [Li et al., 2020] 0.119 1.290 6.980 0.846 -
DaCCN [Han et al., 2023] 0.113 1.380 6.305 0.888 13.0M
SQLdepth [Wang et al., 2024] 0.110 1.130 6.264 0.881 34.0M
MonoMixer (Ours) 0.103 1.112 6.178 0.896 3.9M

Table 3: Comparison of the proposed MonoMixer to some other
methods on the Cityscapes [Cordts et al., 2016] dataset.

Cityscapes is a challenging dataset which comprises multi-
tudinous moving objects. We train MonoMixer from scratch
on the dataset under the same setting with other methods. As
shown in Table 3, our MonoMixer significantly outperforms
other state-of-the-art models on this dataset.

4.4 Efficiency
The proposed method is evaluated on a NVIDIA TITAN Xp
and a Jetson Xavier and are compared with more SOTA mod-
els. As shwon in Table 4, our proposed model attains a
good balance between model size and inference speed. No-
tice that MonoMixer outperforms the recent well-designed
lightweight models Lite-Mono [Zhang et al., 2022] and R-
MSFMX [Zhou et al., 2024] both in speed and accuracy (Ta-
ble 1).

Full Model Speed (ms)
Method Params. (M) FLOPs (G) Titan XP Jetson Xavier

Monodepth2 14.3 8.0 3.8 14.3
MonoViT 10.3 23.7 13.5 47.4
Lite-Mono 8.7 11.2 6.5 32.2

DaCCN 13.0 4.3 3.7 12.8
DIFFNet 12 2.3 3.6 12.3

MonoMixer (Ours) 3.9 4.1 2.6 10.5

Table 4: Model complexity and speed evaluation. We compare pa-
rameters, FLOPs (floating point of operations), and inference speed.
The input size is 640× 192, and the batch size is 16.

Architecture Params Speed(ms) Abs Rel↓ RMSE ↓ δ < 1.25 ↑
MonoMixer 3.886M 2.6 0.081 4.039 0.923

w/o G2T block 3.803M 2.5 0.099 4.182 0.899
w/o DA block 3.876M 2.6 0.091 4.097 0.902

w/o SMCA block 3.864M 2.6 0.095 4.086 0.904

Table 5: All the models are trained and tested on KITTI with the
input size 640× 192.

Method Abs Rel ↓ RMSE ↓ δ < 1.25 ↑
baseline 0.081 4.039 0.923

G2T w/o transformer 0.091 4.146 0.907
G2T w/self-attn 0.086 4.097 0.913

DA w/o horizontal branch 0.085 4.067 0.906
DA w/o vertical branch 0.082 4.075 0.906
DA w/o identity branch 0.087 4.042 0.907
SMCA w/o MLPMixer 0.086 4.059 0.908

Table 6: Ablation studies on the role of different components of the
core module in MonoMixer.

4.5 Ablation Study
In this section, we conduct several ablation studies on
the KITTI dataset to validate the effectiveness of designs
in MonoMixer, including global-guided transformer (G2T)
block, details-augmented (DA) block and self-modulated
channel attention (SMCA) block, respectively.

The benefit of G2T block. As shown Table 5, when the
G2T blocks are removed, the accuracy quickly drops. The
proposed G2T block is essential for enabling MonoMixer to
capture long-range global contexts, overcoming the inherent
drawback that CNNs can only extract local features.

The benefit of DA block. As illustrated in Table 5, ac-
curacy decreases when the DA blocks are removed. Note
that the DA block only adds Negligible additional parameters
(0.004M), demonstrating the improvements benefit from the
better local details rather than an increase in network com-
plexity.

The benefit of SMCA block. SMCA block is responsible
for capturing global contexts of scene structure and extracting
informative feature. As shown in Table 5, our SMCA block
improves the performance on all the metrics.

The effect of components of G2T block. The results are
shown in Table 6. It is clear that the role of the transformer
is essential for the accuracy of G2T. In addition, compared
to using self-attention, G2T with cross-attention can attain
better performance.

The effect of components of DA block. As shown in Ta-
ble 6, when any branch is removed, the accuracy decreases.
This indicates that every branch learns specific finer details of
scene structure.

The effect of components of SMCA block. The influence
of the MLPMixer in the proposed SMCA block on the accu-
racy is studied. As shown in Table 6, MLPMixer plays an
important role in the SMCA block.

5 Conclusion
In this work, we present a novel architecture MonoMixer
for efficient self-supervised monocular depth estimation.
The proposed hybrid architecture effectively integrates the
strengths of CNNs and Transformers, enabling it to capture
both fine-grained local details and long-range global con-
texts. Experimental results show that the proposed models
have achieved significant improvements on three prevalent
datasets and attain a new state-of-the-art performance.
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Zach DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. ArXiv, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
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