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Abstract
The task of graph-level out-of-distribution (OOD)
detection is crucial for deploying graph neural net-
works in real-world settings. In this paper, we
observe a significant difference in the relation-
ship between the largest and second-largest eigen-
values of the Laplacian matrix for in-distribution
(ID) and OOD graph samples: OOD samples of-
ten exhibit anomalous spectral gaps (the differ-
ence between the largest and second-largest eigen-
values). This observation motivates us to pro-
pose SpecGap, an effective post-hoc approach for
OOD detection on graphs. SpecGap adjusts fea-
tures by subtracting the component associated with
the second-largest eigenvalue, scaled by the spec-
tral gap, from the high-level features (i.e., X −
(λn − λn−1)un−1v

T
n−1). SpecGap achieves state-

of-the-art performance across multiple benchmark
datasets. We present extensive ablation studies and
comprehensive theoretical analyses to support our
empirical results. As a parameter-free post-hoc
method, SpecGap can be easily integrated into ex-
isting graph neural network models without requir-
ing any additional training or model modification.

1 Introduction
Graph-structured data has become increasingly prevalent in
various domains, including social networks, bioinformatics,
and recommendation systems [Wu et al., 2020; Hamilton
et al., 2017; Huang et al., 2024]. Graph Neural Networks
(GNNs) have emerged as powerful tools for learning rep-
resentations and making predictions on such data, achiev-
ing state-of-the-art performance in numerous tasks [Kipf and
Welling, 2016; Veličković et al., 2017; Xia et al., 2021;
Ju et al., 2024; Qiao et al., 2025]. However, as GNNs
are increasingly deployed in real-world applications, ensur-
ing their reliability and robustness becomes paramount. One
critical challenge in this context is the detection of out-of-
distribution (OOD) samples at the graph level, which is es-
sential for maintaining the integrity and trustworthiness of

∗Corresponding authors: Ziyue Qiao (ziyuejoe@gmail.com) and
Zechao Li (zechao.li@njust.edu.cn).
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Figure 1: SpecGap: Spectral Gap-based OOD Detection. (a) Orig-
inal Eigenvalue Distribution: OOD samples show larger and more
varied spectral gaps compared to ID samples. (b) Spectral Gap Dis-
tribution: Clear separation between ID and OOD samples based on
spectral gap. (c) Distribution After SpecGap: The method effec-
tively brings OOD samples closer to the ID distribution.

GNN-based systems [Liu et al., 2023; Ma et al., 2022;
Qiao et al., 2023]. The importance of OOD detection in ma-
chine learning has been well-established in domains such as
computer vision and natural language processing [Hendrycks
and Gimpel, 2016; Liang et al., 2017; Zhang et al., 2022;
Mirakhorli et al., 2020]. However, the unique characteris-
tics of graph-structured data pose additional challenges for
OOD detection. Unlike images or text, graphs exhibit com-
plex structural properties and relational information that must
be considered. Moreover, the potential for subtle distribu-
tional shifts in graph data can be more nuanced and diffi-
cult to detect using traditional methods [Qiao et al., 2024;
Yang et al., 2021; Qiu et al., 2022].

Recent years have witnessed growing interest in graph-
level OOD detection, with researchers exploring various ap-
proaches. Contrastive learning-based methods have shown
promise by leveraging the structural information of graphs
[Li et al., 2022; Qiu et al., 2022; Liu et al., 2024], while
energy-based models have demonstrated effectiveness in cap-
turing the underlying data distribution [Wu et al., 2023;
Shen et al., 2024]. Despite these advancements, existing
methods often require significant modifications to GNN ar-
chitectures or extensive additional training, limiting their
practical applicability in real-world scenarios where model
retraining may be costly or infeasible[Ji et al., 2023; Wang et
al., 2024].

In this work, we present a novel perspective on graph-
level OOD detection by focusing on the spectral properties of
graphs. Our key observation is a significant difference in the
relationship between the largest and second-largest eigenval-
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ues of the Laplacian matrix for in-distribution (ID) and OOD
graph samples. As illustrated in Figure 1(a), OOD samples
frequently exhibit anomalous spectral gaps – the difference
between the largest and second-largest eigenvalues – com-
pared to ID samples. This observation provides a strong in-
tuition for OOD detection: the spectral gap reflects funda-
mental structural properties of a graph, such as its connectiv-
ity and community structure [Chung and Graham, 1997]. ID
samples, which share similar structural characteristics, tend
to have consistent spectral gaps. In contrast, OOD samples,
with potentially different underlying generative processes, of-
ten display distinct spectral properties, manifesting as larger
or more varied spectral gaps. This phenomenon can be at-
tributed to the fact that the spectral gap is closely related to
the mixing time of random walks on the graph and the graph’s
expansion properties [Hoory et al., 2006], which are likely to
differ between ID and OOD samples.

Motivated by this insight, we propose SpecGap, an effec-
tive post-hoc approach for OOD detection on graphs. Spec-
Gap leverages the observed spectral gap anomalies by adjust-
ing the high-level features of a graph. Specifically, it subtracts
the component associated with the second-largest eigenvalue,
scaled by the spectral gap, from the high-level features. This
adjustment effectively normalizes the spectral properties of
OOD samples, bringing them closer to the distribution of ID
samples, as demonstrated in Figure 1(c).

The proposed SpecGap method offers several key advan-
tages:

• Theoretical Grounding: By focusing on fundamen-
tal spectral properties, SpecGap provides a theoretically
grounded approach to OOD detection, offering insights
into the structural differences between ID and OOD
graphs.

• Ease of Integration: As a parameter-free post-hoc
method, SpecGap can be seamlessly integrated into ex-
isting GNN models without requiring additional training
or architectural modifications.

• Computational Efficiency: The method relies on ef-
ficient eigenvalue computations, making it suitable for
large-scale graph datasets.

• State-of-the-Art Performance: Our extensive exper-
iments demonstrate that SpecGap significantly outper-
forms existing methods, reducing the average false pos-
itive rate (FPR95) by 15.40% compared to the previous
best approach.

In the following sections, we provide a detailed description
of the SpecGap method, present comprehensive theoretical
analyses to support our empirical findings, and demonstrate
its effectiveness across multiple benchmark datasets. The im-
plementation code will be released upon acceptance.

2 SpecGap: Spectral Gap-based OOD
Detection

2.1 Preliminaries
Let G = (V,E) be an undirected graph with n vertices. The
Laplacian matrix L of G is defined as:

L = D −A, (1)

where D is the degree matrix and A is the adjacency matrix
of G. The degree matrix D is diagonal with Dii being the
degree of vertex i, and the adjacency matrix A is defined as:

Aij =

{
1 if (i, j) ∈ E

0 otherwise.
(2)

The Laplacian matrix L is symmetric and positive semi-
definite, with n non-negative real eigenvalues 0 = λ1 ≤
λ2 ≤ ... ≤ λn. These eigenvalues provide crucial informa-
tion about the graph’s structure and connectivity.

The spectral gap, defined as ∆λ = λn − λn−1, plays a
significant role in graph theory. Intuitively, the spectral gap
represents the connectivity and expansion properties of the
graph. A larger spectral gap indicates better connectivity and
faster information diffusion within the graph. In the context
of OOD detection, we hypothesize that in-distribution (ID)
and out-of-distribution (OOD) samples may exhibit differ-
ent spectral gap characteristics, reflecting fundamental differ-
ences in their underlying graph structures.

2.2 SpecGap Algorithm
Feature Adjustment
Given a high-level feature map X ∈ RC×HW from a Graph
Neural Network (GNN), where C is the number of channels
and H ×W is the spatial dimension, our SpecGap algorithm
adjusts this feature based on the spectral properties of the
graph it represents.

First, we compute the Laplacian matrix L of the original
input graph. Then, we calculate its two largest eigenvalues
λn and λn−1, along with the eigenvector un−1 corresponding
to λn−1.

The spectral gap is computed as:

∆λ = λn − λn−1. (3)

Next, we project the feature map X onto the subspace
spanned by un−1:

vn−1 = XTun−1. (4)

Now, we adjust the feature map by subtracting the compo-
nent associated with λn−1, scaled by the spectral gap:

X ′ = X −∆λ · un−1v
T
n−1. (5)

This adjustment effectively removes the influence of the
second-largest eigenvalue, which we hypothesize is more
prominent in OOD samples. The scaling by ∆λ ensures that
the adjustment is proportional to the spectral gap, which dif-
fers between ID and OOD samples.

Intuitively, this adjustment can be seen as ”normalizing”
the spectral properties of the graph. For OOD samples, which
may have anomalous spectral gaps, this normalization brings
their feature representations closer to those of ID samples,
potentially making them easier to detect.
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Integration into GNN Models
The adjusted feature map X ′ is seamlessly integrated back
into the GNN model. Specifically, X ′ replaces the original
feature map X in the subsequent layers of the network. The
process can be formalized as:

hl+1 = fl(X
′, A), (6)

where hl+1 is the output of the (l+1)-th layer, fl is the layer
function, and A is the adjacency matrix.

This integration allows the SpecGap adjustment to influ-
ence the entire downstream processing of the GNN. The ef-
fect of this adjustment on the model’s output can be signif-
icant: 1) Enhanced Discriminability: By normalizing the
spectral properties, the adjusted features may become more
discriminative between ID and OOD samples. 2) Improved
Generalization: The spectral gap-based adjustment may help
the model focus on more robust, graph-structural features,
potentially improving generalization. 3) Calibrated Confi-
dence: For OOD samples, the adjustment may lead to less
overconfident predictions, as their anomalous spectral prop-
erties are mitigated.

Mathematically, we can express the impact on the model’s
output y as:

y = g(fL(...f2(f1(X
′, A), A)...), A), (7)

where g is the final classification layer and L is the total num-
ber of layers.

The SpecGap adjustment essentially modifies the feature
space in which the GNN operates, potentially creating a more
suitable space for distinguishing between ID and OOD sam-
ples. This modification is based on fundamental graph prop-
erties, making it a theoretically grounded approach to improv-
ing OOD detection in GNNs.

2.3 Efficient Computation of Spectral Gap
Lanczos Algorithm
To efficiently compute the two largest eigenvalues λn and
λn−1 of the Laplacian matrix L, we employ the Lanczos al-
gorithm. This iterative algorithm is particularly effective for
large, sparse matrices, making it well-suited for graph Lapla-
cians. The Lanczos algorithm builds an orthonormal basis for
the Krylov subspace:

Kk(L,v) = span{v, Lv, L2v, ..., Lk−1v}, (8)

where v is an initial vector, typically chosen randomly. The
algorithm proceeds by iteratively constructing a sequence
of orthonormal vectors {qj}kj=1 and scalars {αj}kj=1 and
{βj}k−1

j=1 . At each iteration, the algorithm computes:

w = Lqj − βj−1qj−1, (9)

αj = wTqj , (10)

w = w − αjqj , (11)

βj = ∥w∥2, (12)

qj+1 = w/βj . (13)

This process generates a tridiagonal matrix Tk ∈ Rk×k:

Tk =


α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βk−1

βk−1 αk

 . (14)

The eigenvalues of Tk approximate the extreme eigenval-
ues of L. Specifically, the largest eigenvalue of Tk converges
to λn, and the second largest to λn−1. Regarding conver-
gence, the error in the j-th Ritz value θj (an approximation to
an eigenvalue) is bounded by:

|λj − θj | ≤ C · (λj+1 − λj

λj − λ1
)2k, (15)

where C is a constant. This bound demonstrates that the con-
vergence is faster when the eigenvalues are well-separated.

The computational complexity of the Lanczos algorithm is
O(k ·nnz(L)), where k is the number of iterations and nnz(L)
is the number of non-zero elements in L. For sparse graphs,
this is significantly more efficient than full eigendecomposi-
tion.

Implementation Details
The implementation of the Lanczos algorithm requires care-
ful consideration of numerical stability and efficiency. We
initialize q1 as a random unit vector, computed by normaliz-
ing a vector of random numbers drawn from a standard nor-
mal distribution:

q1 =
r

∥r∥2
. (16)

The matrix-vector product Lqj is computed efficiently by
leveraging the sparsity of the Laplacian matrix:

Lqj = Dqj −Aqj , (17)

where D and A are the degree and adjacency matrices, re-
spectively. To maintain numerical stability, we perform full
reorthogonalization after each iteration:

w = w −Qj(Q
T
j w), (18)

where Qj = [q1, ...,qj ]. The eigenvalues of the tridiagonal
matrix Tk are computed using a stable method such as the
QR algorithm. The two largest eigenvalues of Tk serve as our
approximations for λn and λn−1.

The iteration process continues until the change in the es-
timated eigenvalues falls below a predetermined threshold ϵ:

|λ(k)
n − λ(k−1)

n | < ϵ and |λ(k)
n−1 − λ

(k−1)
n−1 | < ϵ, (19)

where λ
(k)
n and λ

(k)
n−1 are the estimates at the k-th iteration.

By implementing these details, we can efficiently and sta-
bly compute the spectral gap ∆λ = λn − λn−1 for use in our
SpecGap algorithm, even for large graphs.
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3 Experiments
To comprehensively evaluate the effectiveness of the Spec-
Gap method, we have designed a series of experiments. This
section will detail the experimental setup, main results analy-
sis, and in-depth ablation studies.

3.1 Experimental Setup
Datasets
Our experiments utilize five pairs of datasets, representing in-
distribution (ID) and out-of-distribution (OOD) data respec-
tively. These pairs are selected from the TU datasets[Morris
et al., 2020] and Open Graph Benchmark (OGB)[Hu et al.,
2020], covering molecular, social network, and bioinformat-
ics domains. Each pair belongs to the same field but exhibits
a mild domain shift, providing an ideal testbed for OOD de-
tection. We follow the dataset split strategy from previous
works[Liu et al., 2023]: 80% of ID graphs for training, and
the remaining 20% split equally between validation and test
sets. These latter sets are augmented with an equal number of
OOD graphs, creating a realistic and challenging evaluation
scenario.

Baselines and Our Method
Our experiments include several baseline methods, catego-
rized into unsupervised and supervised approaches. The
unsupervised baselines are GCL[You et al., 2020] and
JOAO[You et al., 2021], while the supervised ones are
GIN[Xu et al., 2018] and PPGN[Maron et al., 2019]. We
also compare our method with state-of-the-art OOD detec-
tion methods, including AAGOD[Guo et al., 2023], GOOD-
D[Liu et al., 2023], OCGIN[Zhao and Akoglu, 2023], and
GLocalKD[Ma et al., 2022]. Our proposed method, Spec-
Gap, is applied to all these baseline methods as well as
AAGOD to demonstrate its versatility and effectiveness as a
post-processing technique.

Evaluation Metrics
To ensure a comprehensive evaluation, we employ three
widely-used metrics in OOD detection tasks: Area Under the
Receiver Operating Characteristic Curve (AUC), Area Under
the Precision-Recall Curve (AUPR), and False Positive Rate
at 95% True Positive Rate (FPR95). These metrics provide
a holistic view of the method’s performance across different
operating points.

Implementation Details
In our implementation, SpecGap is applied to the final layer’s
feature map of the GNN models. This choice allows us to
leverage the most abstract and task-relevant features learned
by the network. For Graph Transformer architectures, we ap-
ply SpecGap after the self-attention layer, enabling it to refine
the attention-weighted features. This consistent application
across different architectures demonstrates the flexibility and
generality of our approach.

3.2 Main Results
To evaluate the effectiveness of SpecGap, we conduct ex-
periments on various well-trained GNNs, including unsuper-
vised methods (GCL, JOAO) and supervised methods (GIN,

PPGN). We used the SSD/LOF scoring function from [Guo
et al., 2023] to enable these baseline methods to have OOD
detection capabilities.Tables 1 and 2 present the results on
unsupervised and supervised GNNs, respectively.The results
in Tables 1 and 2 demonstrate the superior performance of
SpecGap across various GNN architectures and datasets.

The substantial and consistent performance improve-
ments achieved by SpecGap across a diverse range of graph
neural network architectures and datasets. SpecGap’s effec-
tiveness is particularly evident in its ability to significantly en-
hance OOD detection capabilities, as reflected by the marked
increases in AUC and AUPR scores, coupled with notable re-
ductions in FPR95 values. For instance, when applied to the
GCL S model on the BZR/COX2 dataset pair, SpecGap ele-
vates the AUC from 75.00% to an impressive 98.56%, while
simultaneously reducing the FPR95 from 47.50% to a mere
12.69%. This dramatic improvement underscores SpecGap’s
prowess in refining the feature space to accentuate the distinc-
tions between in-distribution and out-of-distribution samples.
The method’s efficacy is further corroborated by its perfor-
mance on challenging cases, such as improving the AUC of
GIN S on the IMDBM/IMDBB pair from 42.05% to 60.77%,
demonstrating its ability to extract meaningful signals even in
scenarios where baseline methods struggle.

SpecGap’s consistent performance across both unsuper-
vised (GCL, JOAO) and supervised (GIN, PPGN) architec-
tures, as well as its compatibility with different scoring func-
tions (SSD and LOF), highlights its versatility and robustness
as a post-processing technique. The method’s success can be
attributed to its novel approach of leveraging spectral prop-
erties, particularly the spectral gap, to capture and amplify
structural differences between ID and OOD graphs. This
spectral-based feature adjustment effectively normalizes the
feature representations, bringing OOD samples closer to the
ID distribution in the feature space, thereby facilitating more
accurate detection. The observed improvements across var-
ious graph types, including molecular (e.g., TOX21/SIDER
with AUC increase from 68.04% to 73.41% for GCL S),
social network (IMDBM/IMDBB), and bioinformatics (EN-
ZYMES/PROTEIN) datasets, underscore SpecGap’s gener-
alizability and its potential for wide-ranging applications in
graph-based machine learning tasks.

Comparison with Other OOD Detection Methods
The experimental results demonstrate that SpecGap con-
sistently outperforms existing state-of-the-art graph OOD
detection methods across various datasets, showcasing its
effectiveness as a post-processing technique. To rigorously
evaluate SpecGap’s performance, we conducted a compara-
tive analysis against several prominent graph OOD detection
methods: AAGOD, OCGIN, GLocalKD, and GOOD-D. For
this comparison, AAGOD was implemented using the JOAO
architecture with the SSD scoring function, establishing a ro-
bust baseline. SpecGap, being a post-processing method, was
applied to each of these methods to assess its universal appli-
cability and potential for performance enhancement.

Figure 2 presents the AUC scores of these methods across
five dataset pairs, both before and after the application of
SpecGap. The results reveal a consistent pattern of improve-
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ID OOD Metric GCLS GCLL JOAOS JOAOL

Original +SpecGap Original +SpecGap Original +SpecGap Original +SpecGap

ENZYMES PROTEIN
AUC↑ 62.97 75.24 62.56 69.50 61.20 76.67 59.68 67.42

AUPR↑ 62.47 77.03 65.45 67.14 61.30 79.41 64.16 66.42
FPR95↓ 93.33 74.77 93.30 71.95 90.00 69.09 96.67 71.95

IMDBM IMDBB
AUC↑ 80.52 85.52 61.08 70.70 80.40 84.45 48.25 66.25

AUPR↑ 74.43 82.16 59.52 70.07 74.70 79.32 47.88 63.47
FPR95↓ 38.67 32.43 96.67 77.29 44.70 35.53 98.00 79.54

BZR COX2
AUC↑ 75.00 98.56 34.69 67.25 80.00 96.75 41.80 67.94

AUPR↑ 62.41 98.52 39.07 64.78 67.10 95.78 56.70 69.24
FPR95↓ 47.50 12.69 92.50 67.68 37.50 10.58 97.50 82.46

TOX21 SIDER
AUC↑ 68.04 73.41 53.44 60.00 53.46 71.47 53.64 57.34

AUPR↑ 69.28 75.73 56.81 61.37 56.02 73.14 56.02 57.70
FPR95↓ 90.42 75.74 94.25 78.44 95.66 76.61 95.66 75.85

BBBP BACE
AUC↑ 77.07 82.46 46.74 52.05 75.48 80.32 43.96 52.82

AUPR↑ 68.41 74.41 45.35 47.88 69.32 75.91 44.77 49.77
FPR95↓ 71.92 51.26 92.12 73.35 76.85 58.76 94.09 78.35

Table 1: Graph OOD detection performance with unsupervised GNNs (GCL and JOAO).The subscript S/L indicates the SSD/LOF scoring
function.

ID OOD Metric GINS GINL PPGNS PPGNL

Original +SpecGap Original +SpecGap Original +SpecGap Original +SpecGap

ENZYMES PROTEIN
AUC↑ 52.22 68.21 58.44 67.87 53.89 68.67 52.56 65.21

AUPR↑ 50.41 60.57 53.82 60.80 54.06 67.67 51.21 59.29
FPR95↓ 93.33 62.04 90.00 70.50 80.00 67.68 100.00 70.50

IMDBM IMDBB
AUC↑ 42.05 60.77 57.24 64.58 40.62 61.03 47.90 57.31

AUPR↑ 44.43 59.55 54.41 64.08 43.41 56.69 50.06 54.34
FPR95↓ 100.00 76.71 87.17 80.37 96.43 72.05 89.67 75.58

BZR COX2
AUC↑ 35.25 79.05 60.75 78.28 62.75 73.90 65.00 74.42

AUPR↑ 39.61 68.31 53.71 65.08 57.15 81.31 62.14 79.92
FPR95↓ 100.00 59.22 95.00 38.07 65.00 76.14 80.00 80.37

TOX21 SIDER
AUC↑ 63.73 66.19 51.47 59.32 36.98 63.08 54.61 56.65

AUPR↑ 63.79 69.37 52.33 58.25 43.55 59.90 53.91 59.65
FPR95↓ 83.78 79.41 96.93 78.12 97.45 69.98 94.38 82.55

BBBP BACE
AUC↑ 64.58 69.83 43.54 58.84 30.79 72.31 47.55 58.67

AUPR↑ 58.39 63.77 43.80 55.74 44.06 76.80 49.71 59.70
FPR95↓ 87.68 76.68 91.63 77.93 97.56 66.03 100.00 75.11

Table 2: Graph OOD detection performance with supervised GNNs (GIN and PPGN).The subscript S/L indicates the SSD/LOF scoring
function.

ment, with SpecGap enhancing the performance of all meth-
ods across all datasets. This uniform uplift in AUC scores
underscores SpecGap’s ability to extract and utilize comple-
mentary information from the graph structure. The magni-
tude of improvement varies across methods and datasets, re-
flecting the complex interplay between SpecGap, the base
methods, and the underlying data distributions. Notably,
SpecGap’s enhancements are not limited to underperforming
methods; even high-performing algorithms like GOOD-D see
non-trivial improvements in certain datasets. This observa-
tion suggests that SpecGap captures fundamental graph prop-
erties that are not fully exploited by existing techniques.

3.3 Ablation Studies
Component Analysis
To thoroughly investigate the effectiveness of our proposed
SpecGap method, we conducted comprehensive ablation

studies on its key components. These studies focus on three
critical aspects: comparison of different spectral gap adjust-
ment techniques, the impact of feature adjustment methods,
and the influence of using varying numbers of largest eigen-
values. Our experiments were performed on the ENZYMES-
PROTEIN dataset using the GCL model with the SSD scoring
function (GCLS) as the base architecture.

The choice of spectral gap adjustment technique proves
to be crucial for the performance of SpecGap, with our pro-
posed method outperforming alternative approaches. Table
3 presents the comparison of different spectral gap adjustment
techniques. We evaluated four approaches: no adjustment
(original GCLS), simple subtraction (λn−λn−1), relative dif-
ference ((λn − λn−1)/λn), and our proposed method (scaled
subtraction). Our proposed scaled subtraction method out-
performs the alternatives across all evaluation metrics. The
improvement is particularly notable in the AUC and AUPR

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

AAGOD

OCGIN

Gloc
alK

D

GOOD-D

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

ENZYMES-PROTEIN
Before
After

AAGOD

OCGIN

Gloc
alK

D

GOOD-D

0.5

0.6

0.7

0.8

0.9

1.0
IMDBM-IMDBB

Before
After

AAGOD

OCGIN

Gloc
alK

D

GOOD-D

0.5

0.6

0.7

0.8

0.9

1.0
BZR-COX2

Before
After

AAGOD

OCGIN

Gloc
alK

D

GOOD-D

0.5

0.6

0.7

0.8

0.9

1.0
TOX21-SIDER

Before
After

AAGOD

OCGIN

Gloc
alK

D

GOOD-D

0.5

0.6

0.7

0.8

0.9

1.0
BBBP-BACE
Before
After

Figure 2: Performance comparison of OOD detection methods before and after applying SpecGap. Each subplot represents a different dataset
pair, with methods on the x-axis and AUC scores on the y-axis. Coral and slate blue bars indicate performance before and after SpecGap
application, respectively.

Adjustment Technique AUC AUPR FPR95
No Adjustment (Original) 62.97 62.47 93.33
Simple Subtraction 68.35 69.82 85.21
Relative Difference 71.56 73.19 79.68
Scaled Subtraction (SpecGap) 75.24 77.03 74.77

Table 3: Comparison of different spectral gap adjustment techniques
using the GCLS model on the ENZYMES-PROTEIN dataset.

Feature Adjustment Method AUC AUPR FPR95
Concatenation 69.83 71.25 84.56
Multiplication 72.61 74.38 79.92
Subtraction (SpecGap) 75.24 77.03 74.77

Table 4: Comparison of different feature adjustment methods using
the GCLS model on the ENZYMES-PROTEIN dataset.

scores, with increases of 19.5% and 23.3% respectively com-
pared to the original model. This significant enhancement
can be attributed to the method’s ability to effectively cap-
ture and emphasize the structural differences between in-
distribution and out-of-distribution graphs. The simple sub-
traction method, while showing some improvement over the
original model, falls short of our proposed approach.

The method of incorporating the spectral gap informa-
tion into the graph features significantly influences the per-
formance of SpecGap. We compared three feature adjust-
ment methods: concatenation, multiplication, and our pro-
posed subtraction method. Table 4 presents the results of this
comparison. Our proposed subtraction method consistently
outperforms both alternative techniques across all evaluation
metrics. The concatenation method, while providing addi-
tional information, fails to effectively emphasize the struc-
tural differences captured by the spectral gap. This results in
only modest improvements over the original model. The mul-
tiplication method shows better performance, likely due to its
ability to scale features based on the spectral gap. However,
it may overly amplify or diminish certain features, leading to
suboptimal results.

The number of largest eigenvalues used in SpecGap sig-
nificantly impacts its performance, with an optimal range
identified for best results. Figure 3 illustrates the impact of
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Figure 3: Impact of the number of largest eigenvalues used in Spec-
Gap on OOD detection performance (AUC) using the GCLS model
on the ENZYMES-PROTEIN dataset.

using different numbers of largest eigenvalues on the OOD
detection performance. We varied the number of eigenvalues
from 1 to 10 and measured the resulting AUC scores. The
results reveal a clear trend: performance initially improves as
more eigenvalues are incorporated, reaches a peak at 2 eigen-
values (which corresponds to our proposed method using the
spectral gap), and then gradually declines. This pattern sug-
gests that while the largest eigenvalues contain crucial struc-
tural information for OOD detection, incorporating too many
may introduce noise or redundant information that dilutes the
discriminative power of the spectral features. The sharp in-
crease in performance from using just one eigenvalue to us-
ing two (i.e., considering the spectral gap) underscores the
importance of capturing this specific aspect of the graph’s
spectral properties. The subsequent decline in performance
when using more eigenvalues indicates that the most relevant
structural information for OOD detection is concentrated in
the spectral gap.

Feature Adjustment Position
The position of SpecGap application within the GNN ar-
chitecture significantly impacts its effectiveness, with ear-
lier layers generally yielding better performance. Table 5
presents the OOD detection performance of SpecGap when
applied at different positions in a 3-layer GCL model on the
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Application Position AUC AUPR FPR95
After 1st Layer 75.24 77.03 74.77
After 2nd Layer 73.18 75.42 77.56
After 3rd Layer 71.95 73.89 79.32
Output Layer 70.62 72.51 81.05

Table 5: Performance comparison of SpecGap applied at different
positions in a 3-layer GCL model on the ENZYMES-PROTEIN
dataset.

Laplacian Variant AUC AUPR FPR95
Unnormalized 95.82 95.73 17.54
Normalized 98.56 98.52 12.69
Signless 94.17 94.05 19.86

Table 6: Performance comparison of SpecGap using different Lapla-
cian matrix variants on the BZR-COX2 dataset with the GCLS

model.

ENZYMES-PROTEIN dataset. The results demonstrate that
applying SpecGap after the first layer consistently outper-
forms applications at later layers or the output layer. The
superior performance of early-layer application can be at-
tributed to the enhancement of global structural information
captured by the spectral gap. By applying SpecGap in the
early layers, we allow the subsequent layers to learn more
discriminative representations based on the adjusted spectral
properties of the graph.

Laplacian Matrix Variants
The choice of Laplacian matrix variant in SpecGap sig-
nificantly influences OOD detection performance, with the
normalized Laplacian generally yielding the best results.
Table 6 compares the performance of SpecGap using dif-
ferent Laplacian matrix variants on the BZR-COX2 dataset
with the GCLS model. The variants considered are the un-
normalized Laplacian, normalized Laplacian, and signless
Laplacian. The normalized Laplacian consistently outper-
forms other variants across all metrics. This superior per-
formance can be attributed to its invariance to graph scale
and its ability to capture both local and global graph prop-
erties effectively. The normalized Laplacian’s spectral gap
provides a more informative measure of graph connectivity
and community structure, which is crucial for distinguishing
between in-distribution and out-of-distribution samples.The
unnormalized Laplacian, while still effective, shows slightly
lower performance compared to its normalized counterpart.
This may be due to its sensitivity to graph size, which can
introduce unwanted variability in the spectral gap calculation
for graphs of different scales.

Feature Projection Methods
The choice of feature projection method in SpecGap plays
a crucial role in its effectiveness, with eigenvector-based
projection demonstrating superior performance. Figure
4 illustrates the performance of different feature projection
methods in SpecGap on the IMDBM-IMDBB dataset using
the JOAOS model. We compare three projection methods:
eigenvector-based, random projection, and no projection (di-
rect feature adjustment). The eigenvector-based projection

Eigenvector Random No Projection0

20

40
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80

Sc
or

es

84.45 81.23 78.9679.32 76.58 74.12
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Figure 4: Comparison of different feature projection methods in
SpecGap on the IMDBM-IMDBB dataset using the JOAOS model.

method consistently outperforms the alternatives across all
evaluation metrics. This superior performance can be at-
tributed to its ability to align the feature adjustment with the
principal directions of variation in the graph structure, as cap-
tured by the eigenvectors of the Laplacian matrix. Random
projection, while showing some improvement over no pro-
jection, falls short of the eigenvector-based method. This
suggests that while dimensionality reduction can be benefi-
cial, the specific structure preserved by eigenvector projection
is particularly valuable for OOD detection.The no projection
method, which directly adjusts features without any projec-
tion, shows the lowest performance.

4 Conclusion

This paper introduces SpecGap, a novel theoretical and em-
pirical framework for graph-level out-of-distribution (OOD)
detection using spectral properties. Our key contributions in-
clude: (1) A parameter-free post-processing technique that
leverages spectral gaps to enhance OOD detection, showing
consistent improvements across multiple benchmark datasets
and model architectures; (2) A rigorous theoretical foun-
dation demonstrating how spectral gaps reflect fundamental
structural differences between ID and OOD graphs; and (3)
Comprehensive empirical analyses through extensive experi-
ments and ablation studies that validate our theoretical find-
ings. Our theoretical analysis reveals that the spectral gap
serves as a robust structural signature, supported by formal
proofs of distribution-level separation gains and connections
to classical graph theory. The experimental results demon-
strate significant performance improvements, with SpecGap
reducing the average false positive rate (FPR95) by 15.40%
compared to previous methods.

While SpecGap shows promising results, several important
directions remain for future research. First, scalability to very
large graphs could be further improved through more efficient
eigenvalue computation techniques or approximation meth-
ods. Second, investigating the method’s robustness under ad-
versarial perturbations and developing theoretical guarantees
for such scenarios would strengthen its reliability for appli-
cations. Finally, exploring the integration of SpecGap with
other graph learning tasks beyond OOD detection.
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