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Abstract

Random Forests (RFs) are one of the most popular
classifiers in machine learning. RF is an ensem-
ble learning method that combines multiple Deci-
sion Trees (DTs), providing a more robust and ac-
curate model than a single DT. However, one of the
main step of RFs is the random selection of many
different features during the construction phase of
DTs, resulting in a forest with various features,
which makes it difficult to extract short and con-
cise explanations. In this paper, we propose inte-
grating Logical Analysis of Data (LAD) into RFs.
LAD is a pattern learning framework that combines
optimization, Boolean functions, and combinato-
rial theory. One of its main goals is to generate
minimal support sets (MSSes) that discriminate be-
tween different groups of data. More precisely, we
show how to enhance the classical RF algorithm
by randomly choosing MSSes rather than randomly
choosing feature subsets that potentially contain
irrelevant features for constructing DTs. Experi-
ments on benchmark datasets reveal that integrat-
ing LAD into classical RFs using MSSes can main-
tain similar performance in terms of accuracy, pro-
duce forests of similar size, reduce the set of used
features, and enable the extraction of significantly
shorter explanations compared to classical RFs.

1 Introduction

Random Forests [Breiman, 2001] are among the widely used
classifiers in the field of Machine Learning (ML). RF is an
ensemble learning method that combines multiple Decision
Trees (DTs) into a unified model through a specific process
of aggregation and is widely used across various fields. By
combining the predictions of many different DTs, RFs of-
fer more robust and accurate models than a single DT, mak-
ing them a well-known tool in many ML tasks. Despite its
high performance, one of the shortcomings of RF is the use
of many features during the construction of different DTs,
which makes it difficult to extract short and concise expla-
nations for end users. Indeed, the recent advancements in
ML and the expected rise in ML-driven applications, particu-
larly those sensitive applications that affect people or involve

safety-critical systems, have highlighted the growing need to
understand and explain the predictions made by these mod-
els. Therefore, in recent years, the field of eXplainable Ar-
tificial Intelligence (XAI) has experienced significant growth
(see e.g. [Ribeiro er al., 2016; Guidotti et al., 2018; Ignatiev
et al., 2019; Audemard et al., 2020; Ignatiev et al., 2020;
Ignatiev and Marques-Silva, 2021]). Explaining RFs has re-
cently been investigated, and different approaches have been
proposed to extract the smallest explanations for a given ex-
ample or instance (see e.g. [Izza and Marques-Silva, 2021;
Audemard et al., 2022a; Audemard et al., 2022b; Izza et al.,
2023; Audemard et al., 2023]) by considering minimal sub-
sets of features that explain the classification, known as Ab-
ductive eXplanations (AXps), or those that allow to change
the class, known as Contrastive eXplanations (CXps). De-
spite recent advancements, the sizes of the explanations for
RFs trained on datasets containing numerous features are still
too large, since the limited size of an explanation that can be
understood as a whole by humans or end users is usually set
to 742 [Miller, 1956]. Therefore, it is important to empha-
size that minimizing the number of features required to build
RFs can significantly impact the succinctness and compre-
hensibility of the derived explanations. This is the main goal
addressed in this work.

To achieve the aforementioned objective, in this paper, we
follow the recent advancement made for building Optimal
Decision Trees thanks to Logical Analysis of Data (LAD)
[Ing et al., 2024]. More precisely, we propose an original
integration of LAD [Crama et al., 1988; Hammer, 1986] into
the classical RF algorithm. LAD is a logic-based data anal-
ysis methodology that combines optimization, Boolean func-
tions, and combinatorial theory. The primary aspects of LAD
involve identifying minimal support sets (MSSes) necessary
for explaining observations and uncovering hidden data pat-
terns that differentiate observations among various groups of
data. Explicitly, we demonstrate how to enhance the classi-
cal RF algorithm by randomly choosing MSSes rather than
randomly choosing feature subsets that potentially contain ir-
relevant features for building different DTs. By doing this,
the DTs of the RFs are built on randomly chosen MSSes to
avoid DTs with irrelevant features. Experiments on standard
benchmark datasets show that integrating MSSes of LAD into
classical RFs can maintain similar performance in terms of
accuracy, produce forests of similar size, decrease the set of
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used features, and enable us to derive considerably shorter
explanations compared to classical RFs.

The remaining sections of this paper are structured as fol-
lows. Section 2 provides some preliminaries, including ML
classification, explainable Al, LAD and MSSes enumeration
problem. In Section 3, we describe how to integrate LAD into
the classical RF. We conduct the comparative experimental
evaluation for RF methods in Section 4. Finally, Section 5
concludes the paper and addresses potential future works.

2 Preliminaries

In this section, we briefly present a formal background to in-
troduce necessary notations used throughout the paper.

2.1 Machine Learning Classification

This paper focuses on classification for data with binary fea-
tures. Using the fairly standard one-hot encoding and other
standard techniques (e.g. [Fayyad and Irani, 1993; Perner
and Trautzsch, 1998; Kotsiantis and Kanellopoulos, 2006;
Garcia et al., 2013]), non-binary categorical and numerical
features of a dataset can be transformed into binary values.

Let F = {x1,...,2:} be a set of ¢ binary features, all of
them take value in {0,1}. Let £ = £ U &~ be a binary
dataset partitioned into a set of positive instances £* and a
set of negative instances £ . To refer to a binary observation
vector of ¢ features, we use the notation v = (vy,...,v),
where v; € {0,1},¢ = 1,...,¢. An instance denotes a pair
€g = (vq,¢q) € &, where v, € {0,1} and ¢, € {0,1} is
the class value. We have ¢, = 1ife; € T and ¢, = 0 if
€, € £7. We denote a binary dataset as a set of n training
instances €& = {(v1,¢1),..., (Vn,cn)}-

The classification problem aims to learn some function f
(the classifier) mapping binary observation vectors to class
values, matching as accurately as possible the actual function
7 on the training data (i.e. 7(vy) = ¢4, ¢ = 1,...,n) and
tries to generalize well to new and unseen data. In this paper,
we focus on Decision Tree and Random Forest classifiers.

For Decision Tree (DT), the function f is represented by a
binary and full DT, where every internal node has exactly two
children. Every internal node is associated with a feature or
its negation and every leaf node is associated with a class.

Random Forest (RF) is an ensemble method that constructs
multiple decision trees (DTs) on various subsamples of the
training set and uses averaging to improve the accuracy. RF
mitigates overfitting by combining diverse DTs, where each
DT might have high variance, into a more robust and gen-
eralized model. Formally, let RF = {71, 72,..., Tk} be a
collection of K DTs. Each tree 7; € R.F is trained on a
different bootstrap sample from the training set and is con-
structed recursively based on a random subset of features.
Given an observation vector v, each tree 7; predicts a class
label 7;(v) € {0,1}. The final prediction of the RF, f(v)
depends on a voting mechanism among the K DTs:

fv) =vote (T1(v), T2(v),..., Tk(v)) € {0,1}.

In this study, we consider two different voting mechanisms:
majority-vote and soft-vote. These two mechanisms can pro-
duce different results as described in Example 1.

Example 1. Consider a case where a soft-vote produces a
different outcome compared to a majority-vote. Suppose we
have a random forest made of three DTs, RF = {T1, T2, T3 }.
The predictions of those three DTs are given as follows:
1. Ty predicts class O with probability 0.7 for class 0 and
0.3 for class 1.

2. T predicts class 1 with probability 0.4 for class 0 and
0.6 for class 1.

3. T3 predicts class 1 with probability 0.45 for class 0 and
0.55 for class 1.

Majority-vote: class 0 is predicted by Ty, class 1 is predicted

by To and T3. Thus, the final prediction of RF is class 1.
Soft-vote: The mean probability for class 0 = % ~

0.5167 and the mean probability for class 1 = W ~
0.4833. In this case, class 0 has a higher mean probablllty of
0.5167. Thus, the final prediction of RF is class 0.

2.2 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) has recently re-
ceived significant attention and has emerged as a fundamen-
tal field, aiming to allow human users to understand and
trust the results produced by AI/ML systems [Barredo Arri-
eta er al., 2020]. Explainability for Al systems has grown
along with the success and adoption of deep learning sys-
tems, which are applied in many fields where trustworthiness
is critically needed, such as in legal systems [Lipton, 2018;
Rudin, 2019], autonomous driving [Tian et al., 2018], cyber-
security [Shone et al., 2018], health care and criminal justice
[Rudin and Ustun, 2018], financial risk assessment [Chen et
al., 2018], detecting heart attacks [Weng ez al., 20171, surveil-
lance systems [Ding et al., 2018], among others.

In this paper, we focus on two well-known explanations,
abductive explanation (AXp) as an answer to a “why?” ques-
tion and contrastive explanation (CXp) as an answer to “why
not?” question, subject of recent works for explaining RFs
[Tzza and Marques-Silva, 2021; Audemard er al., 2022b].

Given an ML model, computing a classification function 7
on feature space F = {0, 1}, a specific point v € T, with
prediction ¢ = 7(v), where v = (vy,...,v;). To refer to an
arbitrary point in F, we use the notation u = (uy, ..., us).

1. A Pl-explanation or Abductive eXplanation (AXp) is
any minimal subset X C F such that:

Ve F).[ A\ (= v:)] = (r(u) = ¢)
icX
2. A Contrastive eXplanation (CXp) is any minimal subset
Y C F such that:

JueF). A (u=uv)A(r(u)#0)

JEF\Y

2.3 Logical Analysis of Data

Logical Analysis of Data (LAD) is a logic-based data analy-
sis methodology combining ideas and concepts from discrete
optimization, combinatorics and the theory of Boolean func-
tions. The idea of LAD was first described by Peter L. Ham-
mer in a lecture given in 1986 [Hammer, 1986] and was later
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expanded and developed in [Crama et al., 1988]. The central
concepts behind LAD are the computation of minimal sup-
port sets of features for explaining all observations, and the
discovery of hidden data patterns capable of distinguishing
positive and negative sets of observations. A collection of
such patterns is used for building a classification procedure,
clustering, feature selection and other related problems.
LAD has undergone continuous development in various
domains, including medical applications [Hammer and Bon-
ates, 2006], financial applications [Hammer et al., 2007], the
airline industry [Mortada et al., 20121, condition-based main-
tenance applications [Yacout et al., 2017], industrial chemi-
cal processes [Ragab et al., 2018], among others. For more
details on LAD, we refer the reader to [Boros et al., 2000;
Hammer and Bonates, 2006]. Our goal in this paper is to
utilize the main first step of LAD, which involves discover-
ing support sets that distinguish observations among various
groups of data, and to integrate these support sets into RFs.

Ty To X3 x4 x5 || class
0O 0 0 1 1 1
0O 0 0 0 1 1
1 1 1 1 0 1
1 0 1 0 0 0
1 0o 1 1 1 0

Figure 1: Binary dataset.

Example 2. Consider dataset in Figure 1. The projection of
Efand €~ on & = {x1, 22} is EF = {(0,0),(1,1)} and
Es = {(1,0)}, respectively. Moreover, {1, 2}, {x2, 73},
{xs, 24,25}, and {x1, x4, x5} are minimal (w.r.t. inclusion)
support sets. Concretely, {x1, 2} and {x2, x5} are the min-
imum size support sets (w.r.t. cardinality).

In the sequel, we use similar notations and definitions to
those of [Hammer and Bonates, 2006]. Given a set of bi-
nary features S C F, let 5;' (resp. &5) be the projec-
tion of £ (resp. £7) on S. S is called a support set if
E&NES = 0. Moreover, S is called irredundant or mini-
mal if no proper subset of it is a support set. To compute
minimum support sets in £, we associate with every fea-
ture x € F a new binary variable y, where k =1,... ¢,
yr = 1 if zy is part of the support set, and y; = 0 other-
wise. Let v = (vy,...,v;) and v/ = (v],...,v}) be the bi-
nary observation vectors of ¢ features associated with £* and
&, respectively. We further associate the vectors v and v’
with a vector w(v,v') = (wy(v,v’'),...,w(v,Vv’)), where
wg (v, v') = v, & vj,(mod 2), i.e. wi(v,v') = 1if v, # v},
and wy(v,v’) = 0 otherwise. We can obtain the minimum
support sets by solving the following set covering problem:

Zyk

k=1,...,t

min

s.t.

ST wn(v, vy 2 1, Y(v,0) € €5, Vv, ¢) € £

k=1,...,t

ey

Yk € {07 1}

Example 3. For the dataset in Figure 1, the formulation of
LAD Minimum Support Sets (LAD-MSS) is given by:

min Y1 +y2+ys+ys+ys

s.t.

Ntystyatys =1

y1+ys =1

Y1 +ystys =1

Y1 +ystys=>1

Y2 +ys =1

Y2 +ys > 1
The above problem is a known NP-hard and involves a
quadratic number of linear inequalities. For large datasets,
solving this optimization problem is difficult in practice. In
Section 2.4, we circumvent this problem by proposing a more

efficient alternative, formulating it as the problem of generat-
ing minimal hitting sets.

2

2.4 Minimal Support Sets Enumeration

We first provide a relation between minimal support sets
(MSSes) and minimal hitting sets (MHSes), and then describe
how to enumerate them. We begin by recalling the minimal
hitting set problem.

Definition 1. Given a collection H = {H., ..., Hy,} of sub-
sets over a universe U. A hitting set (traversal) T of H is
a subset of U that intersects (hits) every set H; € H i.e.
T N H; # 0. Moreove, T is minimal if there is no T' C T s.t.
T' is a hifting set.

The minimal hitting set problem is relevant to multiple
fields, including Boolean algebra [Fredman and Khachiyan,
19961, computational biology [Ideker et al., 1999], data min-
ing [Bailey et al., 2003], combinatorics [Eiter et al., 2008],
and more.

In the literature, there exists several algorithms and effi-
cient implementations to compute the set of MHSes [Gainer-
Dewar and Vera-Licona, 2016]. Murakami and Uno [Mu-
rakami and Uno, 2014] propose “pMMCS”, a parallel imple-
mentation version of their first algorithm MMCS (Minimal-
to-Maximal Conversion Search), for solving the MHSes enu-
meration, whose complexity is in O(|| H||) time per MHS and
O(||H||) memory, ||H|| denotes the sum of the sizes of ele-
ments of H. The advantage of this algorithm is its ability to
tackle large-scale problems involving millions of hyperedges,
quickly producing numerous solutions, which influenced our
decision. Additionally, it supports multithreaded implemen-
tations on systems with multiple CPUs.

Let F = {z1,..., 2} be a set of ¢ binary features, £ =
ET U E™ a binary dataset, v and v’ the binary observation
vectors associated with £ and £, respectively. Using the
result of Section 2.3, we can derive a set of binary vectors
from & denoted as ET & £~ = E5 = {w(v, V'), ¥(v,c) €
ETAV(V', ') € E~}. We denote by H(Eg) the following set
H(Eg) = {EY), V(v,c) € Y A ¥(V/, ) € £}, where
ECY) —{ap e Flke{l,...,t}and wy(v,v') = 1}.

As proven in [Ing et al, 2024], the minimal support

sets (MSSes) of € correspond to M HSes(H(Eg)). Conse-
quently, the MSSes generation can be performed as follows:
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1. XOR Operations (£ — £ & £7): execute XOR oper-
ations between every observation in £ and every ob-
servation in £~ of £ denoted as Eg = ET D £, a set
of binary vectors. For multi-class classification, we per-
form XOR operations between each pair of classes.

2. Generate MSSes for H(Eg), noted as M SSes(H (Eg)).

Example 4. From the formulation of LAD-MSS as a
0/1 linear program (Example 3), we can derive the fol-
lowing set of sets, where each subset corresponds to
the set of features associated with the set of vari-
ables involved in each 0/1 linear inequality: H(Eg) =
{{xla T3, T4, I5}a {'rlv x3}7 {xla xs3, x5}a {'rlv z3, 1'4},

{z2, 24}, {z2,25}}. Then MSSes(H(Eg)) = {{z1, 22},
{x2, 23}, {23, 24, x5}, {21, 24, 25} } corresponds to the min-
imal supports sets in the Example 2.

Note that the number of MSSes can grow exponentially
in the worst case. For practical purposes, in this paper, we
propose generating only a subset for integration into RFs.

3 Random Forest Based LAD

A main result proved in [Ing et al., 2024] shows that for a
minimal support set S, it is possible to build a perfect decision
tree (see Definition 3) that correctly discriminates between
positive and negative examples using only the features of S
for a dataset without redundancy (see Definition 2). Never-
theless, the number of MSSes can be exponentially large, and
choosing the most relevant MSS is a computationally hard
task. Moreover, finding the smallest MSSes with respect to
cardinality is also NP-hard. For this reason, the authors con-
sidered generating minimal support sets (w.r.t. inclusion) in-
stead of generating minimum ones (w.r.t. cardinality), and a
heuristic scoring method has been designed to select the most
effective MSS for building a perfect decision tree.

Definition 2. Let F be a set of binary features and £ = ETU
E~ a binary dataset over F. S C F is called redundant if
E&nés #0.

Definition 3. A decision tree is perfect if it correctly classifies
all the observations of £ = ET UE™.

Let us now discuss how MSSes can be leveraged within
the RF algorithm. First, we recall that the classical RF (Algo-
rithm 1) creates a bootstrap sample of the same size as the
training data using the Bootstrap function, where rows
from the training data are randomly selected with replace-
ment (line 8). For each bootstrap sample, by default, /7 fea-
tures are randomly selected to form a feature subset, and a
DT algorithm (e.g. CART) is then used to build a DT over the
bootstrap sample based on that feature subset (line 9).

As stated in Section 2.3, a key advantage of LAD is its ca-
pability to generate minimal feature subsets that effectively
distinguish between different classes. In contrast, one of
the weaknesses of the classical RF is its sensitivity to noise,
which can lead to the selection of irrelevant features when
training on bootstrap samples, resulting in the use of too
many features. To address this drawback, MSSes are valu-
able due to their discriminative power, focusing on relevant
features. Algorithm 2 describes the proposed RF-LAD ap-
proach. In detail, Vs MSSes are generated using the training

Algorithm 1: Classical Random Forest
1: Input:
2:  &: Training dataset with n samples
K: Number of trees in the forest
t: Number of features
Output:
Ensemble of K decision trees
fori=1to K do
&; < Bootstrap(&)
T; < CART(E;, /1)
end for
return RF = {71, 73,...

A B G AR U

—_—

7TK}

data & (line 7). Among these MSSes, K MSSes are randomly
pre-selected without replacement (i.e. no redundancy among
them) to be associated with each bootstrap sample (line 8).
Over each bootstrap sample, the tree is built using the features
of its associated MSS (line 11). Note that each S; remains a
support set of & but not necessarily minimal. In fact, since
&; is a subset of the training data &, each support set of £ is a
support set of &;.

Since the number of MSSes is exponential in the worst
case, limiting the enumeration to Ng ones is useful to con-
trol this complexity. Additionally, as K MSSes are chosen
among Ngs, Ns must be large enough to ensure diversification
and thus allow for a subset of MSSes that is representative of
the considered data.

Let us note that using RF-LAD through MSSes ensures that
important features have a high chance of being used. More-
over, using MSSes’ features rather than randomly generated
features for bootstrap samples can decrease the number of
used features since minimality is required for support sets.
Consequently, the abductive and contrastive explanations can
also be significantly reduced accordingly.

As mentioned earlier, on data without redundancies, it is
possible to classify all the training examples correctly by
building perfect decision trees. Nonetheless, when using a
classical Random Forest algorithm, we do not have guaran-
tees in terms of perfect classification for each decision tree
due to the randomization used to restrict the number of fea-
tures for each bootstrap sample. Now, using RF-LAD, the
trees are built over MSSes generated using the whole train-
ing data. Since MSSes remain support sets for the bootstraps,
perfect trees can be built. For instance, this can be achieved
by removing the restriction on depth in the CART classifier.

Next, we discuss how MSSes can be used to enforce some
examples to be correctly classified.

Proposition 1. Let RF = {71, ..., T } be a set of K perfect
decision trees built over a set of bootstraps {&1,...,Ex}. If
€q = (Vgicq), 5.t vq appears at least |5 | + 1 times in
{&1,...,EK }, then RF(vy) = ¢4, using the majority vote.

Proof. Assume that all the decision trees (DTs) of RF are

perfect. Then, each 7; correctly classifies all the examples of
&i. If g = (vq, cq) appears more than | £ | times, using the

majority vote for RF will classify v, as class ¢, with more
than | £ | DTs. Consequently, RF (vq) = . O
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Proposition 1 ensures that frequent examples among boot-
straps are guaranteed to be well classified. However, classical
RF uses a random policy to choose features in each bootstrap,
which leads to redundancies, i.e. identical examples that ap-
pear in both positive and negative classes (Definition 2), pre-
venting perfect classification for all variants of DT classifiers.
In contrast, by using MSSes, we will be able to ensure that
RF-LAD can classify the majority of frequent examples into
their corresponding classes.

Algorithm 2: Random Forest Based LAD (RF-LAD)
1: Input:
2:  &: Training dataset with n samples
3 K': Number of trees in the forest
4 Ngs: Number of MSSes to generate
5: Output:
6.
7
8

: RJF: Ensemble of K decision trees
: Ls < generate MSSes(&, Ns)
: {S1,...,Sk} < random_select(Ls, K)
9: fori =1to K do
10:  &; < Bootstrap(E)
11:  T; + CART(E;, S))
12: end for

13: return RF = {T1,72,..., Tk}

4 Experimental Results

In this section, we conduct comparative experiments between
our Random Forest using MSSes of LAD (RF-LAD) and the
state-of-the-art Random Forest (RF) (from the scikit-learn
Python library [Pedregosa er al., 2011]). The parameters
of RFs are kept at their default values (i.e. in a forest,
K = 100 DTs), except for the maximum depth, where we
set different depths d € {3,4,5}. The assessment is per-
formed on 23 datasets, which are standard benchmarks orig-
inating from well-known repositories such as CP4IM (https:
//dtai-static.cs.kuleuven.be/CP4IM/datasets/), Kaggle (www.
kaggle.com), OpenML (www.openml.org), and UCI (archive.
ics.uci.edu/ml/). Some of them are original binary datasets,
while others are numerical datasets that have been binarized
using thresholds retrieved from CART [Breiman et al., 1984].
Let us note that, for certain datasets, instances appearing in
both £T and £~ are removed to maintain consistency. For ev-
ery benchmark, a Repeated Stratified 10-fold cross-validation
with 3 repetitions have been achieved to maintain the class
distribution (i.e. to address imbalanced datasets). To enu-
merate the MSSes, we use the multithreaded implementations
provided by the algorithm “pMMCS” [Murakami and Uno,
2014], and set the number of threads to 20 to ensure diver-
sification in terms of the generated MSSes. To control the
complexity, we modified “pMMCS” by limiting the number
of MSSes to 100K (i.e. Ns = 100K) for all the considered
datasets. For a fair comparison, we randomly select 100 dif-
ferent MSSes (without redundancy) from the 100K generated
MSSes, resulting in 100 different DTs to build our RF-LAD.
Two voting mechanisms are used for RF-LAD approach: the
majority-vote and the soft-vote. Experiments are conducted

on a computer equipped with Intel(R) Core(TM) i9-10900
CPU @ 2.80GHz with 62Gib of memory.

The results are reported in Table 1. The first column shows
the name of the dataset, the size of the dataset (#s), the num-
ber of features (#f), and the number of classes (#c). The
second column displays different depth settings (d). The
column RFye,m represents the RF algorithm from sklearn
(it utilizes the soft-voting mechanism), while the columns
RFpap(majority-vote) and RFpap(soft-vote) represent our
proposed RF-LAD using majority-vote and soft-vote, respec-
tively. The column “Acc.” stands for the testing or pre-
diction accuracy along with its standard deviation, and the
column “#nbNodes” is the average total number of nodes in
a forest. The column “Time(s)” measures the average run-
time for constructing our RF-LAD. This runtime includes en-
coding the dataset into an MHS problem, generating 100K
MSSes, randomly selecting 100 MSSes, and building 100
DTs. Note that we do not report exact runtime for the RFyjearn
because it takes only a few seconds. According to the ex-
periments, RFjearm and RF-LAD(s) perform similarly across
most benchmarks in terms of accuracy, with differences often
within only 1% to 2%. The higher accuracies with more than
2% are highlighted in bold. For the standard deviations, they
seem to be very similar, with only slight differences (between
1% and 2%) for some datasets. In terms of #nbNodes, RF-
LAD(s) are able to produce smaller forests on 10 benchmarks
across all depths (e.g. anneal, drilling, fetal-health, ...).

Our second comparison concerns the average number of
features used in a forest between RFgjeam and RF-LAD(s).
The top histogram of Figure 2 displays the average num-
ber of features used in RFyjearn and in RF-LAD(s) for d=4.
The x-axis displays all the considered datasets, and the y-
axis displays the average number of features used. As we
can see in that histogram, for all the considered datasets,
RF-LAD(s) used fewer features to build the entire forest
compared to RFgqeam. Statistically, for all the benchmark
datasets, RFp sp(majority-vote) used from 4.72% to 78% less
than RFgyearm, Whereas RFy aop(soft-vote) used from 3.92% to
78.83% less than RFgeam. Furthermore, for the datasets with
more than 200 features, such as “ad”, “cnae”, “pd-speech”,
“reuters”, and “spambase”, the reduction exceeds 50%, show-
ing strong reduction. These results show that RF-LAD(s) are
beneficial, notably for datasets containing numerous features.

Our final comparison focuses on the size of the expla-
nations derived from RFean and RF-LAD(s). To derive
such explanations from those RFs, we utilized the recent
Random Forest explanation tool (RFxpl: https://github.com/
izzayacine/RFxpl) proposed by Izza and Marques-Silva [Izza
and Marques-Silva, 2021]. The authors proposed a proposi-
tional encoding for computing explanations of RFs, enabling
the extraction of abductive explanations (AXps) and con-
trastive explanations (CXps) using a SAT solver. First, to ob-
tain a model for each RF algorithm, we saved the best trained
model based on the highest testing accuracy during the eval-
uation process of all 30 iterations (10-fold cross-validation
with 3 repetitions). Then, to choose the examples for ex-
planation, we followed the procedure in [Izza and Marques-
Silva, 2021] by randomly picking fractions of the dataset,
depending on its size. More precisely, for datasets contain-
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Instance RFgkiearn RF1Ap(majority-vote) RFysp(soft-vote)
#s, #f, #c Acc. #nbNodes Acc. #nbNodes | Time (s) Acc. #nbNodes | Time (s)
ad 86.81(x 1.31) | 1017.73 92.36(+ 1.81) 1346.27 244.27 92.53(+ 1.82) 1348.2 246.04
88.36(+ 1.45) 1511.4 93.01(+ 1.73) 2119.6 249.39 93.15(+ 1.82) | 2104.65 247.65
2108, 1558, 2 89.92(% 1.39) 2052 93.39(+ 1.63) 2885.6 251.84 93.50(+ 1.47) | 2879.94 253.46
anneal 87.26(+£ 2.53) 1163 85.58(% 2.34) 928 1.59 86.09(+£ 2.29) 924.93 1.97
88.33(£ 2.52) | 1885.14 87.26(% 2.28) 1503.27 1.98 87.31(£ 2.41) | 1506.94 1.59
712,93,2 89.51(% 2.22) | 2755.65 88.71(% 3.03) 2273 1.61 88.76(% 2.61) | 2290.47 1.58
australian-credit 86.16(% 4.52) 1458 84.68(% 4.77) 1491.94 2.7 85.55(£ 4.50) | 1490.33 2.72
86.42(% 4.50) 2750.6 85.96(= 4.96) 2860.65 2.76 86.32(+ 4.37) | 2853.94 2.7
653, 125, 2 87.33(x 4.31) | 4702.46 86.26(= 4.63) 4874.4 2.7 86.42(+ 4.58) 4855.8 2.75

96.73(£ 1.83) | 1192.94 95.07(&£ 2.20) 1302.67 2.98 95.22(+ 1.84) | 1306.86 3.01

bréagieancer 96.63(£ 1.77) | 1921.6 95.66(% 2.10) | 212527 298 || 95.61(£2.18) | 21422 2.97

683, 89, 2 96.78(+ 1.74) 2784.4 95.85(£ 2.15) 3077.65 3.89 95.85(+ 1.91) 3078 3.02
cnae 87.05(+ 3.09) 832.73 83.31(% 3.75) 1169.33 76.33 84.71(£ 2.53) | 1160.86 76.58
89.22(+ 2.44) 1168.8 86.30(% 3.82) 1697 76.19 86.98(+ 2.64) | 1694.67 77.28

1027, 856, 2 90.36(+ 2.77) 1561.6 87.79(% 3.12) 2238.65 75.17 88.38(£ 3.11) | 2225.53 77.43
contraceptive 54.99(+£ 3.56) | 1463.73 54.88(£ 4.38) 1234 86.18 56.49(£ 4.25) | 1238.47 85.76
56.52(£ 4.19) | 2895.47 57.44(+£ 4.60) 2215 85.33 57.95(+ 4.34) | 2205.87 85.46

1262, 90, 3 56.81(£ 3.93) | 5405.26 58.90(+ 4.24) 3949.4 85.90 57.97(+£ 4.78) 3926.8 85.61
drilling 67.83(£ 7.72) 1088 76.38(£ 8.15) 1024.94 0.78 84.39(+ 5.67) | 1034.67 0.79
77.50(£ 8.59) | 1767.53 85.13(+ 7.62) 1649 0.8 91.25(+ 3.94) 1628.4 0.79

285, 56,2 87.61(+ 4.54) | 2628.47 91.35(+ 5.13) 2432 0.78 93.27(+ 4.85) | 2421.27 0.78
fetal-health 87.61(£ 1.79) | 1477.94 89.70(+£ 1.56) 1480.53 91.09 89.99(+ 1.85) | 1480.33 91.39
90.36(+ 1.75) | 2862.13 90.58(£ 1.72) 2868.94 90.16 90.66(+ 1.67) 2864.8 91.53

1806, 93, 3 91.60(£ 1.89) | 5079.93 91.67(£ 1.31) 4895.74 91.99 91.82(£ 1.31) | 4907.74 91.77

70.59(£ 1.22) 1482.2 70.48(£ 0.80) 1489.73 12.46 70.60(£ 1.72) 1491.6 12.39
72.00(£ 1.69) | 2911.35 70.94(£ 1.67) 2952.94 12.35 71.20(+£ 1.57) 2946.2 12.35
72.70(£ 2.46) | 5222.26 71.47(£ 2.18) 5331.87 12.45 71.56(+£ 2.26) 5321 12.4
81.59(£ 8.34) | 1470.27 81.85(% 7.85) 1487.86 0.87 81.51(£ 5.90) 1488.4 0.78
82.84(+ 7.53) | 2775.87 79.93(£ 6.95) 2849.53 0.79 80.85(£ 7.23) | 2846.73 0.82

german-credit

1000, 112, 2

heart-cleveland

Nk WukswWodkwWonks Wk Woks Wk WoksWokRWoO R WOVEWOHRWOVPRERWOVREWORWOVPRERWORWO R WOV R WOV RERWOV R WOV R WO W &

296, 95, 2 82.72(£ 7.04) | 454393 || 80.84( 6.75) | 4646 079 || 81.06(% 6.44) | 4646 0.82
hepatitis S2.83(L 744) | 1335 S133(L 6.28) | 13264 043 ST28(L 7.83) | 13196 046
82.85(£ 8.09) | 2128.94 || 82.05(&+ 7.88) | 2077.87 0.45 81.33(£ 8.37) | 2085.73 0.47
137, 68,2 82.12(% 9.14) | 2899.47 || 82.08(& 8.52) | 2798.65 047 || 81.81(% 8.20) | 2791.27 0.44
hvoothvroid 0647(= 1.22) | 1139.67 || 9837(£047) | 11238 77.02 || 9838(£ 051 | 1126 §7.08
ypothy 97.14(% 1.22) | 1850.67 || 98.64(% 0.49) | 1800.67 769 || 98.62(£ 0.47) | 1800.86 774
3199, 88,2 97.94(£0.75) | 2822 98.59(- 0.59) 2579 77.04 || 98.59(% 0.53) | 2574.8 76.86
indian-diabetes 75.65(L 4.00) | 1482.94 || 7548(L 447) | 149194 | 427 || 75.74(L 4.43) | 1492.86 542
7630(E 4.13) | 2876.13 || 76.69(% 3.98) | 292847 539 || 77.04(% 3.70) | 292527 4.15
768,97, 2 T742(£3.94) | 5088.54 || 77.73(£ 3.95) | 5205.87 421 7725(£3.58) | 521174 | 411
indian-liver 70.58(L 2.80) | 1462.53 || 70.58(L 2.56) | 1458.67 194 | 69.92(X3.61) | 14588 1.94
69.98(£ 3.55) | 2732.53 || 70.28( 4.08) 2685 1.89 || 70.17(+ 4.02) | 2682.87 1.88
554, 84,2 7029(+= 4.78) | 4586 70.16(+ 4.33) | 4417.13 1.88 || 69.01(% 4.48) | 4417.87 1.88
Joan 72.93(£ 4.25) | 13584 || SL29(L 4.43) | 14042 130 || SL.36(£ 4.44) | 1402.14 1.26
78.61(£ 5.58) | 2402.6 || 8L07(£4.15) | 24406 128 || 8L.08(+ 4.49) | 24382 127
474, 68,2 79.25(= 4.65) | 3888.2 80.87(+ 4.88) | 382235 127 || 80.79(% 4.64) | 3807.47 127
N~ | 80.12(L 943) | 1313.94 || 80.07(£9.28) | 13578 052 || 80.76(£ 9.59) | 13524 05
ymp 81.73(£ 7.81) | 214573 || 81.42(£9.23) | 22174 0.5 8236(+£ 8.77) | 22234 0.5
148, 68,2 83.53(= 9.14) | 3087.8 || 81.24(£ 10.33) | 31304 0.5 83.26(+ 9.31) | 3137.73 0.52
YA N 82.00(L 3.61) | 149747 || 79.75(% 2.56) | 14876 958 || 80.45(L 2.80) | 14882 957
pa-sp 82.79(k 3.42) | 298627 || 81.34(&2.56) | 2873.87 9.68 || 81.08(& 2.84) | 2875.53 9.54
754,754, 2 83.19(£ 3.50) | 5347 81.47(£3.04) | 49932 9.83 81.82(£2.59) | 49912 9.62
- 76 17(£ 4.30) | 1447 T520E£522) | 14956 275 || 75.22(£ 543) | 14954 275
pima 76.35(+5.41) | 2724 75.45(+5.74) | 29512 2.78 75.85(% 6.09) | 2952.87 274
740, 160, 2 76.26(=5.20) | 46434 || 75.72(£ 4.98) | 5293.13 3.09 || 76.12(% 6.08) | 5293.26 332
euters 88.02(L£ 0.10) | 137327 || 92.33(£ 1.68) | 136347 | 4332 || 92.74(£ 1.51) | 1362.73 35
88.91(£0.76) | 2525.53 || 93.20(+ 1.43) | 2369.73 | 4331 || 93.11(+ 1.53) | 2390.13 | 43.15
1834, 246, 2 90.58(=0.91) | 4084.6 || 93.67(X 1.57) | 35774 | 4355 || 94.02(L 141) | 353573 | 4327
soybean 86.02(L 0.71) | 122633 || 90.24(L 2.23) 1344 106 || 90.56(L 2.19) | 134453 I
90.08(= 2.45) | 20134 || 91.89(%230) | 2257.47 1 92.69(= 2.25) | 2254.94 1.06
625, 50,2 92.37(£2.62) | 2975 92.95(£2.35) | 33852 1.03 || 93.54(& 2.55) | 3374.47 1.06
spambase 90.24(L 1.30) | 1479.67 || 88.67(L 1.79) | 1359.6 | 612.68 || 89.01(L 1.62) | 1354.67 | 595.9
91.43(%£ 1.37) | 2906.65 || 90.40( 1.64) | 255735 | 61348 || 90.57(£ 1.73) | 2557.73 | 620.32
3471, 236,2 9178(% 1.11) | 52222 || 91.33(£ 1.47) | 4432.67 | 62624 || 91.40(% 1.57) | 441833 | 620.88
startup 78 54(E 3.50) | 1383.14 || 76.8K(L 3.93) | 14444 1047 || 77.67(£339) | 14496 1043
79.22(+£3.55) | 2587 77.01(£328) | 273387 | 1056 || 77.70(£3.37) | 27336 10.45
921, 108, 2 79.15(£3.39) | 4508.8 || 77.85(£3.07) | 48024 1056 || 77.77(£3.36) | 4821.33 | 10.55
- 95.60(L 2.59) | 1246.14 || 95.49(E 2.10) 1125 157 |[ 9531(F2.49) | 1117 156
96.13(=2.32) | 2081.87 || 96.48(+226) | 1849.8 1.6 96.48(4 2.44) | 1821.86 1.62
569, 88, 2 96.66(= 2.41) | 3056 96.54(£ 2.69) | 2769.13 17 96.89(= 2.42) | 2762.35 1.64

Table 1: Experimental results for Random Forests.
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Figure 2: The average number of features (top histogram), the average size of AXps (middle histogram), and the average size of CXps (bottom

histogram), when d=4.

ing fewer than 200, 200-999, and 1000-9999 examples, we
randomly picked 40%, 20%, and 10% of the examples, re-
spectively, to explain. To ensure a fair comparison in terms
of the sizes of the explanations, for all datasets, we set a
fixed randomized seed so that RFyean and RF-LAD(s) ex-
plain only the same examples. Finally, we report the aver-
age size of AXps and the average size of CXps. The mid-
dle histogram and the bottom histogram of Figure 2 represent
the average size of AXps and the average size of CXps, re-
spectively. The x-axis displays all the considered datasets,
and the y-axis displays the average size of AXps (middle his-
togram) and the average size of CXps (bottom histogram). In
these histograms, we can see that shorter AXps and CXps
can be derived from RF-LAD(s) compared to RFjeqm for
most considered datasets, except for a few datasets like “soy-
bean” and “wdbc”, where slightly longer AXps were de-
rived from RF-LAD(s). Similarly, for datasets like “hepati-
tis” and “loan”, slightly longer CXps were also derived from
RF-LAD(s). Statistically, for RF-LAD(s), the average size
of AXps are reduced by 17.72% to 90.28% and by 18.96%
to 87.86% for RFy sp(majority-vote) and RFsp(soft-vote),
respectively. In a similar vein, the average size of CXps
are reduced by 17.44% to 96.53% and by 3.23% to 94.14%
for RF op(majority-vote) and RFy op(soft-vote), respectively.
Additionally, for at least 10 datasets and at least 14 datasets,
the reduction in the average size of AXps and CXps exceeds
50%, respectively, which also shows a significant reduction.

To summarize, this section shows that building RFs using
MSSes (RF-LAD) allows for a reduction in the set of used
features while maintaining similar results in terms of predic-
tion accuracy, produces forests of similar size with sometimes
higher accuracy, and enables us to derive shorter explanations
compared to the classical RF approach.

5 Conclusion and Future Works

In this paper, we have shown how to integrate the Logi-
cal Analysis of Data (LAD) framework to enhance classi-
cal random forests (RFs) using minimal support sets (MSSes)
based on their discriminating property. Concretely, we have
proposed to modify the classical RF algorithm by randomly
choosing MSSes rather than randomly choosing feature sub-
sets that likely contain irrelevant features for training boot-
strap samples. Experiments on benchmark datasets show
that our RF-LAD(s) are competitive with the classical RF in
terms of prediction accuracy, while producing a forest of sim-
ilar size, using limited features that lead to the extraction of
shorter explanations compared to the classical RF.

In the future, we plan to extend LAD to handle numerical
datasets directly, without relying on binarization techniques.
Finally, it would be interesting to integrate LAD into other
tree-based algorithms to evaluate whether it can also produce
shorter and more concise explanations.
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